An error estimation of the reconstruction algorithm in computed tomography

Taizo Muroya (室屋 泰三)

Takao Hanada (花田 孝郎)

Jiro Watanabe (渡辺 二郎)

University of Electro-Communications (電気通信大学)

1 Introduction

1.1 Radon transformation

Let f = f(x, y) be a piecewise continuous function on the plane with compact support, e.g., characteristic function supported on plane figures circumscribed by square, circle or asteroid. For any line L: $x \cos \theta + y \sin \theta = \xi$, let

$$\varphi(\theta, \xi) = \int_{-\infty}^{\infty} f(\xi \cos \theta + s \sin \theta, \xi \sin \theta - s \cos \theta) ds \tag{1.1}$$

where s is length measured along L. This function φ is the Radon transform of f. Let us write

$$\psi(\xi; x, y) = \frac{1}{2\pi} \int_0^{2\pi} \varphi(\theta, \xi + x \cos \theta + y \sin \theta) d\theta.$$

J. Radon [1],[2] gave the following inversion formula:

$$f(x,y) = -\frac{1}{\pi} \int_0^\infty \frac{\psi(\xi; x, y) - \psi(0; x, y)}{\xi^2} d\xi.$$

1.2 Approximation of the singular integral

Our problem is to make a good approximation to the singular integral

$$T(\psi) = \int_0^\infty \frac{\psi(\xi) - \psi(0)}{\xi^2} d\xi$$
 (1.2)

where $\psi(\xi) = \psi(\xi; x, y)$.

Now, for step size $\delta > 0$, let us take

$$x_i = (i - 1/2)\delta$$
, $I_i = [x_i, x_{i+1})$, $i = 0, 1, 2, ...$

and we set

$$\psi_{\delta}(\xi) = \psi(i\delta), \quad \xi \in I_i, \quad i = 0, 1, 2, \dots$$

We adopt $T(\psi_{\delta})$ as an approximation of the singular integral (1.2). It is easily seen that

$$T(\psi_{\delta}) = \frac{1}{\delta} \{ \sum_{i=1}^{\infty} \frac{\psi(i\delta)}{i^2 - 1/4} - 2\psi(0) \}$$

holds.

Our problem is to make a numerical integration formula for the singular integral $T(\psi)$. Moreover, we will investigate the order of accuracy of our integration formula when the function f is piecewise continuous.

2 Behavior of $\psi(\xi)$ near $\xi = 0$

2.1 Analytical forms of $\psi(\xi)$ near $\xi = 0$

Let us assume, for simplicity, x = y = 0 in (1.1).

For f, we set

$$m(r) = \frac{1}{2\pi} \int_0^{2\pi} f(r\cos\theta, r\sin\theta) d\theta, \quad r > 0.$$

Then it follows easily from (1.1) that

$$\psi(\xi) = 2 \int_{\xi}^{\infty} \frac{r \cdot m(r)}{\sqrt{r^2 - \xi^2}} dr$$

holds.

Let us treat the case where m(r) is in the following functional form:

$$m(r) = \begin{cases} ar^{\alpha - 1} + b, & 0 < r < R \\ 0, & r > R. \end{cases}$$
 (2.1)

where $\alpha > 0$, $a \neq 0, b$ and R > 0 are constants. Let $\psi_{\alpha}(\xi)$ be the function $\psi(\xi)$ corresponding to the above m(r) with α .

$$\psi_{\alpha}(\xi) = \frac{a}{\pi} \int_{\xi}^{R} \frac{r^{\alpha}}{\sqrt{r^{2} - \xi^{2}}} dr \quad (r = s\xi)$$

$$= \frac{a\xi^{\alpha}}{\pi} \int_{1}^{R/\xi} \frac{s^{\alpha}}{\sqrt{s^{2} - 1}} ds$$

$$= \frac{a\xi^{\alpha}}{\pi} I_{\alpha}(\xi), \qquad (2.2)$$

0

where

$$I_{\alpha} = \int_{1}^{R/\xi} \frac{s^{\alpha}}{\sqrt{s^2 - 1}} ds. \tag{2.3}$$

Lemma 1 When $\alpha \neq 0$,

$$I_{\alpha} = \frac{1}{\alpha} \left(\frac{R}{\xi}\right)^{\alpha} \sqrt{1 - \left(\frac{\xi}{R}\right)^{2}} + \frac{\alpha - 1}{\alpha} I_{\alpha - 2}(\xi).$$

Proof.

$$\frac{d}{ds} \left(\frac{1}{\alpha} \sqrt{s^{2\alpha} - s^{2\alpha - 2}} \right) = \frac{s^{\alpha}}{\sqrt{s^2 - 1}} - \frac{\alpha - 1}{\alpha} \frac{s^{\alpha - 2}}{\sqrt{s^2 - 1}}.$$

Lemma 2 When $\alpha < 0$,

$$I_{\alpha}(\xi) = \frac{\sqrt{\pi}}{2} \cdot \frac{\Gamma(-\alpha/2)}{\Gamma((1-\alpha)/2)} + \frac{1}{\alpha} \left(\frac{\xi}{R}\right)^{-\alpha} F(1/2, -\alpha/2; 1 - \alpha/2; (\xi/R)^2). \tag{2.4}$$

Proof. By (2.3) with change of variables:

$$s = \frac{1}{\sqrt{u}}, \quad ds = -\frac{du}{2u^{3/2}}$$

we get

$$I_{\alpha}(\xi) = \frac{1}{2} \int_{(\xi/R)^2}^{1} u^{-1-\alpha/2} (1-u)^{-1/2} du$$

$$= \frac{1}{2} \left(\int_{0}^{1} u^{-1-\alpha/2} (1-u)^{-1/2} du - \int_{0}^{(\xi/R)^2} u^{-1-\alpha/2} (1-u)^{-1/2} du \right). \quad (2.5)$$

For the first integral on the right-hand side of (2.5) we have

$$\int_0^1 u^{-1-\alpha/2} (1-u)^{-1/2} du = B(-\alpha/2, 1/2) = \frac{\sqrt{\pi}\Gamma(-\alpha/2)}{\Gamma(\frac{1-\alpha}{2})}.$$
 (2.6)

For the second integral we have

$$\int_0^{(\xi/R)^2} u^{-1-\alpha/2} (1-u)^{-1/2} du = \left(\frac{\xi}{R}\right)^{-\alpha} \int_0^1 v^{-1-\alpha/2} (1-(\xi/R)^2 v)^{-1/2} dv,$$

and using Euler's integral representation of hypergeometric function [3], when $\alpha < 0$, we obtain

$$\int_0^1 v^{-1-\alpha/2} (1 - (\xi/R)^2 v)^{-1/2} dv = -\frac{2}{\alpha} F(1/2, -\alpha/2; 1 - \alpha/2; (\xi/R)^2).$$

Consequently we get (2.4) from (2.5) - (2.6) and the above expressions.

When $\alpha = 0$

$$I_0(\xi) = \int_1^{R/\xi} \frac{ds}{\sqrt{s^2 - 1}} = \log \left[\frac{R}{\xi} \left(1 + \sqrt{1 - (\xi/R)^2} \right) \right]$$
 (2.7)

holds.

Now we can write ψ_{α} in explicit forms.

When $0 < \alpha < 2$ we have by (2.2) and Lemma 1

$$\psi_{\alpha}(\xi) = \frac{aR^{\alpha}}{\pi\alpha} \sqrt{1 - (\xi/R)^2} + \frac{a(\alpha - 1)}{\pi\alpha} \xi^{\alpha} I_{\alpha - 2}(\xi),$$

and applying Lemma 2 to $I_{\alpha-2}$

$$\begin{split} \psi_{\alpha}(\xi) &= \frac{aR^{\alpha}}{\pi\alpha}\sqrt{1-(\xi/R)^2} + \frac{a(\alpha-1)}{2\sqrt{\pi}\alpha} \cdot \frac{\Gamma((2-\alpha)/2)}{\Gamma((3-\alpha)/2)} \cdot \xi^{\alpha} \\ &+ \frac{a(\alpha-1)}{\pi\alpha(\alpha-2)} \cdot R^{\alpha} \cdot \left(\frac{\xi}{R}\right)^2 \cdot F(1/2, 1-\alpha/2; 2-\alpha/2; (\xi/R)^2). \end{split}$$

Particularly for $\alpha = 1$ we have

$$\psi_1(\xi) = \frac{aR}{\pi} \sqrt{1 - (\xi/R)^2}.$$

For $\alpha = 2$ we have by (2.2), Lemma 1 and (2.7).

$$\psi_{2}(\xi) = \frac{aR^{2}}{2\pi} \sqrt{1 - (\xi/R)^{2}} + \frac{a\xi^{2}}{2\pi} I_{0}(\xi)$$

$$= \frac{aR^{2}}{2\pi} \sqrt{1 - (\xi/R)^{2}} + \frac{a\xi^{2}}{2\pi} \log \left[\frac{\xi}{R} \left(1 + \sqrt{1 - (\xi/R)^{2}} \right) \right]$$

Similarly when $2 < \alpha < 4$

$$\psi_{\alpha}(\xi) = \frac{aR^{\alpha}}{\pi \alpha} \sqrt{1 - (\xi/R)^{2}} \left(1 + \frac{\alpha - 1}{\alpha - 2} \left(\frac{\xi}{R} \right)^{2} \right)$$

$$+ \frac{a}{\pi} \frac{(\alpha - 1)(\alpha - 3)}{\alpha(\alpha - 2)} \cdot \left[\frac{\sqrt{\pi}}{2} \cdot \frac{\Gamma((4 - \alpha)/2)}{\Gamma((5 - \alpha)/2)} \xi^{\alpha} \right]$$

$$+ \frac{R^{\alpha}}{\alpha - 4} \left(\frac{\xi}{R} \right)^{4} \cdot F(1/2, 2 - \alpha/2; 3 - \alpha/2; (\xi/R)^{2})$$

holds. When $\alpha = 4$

$$\psi_4(\xi) = \frac{aR^4}{4\pi} \sqrt{1 - (\xi/R)^2} \left(1 + \frac{3}{2} \left(\frac{\xi}{R} \right)^2 \right) + \frac{aR^4}{\pi} \cdot \frac{3}{4 \cdot 2} \cdot \log \left[\frac{\xi}{R} \left(1 + \sqrt{1 - (\xi/R)^2} \right) \right]$$

holds.

Thus we obtain the following functional forms of ψ_{α} for $\alpha > 0$:

$$\psi_{\alpha}(\xi) = \begin{cases} \operatorname{const} \cdot \xi^{\alpha} + (\operatorname{power series of } \xi^{2}) & \text{when } \alpha \neq \operatorname{integer}, \\ (\operatorname{power series of } \xi^{2}) & \text{when } \alpha \text{ is an odd integer}, \\ \operatorname{const} \cdot \xi^{\alpha} \log \xi + (\operatorname{power series of } \xi^{2}) & \text{when } \alpha \text{ is an even integer}. \end{cases}$$

2.2 Examples of α

Let us consider, as functions f to be reconstructed, the characteristic functions of the figures of square, disk and asteroid (see Figure 1.) When we take the dots in Figure 1 as reconstruction points, the corresponding α 's are shown in Table 1.

Figure 1: Examples of reconstruction points

Table 1: The values of α for reconstruction points.

figure	point	α
Square	(a) interior	1
	(b) edge	1
	(c) corner	1
	(d) exterior	1
Disk	(e) interior	1
	(f) edge	2
	(g) exterior	1
Asteroid	(h) interior	1
	(i) edge	2
	(j) cusp	3/2
	(k) exterior	1

For the above reconstruction points, we have

$$\frac{\psi(\xi) - \psi(0)}{\xi^2} = \begin{cases} \text{(power series of } \xi^2\text{)}, & (\alpha = 1) \\ C \log \xi + \text{(power series of } \xi^2\text{)}, & (\alpha = 2) \\ C\xi^{\alpha-2} + \text{(power series of } \xi^2\text{)}, & (1 < \alpha < 2) \end{cases}$$
 (2.8)

for $\xi > 0$ near the origin, where C is constant.

2.3 Examples of ψ

Let the reconstruction point be the origin (0,0). In case of square, $\psi(\xi)$ is given by

$$\psi(\xi) = \begin{cases} 8\{\frac{l}{2}\log|\frac{\tan(\theta_0/2 + \pi/4)}{\tan(\theta_0/2)}| + \xi\log|\tan\theta_0|\}, & |\xi| \le l/\sqrt{2} \\ 0, & |\xi| > l/\sqrt{2} \end{cases}$$

where $\theta_0 = \cos^{-1}(\sqrt{2}\xi/l) - \pi/4$, l is length of a side of the square.

In case of disk, $\psi(\xi)$ is given by

$$\psi(\xi) = \begin{cases} 4\pi\sqrt{r^2 - \xi^2}, & |\xi| \le r \\ 0, & |\xi| > r. \end{cases}$$

where r is the radius of the disk.

On the accuracy of the numerical integration of 3 the inverse Radon transformation

Let us set

$$a(\xi) = \frac{\psi(\xi) - \psi(0)}{\xi^{2}}, \qquad \chi_{\delta}(\xi) = \begin{cases} \frac{1}{x_{i}x_{i+1}}, & \xi \in I_{i}(i = 1, 2, \dots), \\ 0, & \xi \in I_{0}, \end{cases}$$

$$\bar{\psi}_{\delta}(\xi) = \frac{1}{\delta} \int_{I_{i}} \psi(t) dt, \quad \xi \in I_{i}, \qquad I_{\delta} = \int_{0}^{1} [\chi_{\delta}(\xi) - \frac{1}{\xi^{2}}] \cdot [\psi(\xi) - \psi(0)] d\xi, \quad \text{and}$$

$$\bar{\psi}_{\delta}(\xi) = \psi(0), \quad \xi \in I_{0}, \qquad J_{\delta} = \int_{1}^{\infty} [\chi_{\delta}(\xi) - \frac{1}{\xi^{2}}] \cdot [\psi(\xi) - \psi(0)] d\xi.$$

$$T(\bar{\psi}_{\delta}) = \int_{\delta}^{\infty} \frac{\bar{\psi}_{\delta}(\xi) - \psi(0)}{\xi^{2}} d\xi,$$

Then, $T(\bar{\psi}_{\delta}) - T(\psi) = I_{\delta} + J_{\delta}$.

(A)
$$|\chi_{\delta}(\xi)| \leq \frac{3}{\xi^2}, \quad \xi > 0.$$
 Proof. If $\xi = (i + \alpha)\delta, \alpha \leq \frac{1}{2}$ then

$$\delta^2 \cdot \chi_{\delta}(\xi) = \frac{1}{i^2 - 1/4} \le \frac{3}{(i + \alpha)^2} = \frac{3\delta^2}{\xi^2}, \ i \ge 1.$$

(B) When
$$\xi \in I_i \ (i \ge 1)$$
 we have $|\xi^2 \chi_{\delta}(\xi) - 1| \le \frac{1}{i - 1/2}$.

Proof. If $\xi = (i + \alpha)\delta \in I_i$ then

$$\xi^{2}\chi_{\delta}(\xi) - 1 = \frac{\xi^{2}}{x_{i}x_{i+1}} - 1 = \frac{(i+\alpha)^{2}}{i^{2} - 1/4} - 1$$
$$= \frac{2\alpha i + \alpha^{2} + 1/4}{i^{2} - 1/4}$$
$$= \frac{i+1/2}{i^{2} - 1/4} = \frac{1}{i-1/2}.$$

(C) When $x_i \leq \xi < x_{i+1}$,

$$|\chi_{\delta}(\xi) - \frac{1}{\xi^2}| \le \frac{\delta}{x_i^3} \quad (i \ge 1).$$

Proof. Let $x_i \leq \xi < x_{i+1}$, in view of (B),

$$|\chi_{\delta}(\xi) - \frac{1}{\xi^2}| \le \frac{1}{(i - 1/2)\xi^2} \le \frac{1}{(i - 1/2)x_i^2} = \frac{\delta}{x_i^3}$$

(D) Let $1 \leq p' < \infty$. Then there exists a constant $C_{p'}$ independent of δ ,

$$\int_0^1 |\xi^2 \chi_{\delta}(\xi) - 1|^{p'} |d\xi \le \begin{cases} C_1 \cdot \delta \log \frac{1}{\delta}, & p' = 1 \\ C_{p'} \cdot \delta, & 1 < p' < \infty \end{cases}$$

Proof. Let N be the maximum of integers which are less than $\frac{1}{\delta} + \frac{1}{2}$.

$$\int_{0}^{1} |\xi^{2} \chi_{\delta}(\xi) - 1|^{p'} |d\xi| \leq \frac{\delta}{2} + \sum_{i=1}^{1/\delta - 1} \int_{x_{i}}^{x_{i+1}} |\xi^{2} \chi_{\delta}(\xi) - 1|^{p'} |d\xi| \quad \text{(from (B))}$$

$$\leq \frac{\delta}{2} + \delta \sum_{i=1}^{N} \frac{1}{(i - 1/2)^{p'}},$$

from which we can easily obtain the desired result.

(E) Assume $a(\xi) \in L^p(0,1), 1 . Then$

$$|I_{\delta}| \le \begin{cases} C_1 \cdot \delta \log \frac{1}{\delta} \cdot ||a||_{L^{\infty}(0,1)}, & p = \infty \\ C_{p'}^{1/p'} \cdot \delta^{1/p'} \cdot ||a||_{L^{p}(0,1)}, & 1$$

Proof.

$$|I_{\delta}| = |\int_{0}^{1} (\xi^{2} \chi_{\delta}(\xi) - 1) a(\xi) d\xi|$$

$$\leq (\int_{0}^{1} |\xi^{2} \chi_{\delta}(\xi) - 1|^{p'})^{1/p'} \cdot ||a||_{L^{p}(0,1)}$$

1

Then (E) follows from (D) and the above inequality.

(F) When $\psi \in L^1(1,\infty)$ and $(i_0-1/2)\delta=1$ for some integer i_0 , then we have

$$|J_{\delta}| \leq \delta \cdot ||\psi||_{L^{1}(1,\infty)}$$
.

Proof.

$$|J_{\delta}| = |\int_{1}^{\infty} [\chi_{\delta}(\xi) - \frac{1}{\xi^{2}}] \cdot [\psi(\xi) - \psi(0)] d\xi|$$

$$= |\int_{1}^{\infty} [\chi_{\delta}(\xi) - \frac{1}{\xi^{2}}] \psi(\xi) d\xi|$$

$$\leq \delta \cdot \int_{1}^{\infty} |\psi(\xi)| d\xi \quad \text{(by (C))}.$$

We summarize:

Theorem 1 When $a(\xi) \in L^p(0,1), \psi(\xi) \in L^1(1,\infty)$, and $\frac{1}{p} + \frac{1}{p'} = 1 \ (1 , we have$

$$|T(\bar{\psi}_{\delta}) - T(\psi)| \le \begin{cases} C\delta(\log\frac{1}{\delta} \cdot ||a||_{L^{\infty}(0,1)} + ||\psi||_{L^{1}(1,\infty)}), & p = \infty\\ C\delta^{1/p'}(||a||_{L^{p}(0,1)} + \delta^{1/p}||\psi||_{L^{1}(1,\infty)}), & 1 (3.1)$$

where C is a constant independent of ψ and δ .

When p = 1 we have

Theorem 2 When $a(\xi) \in L^1(0,1), \psi(\xi) \in L^1(1,\infty),$

$$T(\bar{\psi}_{\delta}) \to T(\psi) \quad (\delta \to 0).$$

Next we will estimate $T(\bar{\psi}_{\delta} - \psi_{\delta})$.

For $\delta > 0$, we set $\xi_0 = i_0 \delta$, $0 < \xi_0 < \xi_\infty$, $(i_0 \text{ is integer})$.

We suppose that $\psi \in C^2[0,\xi_\infty)$ satisfies $\psi'(0) = 0$ and

$$\psi''(\xi_{\infty} - \eta) = a(\eta)\eta^{\alpha}, \quad 0 < \eta < \xi_{\infty}$$

where α is a negative constant, $a \in C^0[0, \xi_\infty]$. We set $\psi(\xi) = \psi(-\xi)$, $\xi < 0$, if necessary.

Then we have

Lemma 3.

$$T(\bar{\psi}_{\delta} - \psi_{\delta}) = O(\delta)$$

holds, when $\alpha \geq -2$.

Proof. For δ let

$$I_i = ((i - 1/2)\delta, (i + 1/2)\delta),$$

 $i_{\infty} = \max\{i : (i + 1/2)\delta \le \xi_{\infty}\}.$

Using Taylor's theorem, we can get

$$\psi(i\delta + \eta) = \psi(i\delta) + \eta\psi'(i\delta) + \frac{\eta^2}{2}\psi''(i\delta + \theta)$$

where $0 < \theta < 1$. Thereby

$$\begin{split} \bar{\psi}_{\delta}(i\delta) &= \frac{1}{\delta} \int_{I_{\epsilon}} \psi(\xi) d\xi \\ &= \psi(i\delta) + \frac{\delta^{2}}{24} \psi''(i\delta + \theta), \quad |\theta| < \frac{1}{2}. \end{split}$$

Let T_0,T_1 be defined by the relations

$$T(\bar{\psi}_{\delta} - \psi_{\delta}) = T_0 + T_1,$$

$$T_0 = \frac{1}{\delta} \sum_{i=1}^{i_0} \frac{\bar{\psi}(i\delta) - \psi(i\delta)}{i^2 - 1/4} - \frac{2}{\delta} [\bar{\psi}(0) - \psi(0)],$$

$$T_1 = \frac{1}{\delta} \sum_{i=i_0+1}^{i_\infty - 1} \frac{\bar{\psi}(i\delta) - \psi(i\delta)}{i^2 - 1/4}.$$

(i) Estimate of T_1

First we have

$$T_1 = \frac{\delta}{24} \sum_{i=i_0+1}^{i_\infty-1} \frac{\psi''(i\delta + \theta\delta)}{i^2 - 1/4}$$

and, when $i \leq i_{\infty} - 1$,

$$|\psi''(i\delta) + \theta\delta)| \leq ||a||_{\infty} |\xi_{\infty} - i\delta - \theta\delta|^{\alpha}$$

$$\leq ||a||_{\infty} |\xi_{\infty} - \frac{\delta}{2} - i\delta|^{\alpha}$$

therefore

$$|T_{1}| \leq \frac{\delta}{24}||a||_{\infty} \sum_{i=i_{0}+1}^{i_{\infty}-1} \frac{|\xi_{\infty} - \delta/2 - i\delta|^{\alpha}}{i^{2} - 1/4}$$

$$\leq \frac{\delta}{12}||a||_{\infty} \sum_{i=i_{0}+1}^{i_{\infty}-1} \frac{|\xi_{\infty} - \delta/2 - i\delta|^{\alpha}}{i^{2}}$$

$$= \frac{\delta^{3+\alpha}}{12\xi_{0}^{2}}||a||_{\infty} \sum_{i=i_{0}+1}^{i_{\infty}-1} |\xi_{\infty} - \delta/2 - i\delta|^{\alpha}.$$

If we set

$$A = \frac{\xi_{\infty}}{\delta} + \frac{1}{2} - i_{\infty}, B = \frac{\xi_{\infty}}{\delta} - \frac{3}{2} - i_0,$$

then we have

$$\sum_{i=i_0+1}^{i_\infty-1} \left| \frac{\xi_\infty}{\delta} - \frac{1}{2} - i \right|^{\alpha} \le \int_A^B x^{\alpha} dx + A^{\alpha}.$$

Hence we obtain

$$|T_1| \le \frac{\delta^{3+\alpha}}{12\xi_0} ||a||_{\infty} \left[\frac{1}{1+\alpha} (B^{1+\alpha} - A^{1+\alpha}) + A^{\alpha} \right]$$

holds when $\alpha \neq -1$. Since

$$\delta A = \xi_{\infty} + \frac{\delta}{2} - i_{\infty} \delta \sim \text{const} \cdot \delta,$$
 (3.2)

$$\delta B = \xi_{\infty} - \frac{3}{2}\delta - \xi_0 \sim \xi_{\infty} - \xi_0, \tag{3.3}$$

we have

$$\delta^{1+\alpha} \left[\frac{1}{1+\alpha} (B^{1+\alpha} - A^{1+\alpha}) + A^{\alpha} \right] \sim \begin{cases} \text{const} & (1+\alpha > 0) \\ \text{const} \cdot \delta^{1+\alpha} & (1+\alpha < 0) \end{cases}$$

Accordingly

$$T_1 = \left\{ \begin{array}{ll} O(\delta^2) & (1+\alpha>0) \\ O(\delta^{3+\alpha}) & (1+\alpha<0) \end{array} \right. .$$

When $\alpha = 1$ we have

$$|T_1| \le \frac{\delta^2}{12\xi_0^2} ||a||_{\infty} \left[\log \frac{B}{A} + \frac{1}{A} \right].$$

Also using (3.2) and (3.3) we can show that

$$T_1 = O(\delta^2 \log \frac{1}{\delta}).$$

(ii) Estimate of T_0

$$\frac{1}{\delta} \sum_{i=1}^{i_0} \frac{|\bar{\psi}(i\delta) - \psi(i\delta)|}{i^2 - 1/4} \leq \frac{1}{12\delta} \sum_{i=1}^{i_0} \frac{|\bar{\psi}(i\delta) - \psi(i\delta)|}{i^2}$$
$$\leq \frac{\delta}{12} \cdot ||\psi''||_{L^{\infty}} \frac{\pi^2}{6}$$

and

$$\frac{2}{\delta}[\bar{\psi}(0) - \psi(0)] = \frac{\delta}{12}\psi''(\theta\delta) = O(\delta)$$

therefore

$$T_0 = O(\delta)$$
.

Hence we have

$$T(\bar{\psi}_{\delta} - \psi_{\delta}) = O(\delta).$$

We note that the statements of Theorems 1 and 2 are valid if $\bar{\psi}_{\delta}$ is replaced by ψ_{δ} , when ψ satisfies conditions of Lemma 3 and when $\alpha \geq -2$.

4 Results of numerical experiments

On our algorithm, the reconstruction was performed for characteristic functions f of figures of square, disk or asteroid.

For each reconstruction point, the absolute error of reconstruction is proportional to δ^k when δ is in a certain interval. We show graphs of absolute error in our numerical experiments. Here the abscissa is the logarithm of δ and the ordinate is the logarithm of absolute error. (See Figure 2 – Figure 4.)

In the following table (Table 2) k and k' denote the orders of the accuracy of reconstruction obtained in the numerical experiments and theoretically in the right-hand side of the inequality (3.1),respectively. To get k' we have calculated the number α in (2.1) and used (2.8) in each case. We note that the order k' is obtained without regard to the differentiability of ψ . Therefore we can only expect that $k \geq k'$ holds.

Table 2: Results of numerical experiments.

$\int f$	reconstruction point		k	k'	α
square	center	(a)	3	1	1
	edge point	(b)	3	1	1
	corner	(c)	3	1	1
	exterior point	(d)	3	1	1
circle	center	(e)	1.5	1	1
	edge point	(f)	1	k' < 1	2
	exterior point	(g)	2	1	1
asteroid	center	(h)	2	1	1
,	edge point	(i)	1	k' < 1	2
	cusp	(j)	0.5	k' < 0.5	3/2
	exterior point	(k)	2	1	1

Finally let us write a summary of our results.

- (i) We have tried to make a numerical reconstruction formula for piecewise continuous functions. We have adopted a kind of rectangular rule for the inverse Radon transformation.
- (ii) In numerical experiments we have obtained orders of the accuracy of reconstruction which are greater than or equal to orders assured by the L^p error estimates.
- (iii) We have order k=0.5 for the cusp of the asteroid which is the most difficult to reconstruct in our experiments, and we have order $2 \sim 3$ for ordinary continuous points.

References

- [1] J. Radon, Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewissen Mannigfaltigkeiten, Berichte Sächsische Akademie der Wissenschaften 69, 262–277, 1917.
- [2] F. Natterer, The Mathematics of Computerized Tomography, John Wiley & Sons 1986.
- [3] E. T. Copson, An Introduction to the Theory of Functions of a Complex Variable, Oxford Univ. Press, 1935.