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1 Introduction
1.1 Radon transformation

Let f = f(z,y) be a piecewise continuous function on the plane with compact support,e.g.,
characteristic function supported on plane figures circumscribed by square, circle or as-

teroid. For any line L: zcos@ + ysinfd = ¢, let

0(0,¢) = /_o:o f(€cosf + ssin B, £ sin @ — scos b)ds (1.1)

‘where s is length measured along L. This function ¢ is the Radon transform of f. Let us

write
Y = —1 " 0,¢ + 0 +» in 8)dé
(f:w,y) 2 /0 ‘P( €+ zcos ysi ) .

J. Radon [1],[2] gave the following inversion formula:

f(e.7) = _%/Ow «/}(f;x,y);wo;w,y)dé

1.2 Approximation of the singular integral

Our problem is to make a good approximation to the singular integral

i) = [P0,

Jo & ¢ (1.2)

where ¥(¢) = ¢(&; 2, y).

Now, for step size § > 0, let us take

Z; 2(1—1/2)6, Ii: [xi,xi—{-l)a i=0,1,2,...
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and we set _
vs(€) = (i6), €€, i=0,1,2,....

We adopt T'(vs) as an approximation of the singular integral (1.2). It is easily seen that

)

holds.
Our problem is to make a numerical integration formula for the singular integral T'(3).
Moreover, we will investigate the order of accuracy of our integration formula when the

function f is piecewise continuous.

2 Behavior of ¥({) near { =0

2.1 Analytical forms of ¢({) near { =0

Let us assume, for simplicity, z =y = 0 in (1.1).
For f, we set

1 g2 .
m(r) = %/0 f(rcosf,rsinf)df, r >O0.

Then it follows easily from (1.1) that

holds.

Let us treat the case where m(r) is in the following functional form :

{ar“’l+b, 0<r<R
m(r) =

0, r > R. (2.1)

where a > 0, :a # 0,b and R > 0 are constants. Let t,({) be the function ()

corresponding to the above m(r) with «.

val) = /{R——\/_:—?d (r = s6)

@ rR/¢
= ﬁ—_/ > ds
1

G s2—1

- %5, (22)
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where

R/t
I, = / S ds. (2.3)
1

1 (R\" £\ a-1
I = N (‘E) 1- (E) + ——1,—2(¢)
Proof.
o a—2
4 (L) el
ds \o s?—1 o s2—1
[
Lemma 2 When a < 0,
vr  T(=a/2) 1(€E\°
I, Y- _-\ e 45 _ 1 . 2y .
(€)=~ M= a)/2) +-|%] FU/2-a/21~a/2(/R)") (2.4)
Proof. By (2.3) with change of variables:
_ b ds — — du
° V'’ . 20/

we get
1
/ w12 (1 — )Yy
(¢/R)?
1 (¢/R)?
(/ u_l_o,/z(l _ u)—l/Zdu __/ u—l—a/Z(l _ u)—1/2du> ) (25)
o 0

For the first integral on the right-hand side of (2.5) we have

/1 w171 — w)" Y2y = B(—a/2,1/2) = _\/_7_5_1‘1(———_(1()[/_2_). (26)
: rt=9)

1
2
1
2

For the second integral we have

R () I A UL PR

and using Euler’s integral representation of hypergeometric function [3], when o < 0, we

obtain

[ 0T = (€ Ry = — 2 E(1/2,-a /21 a2 €/ R)).



Consequently we get (2.4) from (2.5) - (2.6) and the above expressions.
When a =0

R/ d
1) = [ 2 = og |

™|

()

holds.

Now we can write 1, in explicit forms.

When 0 < a < 2 we have by (2.2) and Lemma 1

ball) = S T R + L D, ),

and applying Lemma 2 to I,_,,

bale) = L i-@Rp+ L) SO

A Gl V2 (é) P(1/2,1 - af2,2 - a/2 (€/R)).

ra(a — 2) R

Particularly for « = 1 we have

(€)= ST - /Ry

For o = 2 we have by (2.2), Lemma 1 and (2.7).

B© = R+ e

- & @Ry +ﬁlog[%(1+m)]

Similarly when 2 < a < 4

hi) = 5 1—(5/R>2( (8

-2
a(a—1)(e=3) [vV7 T((t-0a)/2)
e [ N(5=a)/2"
+ abj: (%) -F(1/2,2 - a/2;3 - a/2; (6/3)2)]

holds. When oo = 4
aR?
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(2.7)

06 = ST 05 (B) ) 55 e[ (4 V69
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holds.

Thus we obtain the following functional forms of ¥, for a > 0:

const - €% + (power series of £2)  when «a # integer,
Yo (€) = { (power series of £2) when a is an odd integer,
const - £* log £ 4 (power series of £2) when « is an even integer.

2.2 Examples of o

Let us consider, as functions f to be reconstructed, the characteristic functions of the
figures of square, disk and asteroid (see Figure 1.) When we take the dots in Figure 1 as

reconstruction points, the corresponding a’s are shown in Table 1.

(c)

@ o)

(d) * (g). ) (k).
(1)Square (2)Disk (3)gster0id

Figure 1: Examples of reconstruction points

Table 1: The values of a for reconstruction points.

figure point
Square

Disk

Asteroid
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—
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For the above reconstruction points, we have

_ (power series of £2), (a=1)
M—) = { Clog¢ + (power series of £2), (a=2) (2.8)
3 C¢>~? 4 (power series of £2), (1< a<2)

for £ > 0 near the origin, where C is constant.

2.3 Examples of ¢

Let the reconstruction point be the origin (0,0). In case of square, 1,[)({ ) is given by

tan(6y/2 + 7 /4
w0={8@b“ &J%p/”+ﬂ%uw%mlasmﬁ
% i€l > 1/v2

where 8y = cos~'(v/2¢/1) — 7 /4, 1 is length of a side of the square.
In case of disk, () is given by

N PR P
wo-{o, N

where r is the radius of the disk.

3 On the accuracy of the numerical integration of
the inverse Radon transformation

Let us set
1 (i —
) = HOZIO ={gmﬂ,§§gzlﬂw%
W) = FhoOd, €€k I = Rlx(©)— &) (5O - b0, and
Bs() = $(0), €€l s = (€)= gl [0() - w(0))de.

1) = g 2l ¥,

Then, T(45)~T(¥) = I + Js.
(A) Ixs(E)l < 5—37, £>0.
Proof. If¢{=(1+a)ba< % then

€)= g S i = izl ﬂ




(B) When ¢ € I; (i > 1) we have [£2x5(¢) — 1| < ;71175

Proof. If¢ = (:+ a)é € I; then

2 q 2
+ a)
2 PR S G )
f Xé(é) TiTi41 iz - 1/4
_ 2ci+a’+1/4
- 2 —1/4
_it12 1
o -1/ i-1/2
(C) When z; < € < ziq1,
) :
Ixs(€) — £2| = (21
Proof. Let z; < ¢ < z;4,, in view of (B),
1 1 _ES_

|X6( ) — €2| = (1 -1/2)¢ S (s — 1/2)z? 37?

(D) Let 1 < p’ < co. Then there exists a constant C,/ independant of 8,

1 , C,-blogd o =1
2 —1I”'1dt < 1 g'ga p
/OI€Xs(€) |I€_{Cp,_5, 1<y <

Proof. Let N be the maximum of integers which are less than ?1; + %

1 , 5 U ,
[ 1e(© -1 < 5+ 5 [T Iena(e) - 1F1de (from (B)
0 =1 Y&
5 N
=3 Z: z—1/2

from which we can easily obtain the desired result.

(E) Assume a(¢) € LP(0,1),1 < p < co. Then

1 —
g < § G 8los g lallimion, p=oo
CP,P RSV lallzriony, 1<p< oo

Proof.
I = 1 [ (€xs() - Da(e)de]

< ([ €6 = 1) lallsay
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Then (E) follows from (D) and the above inequality. [
(F) When ¢ € L*(1,00) and (7o — 1/2)é = 1 for some integer 75, then we have

|J6] < 6 - {[#1121(1,00)-

Proof.

el = 1) = ) (6) — w(0)le
= 1 o€ - e
< 5 [T (by (0],

We summarize:
Theorem 1  When a(£) € LP(0,1),9(¢) € L*(1,00), and %+ 1% =1(1<p< o),

we have

v’ Cé(log L. llallzeo) + 1¥llLr o)), =00
IT(%s) — T(4)| < { o8 ’ o) D2 (3.1)
W) =TS o (o + 8Bl ) 1< p < oo

where C is a constant independent of 1 and é.

When p =1 we have
Theorem 2 When a(¢) € L'(0,1),9%(¢) € L(1, 00),

T(ds) — T() (6 —0).

Next we will estimate T'(15 — 1s).
For § > 0, we set &g =106, 0 <& < €w, (i0 is integer).
We suppose that ¥ € C?[0,&,,) satisfies ¥'(0) = 0 and

¢'H(§oo =) =a(mn*, 0<n<éw

where « is a negative constant, a € C°[0,£.]. We set ¥(¢) = ¢(—¢€), £ < 0, if necessary.

Then we have

Lemma 3.

T(s — ws) = O(8)



holds, when a > —2.
Proof. For 6 let

L o= ((—1/2)8,6 +1/2)8),
i = max{i:(i+1/2)8 < éu).
Using Taylor’s theorem, we can get
(i8 1) = 6(i8) + (i6) + (35 + 0)

where 0 < § < 1. Thereby

) 1
Ps(i6) = E/L P(£)d¢
— g(id)+ S5 40), 6] < 2
B AIE YRR RS 2
Let Ty,1; be defined by the relations

T (s — vs) = To + Th,

1 (6 — (i) 2 -

T, = 5; 72_1/a “3[1/’(0) ¥(0)],
1 et 9(16) — 9(26)

T 52._%1 2 —1/4

(i) Estimate of T

First we have
§ te3! "(i6 + 66)
hi=5 2 2 —1/4

1=1p+1

and, when ¢ <1, — 1,

1" (26) + 08)] < llalloo|éeo — 26 — B8]
)

< Nalloléeo — 5 — 861"
therefore
5 il e 6/2 —if|°
T < b o0 .
I ll — 24”0‘” ‘i=%l 22__1/4
6, iRl [ — 6/2— if]"
< — o ;
= 12Ha[[ i:%—l ;2
63+a Too—1

= llalle & l6w - 6/2— 6

1253 i=ip+1
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If we set

then we have

i=t0+1
Hence we obtain
10 < 2 ol [ (B4 — 4%) 4 a0
U=126""" 1 + a

holds when a # —1. Since

)
0A = §m+§—iw5~const-6, ,
3

8B = foo = 58— Lo~ Lo — b,
we have
1 const (1+a>0)
1+o 1+a _ pl4a at
) ——_1+a(B A )+A] {const-5l+" (1+a<0)
Accordingly

(08 (1+a>0)
Tl“{ O(6**) (1+a<0)

When a =1 we have

& B 1
<= —+-.
Also using (3.2) and (3.3) we can show that
2 1

(i1) Estimate of Ty

- DE) — 9] L g (i) — (i0)
P-1/a T 1285 7

é 72
< — |[W"||peo —
S g Illee

and

therefore
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(3.2)

(3.3)
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Hence we have
T(s — s) = O(8).

We note that the statements of Theorems 1 and 2 are valid if 15 is replaced by s,

when 1 satisfies conditions of Lemma 3 and when o > —2.

4 Results of numerical experiments

On our algorithm, the reconstruction was performed for characteristic functions f of
figures of square, disk or asteroid.

For each reconstruction point, the absolute error of reconstruction is proportional to
6% when § is in a certain interval. We show graphs of absolute error in our numerical
experiments. Here the abscissa is the logarithm of é and the ordinate is the logarithm of
absolute error. (See Figure 2 - Figure 4.)

In the following table (Table 2) k and k' denote the orders of the accuracy of recon-
struction obtained in the numerical experiments and theoretically in the right-hand side
of the inequality (3.1),respectively. To get k' we have calculated the number « in (2.1)
and used (2.8) in each case. We note that the order £’ is obtained without regard to the
differentiability of 1. Therefore we can only expect that k > k' holds.

Table 2: Results of numerical experiments.

f reconstruction point k| K a
square | center (a) |3 |1 1
edge point (b) 3 |1 1
corner ()3 |1 1
exterior point dy|3 |1 1
circle center (e) [1.5]1 1
edge point ) |1 |[K<1 |2
exterior point (g2 |1 1
asteroid | center (hy |2 |1 1
" | edge point |1 [K<l |2

cusp (G) 05|k <0.5]3/2
exterior point k)y|2 |1 1
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Figure 2:Square
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Figure 3:Disk
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Figure 4:Asteroid

Finally let us write a summary of our results.
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(i) We have tried to make a numerical reconstruction formula for piecewise continu-

ous functions. We have adopted a kind of rectangular rule for the inverse Radon

transformation.

(ii) In numerical experiments we have obtained orders of the accuracy of reconstruction

which are greater than or equal to orders assured by the L? error estimates.

(i) We have order k¥ = 0.5 for the cusp of the asteroid which is the most difficult to

reconstruct in our experiments, and we have order 2 ~ 3 for ordinary continuous

points.
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