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Singular integral transforms! are inherent in the nonlocal nature of vortex stretching in
three-dimensional incompressible flows. Nonlocality appears as the pressure term in Euler

equations and as the integral relationship from vorticity to strain in vorticity equations.?~*

2,356 is its another form, contributing evolution of rate-of-strain. We intend

Pressure hessian
to give a theoretical foundation for the vorticity-strain correlation with an explicit use of
singular integral transforms.
There is a one-dimensional model for vorticity equation, the Constantin-Lax-Majda
model’;
Ow

where

H@0=lfﬂ@ﬂy

T) x—y

is the Hilbert transform and § denotes the principal-value integral. The “vorticity” w and

“rate-of-strain” H[w] are Hilbert—conjugates and are real and imaginary parts of an analytic

function in the upper-half plane (Note also that H? = —1). Actually, this model could mean

more than it seems.

We consider motion of an inviscid fluid governed by three-dimensional Euler equations

Du,
Dt

= _azpa

together with the incompressible condition V - u = 0. (§; = 8/0z;.) Here D/Dt = 0/0t +
(u- V) denotes the Lagrangian time derivative, u the velocity and p the pressure. We treat
the infinite space case with a fluid at rest at infinity. The velocity can be expressed as
u = V X A by the vector potential A. If we take a curl under Coulomb gauge V- A = 0,

we have V2A = —w, or

A@ =7 [y )



Taking the curl of (2) yields‘ the Biot-Savart formula. In order to differentiate (2) further,
a formula for second derivative of the Newtonian potential is needed. That is, for a smooth

function g(x), we have?

= 93251_1, + K[ Dg)(z), | (3)
_where
Kolf) = f VR gy @

Here the principal value integral means § = lim_o fiz_y> (Similar notaions will be used
hereafter). The second derivative is made up of the local term due to Dirac delta function

plus the nonlocal term in the form of singular integral. By using (3) and symmetrizing we

find?—4

3 [ €rTewi(y)r; + Ticjurrwi(y
Sule) = o § MWL TG o )

where 7 = ¢ — y, and ¢;;; is the fully antisymmetric tensor.

The bilateral relationship between vorticity and strain is best seen in terms of the vor-
ticity tensor §;; = (0ju; — O;u;)/2 = —(1/2)€xwk, which decomposes the velocity gradient
as Oju; = Si; + (2;;. Note that §2 and S do not commute in general. With £2 we can write

eq.(5) as

3 f e (Y15 — Tillk(Y) 7 dy, (©)

Sij(@) = 4 o

= T;;]92), say.
Now, we seek for the inverse transform which expresses vorticity in terms of strain. By

the definition of S and A we have
1
Sij = §(aiejkl8kA¢ -+ ijiklakAl)-
Take a divergence and a curl for 7 and j respectively we obtain

A2Ap = —ZequaqaiSij.
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Again using (3) under V - A = 0, we have

wim DA = - ?{dy €ijk (25 — 43)Sk(y) (@ — 1)
2m |z —yP°

In terms of §2 this becomes

Qui(z) = _3 f{ TeSki(Y)Tj — TiSjk('y)dey' ' (7)

4 o
A crucial observation is that §2 and S are connected with each other through the identical

singular integral tramsform (up to minus sign), that is,
T[T[2]) = -2 (8)

Vorticity and rate-of-strain tensors are conjugates under the transform T'. Because of tr(S -

S) +tr($2 - 2) = —Ap we have
(SijSiz) = (Qus€;) 9)

- where the brackets denote the spatial average. The identity (9) can be regarded as the
Parseval formula for the transform T'. The apparently trivial shift from w to §2 makes
manifest the conjugate relationship between vorticity and strain.

The transform T can also be defined for general 3 x 3 matrices. Some of its properties
are as follows. T is traceless; tr(T) = 0, where tr denotes trace. Also, T[c(x)I] = 0 for
arbitrary scalar ¢(x) and I is the identity matrix.

It should be noted that T = —I does not hold for general matrices. In fact, we can show
by a direct computation using Fourier transform (eq.(11) below) that T[T?[X] + X] ———KO

for any X. It can be shown generally from this that
T31X] = —Xij + RiRj[RiRa[Xua]] — €ipgejuRp Ri[ X,

where R; denotes the Riesz transform. (Basic facts about R; summerized at the end of this
paper is needed in what follows.) We also have the adjoint formulae; for 3 x 3 matrices f

and g,
(tr(T[f] - 9)) = % (tx(f - Tg))), (10)
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where + should be taken when one of f and g is symmetric and the other is antisymmetric
and — when both are symmetric or antisymmetric. These can be verified by writing both
sides explicitly (proofs omitted).

Further properties of T can be seén in the Fourier transform® (designated by ~);

1

ﬁj[ﬁ] = gij = k|2

(kikiQ = kskiS), (11)
where k is the wavenumber. Using Riesz transform R;, we can write

T,J[Q] = —RiRlQﬂ + RleQli.

Because of boundedness(from L” to itself) of R; and eq.(8) 2 and S are comparable! in
LP-norm!!;

A2l < IIT (2], < Apll€211,,

with some constants A4, for 1 < p < 00 (A3 = 1). As in the case of Riesz transform, by
analytic extension the vorticity and rate-of-strain tensors can be regarded as the boundary
value of the pairs of conjugate harmonic functions in (3+1)-dimensional space; R} =

{(z,y)|x € R3,y > 0}. Let

¢

uij(m’ y) = (Py *5)(x, y)

(@) = (P« Sy)(22) -
= —(Q * RiRi[P,]) + (s * RiR;(P,])

\

where P, is defined by (17) below and the last line follows by (19). Here * denotes convolution
and u;; and v;; are respectively antisymmetric and symmetric; u;; = —uj; v;; = vj;. Then

we have by (16)

Similar as (18), it can be shown by the Fourier transform that

62’U,ﬂ _ 82’&“ _ _62v,~j

8x,~6xl 8:@63:, - ‘6y2
Sii = T;[Q] < , 13
! ][ ] 82’11]'1 82’011' _ 62uij ( )

dzdzr, 0z;0m; Oy’
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with i(u;; + v;;) = 0. Equation(13) corresponds to the generalized Cauchy-
Riemann condition underlying vorticity-strain conjugation. Moreover, lim,_, u;;(,y) =
Qij(x), limy_ovij(x,y) = Sij(x). Therefore, the vorticity and rate-of-strain tensors can be
regarded as the boundary values of conjugate harmonic functions in R3*L

As an application of this transform we note the relationship between three of the Siggia’s
invariants I; = ((5;;S:;)%), L = (SySylwl?), I = (wiSi;Sjrwk), I+ = (Jw|*), which
describe vorticity-strain correlation.!?=1% By subtracting singularity it can be shown for a

smooth function a(x) that
TijlaX] = oT[X] - Uy[X; o, (14)

where we have set

Ui X; of(x)

PR 0(z) — a(y)dy.

_i}{Tkai(y)Tj—
T Am rd

That is, a smooth function a(x) can be passed in and out of T by introducing a smoothing

operator.'® Letting a(x) =tr(§2 - 2) = —|w|?/2, B(z) = tr(S - S) we find
(tr(T[82] - T[$2])tx(82 - £2)) = (tx(T[$2] - oT[£2]))

= (tr(£2 - T[oT([£2]))) by(10)
= — (tr($2 - 2)tr(2- N2)) — (tr(2 - U[S; a])) by(14),

or

1 =1, + (t1(2- U[S; o)) -

Similarly, we have

(tr(S - S)tr($2 - N2))
= — (tr(S - S)tr(S - S)) + (tx(S - U[82; 8)))

that is,

1L =1 - (t=(S - U[;5)).



(Note

that (tr(S - U[$2;6])) = — (tz(£2- U[S; 8])), (tr(2-U[S;0])) = — (tx(S - U[£2;0))) ) It
seems worthwhile to examine further kinematic constraints imposed by the conjugate char-
acter upon the vorticity-strain correlation.

On the other hand, in terms of 2 and S the equations of motion become

DR
Y __N.S-8-N
o =-0-5-5-0,
DS

5, =—-02-S-5S-P.

Here P;; = 0;0;p is the pressure hessian which is expressed as

A
Pj(x) = ?péij + Kii[Ap)(x),

by (4) or
P = R:R;[tr(£2 - 22 + T[92] - T[£2])],

by using the Riesz transform (eq.(15) below). Pursuit of the similarity with the model (1)
regarding dynamics may be useful for understanding a putative singularity formation in

17,18

Euler flows and small-scale motion in Navier-Stokes turbulence. Finally, we note that a

similar conjugation is also seen in two dimensions.

The Riesz transform.! It is defined by

Rilfl@) =en f ol f (@~ vy

fori =1,2,..n, © € R* with¢, =T ("ZLI) /a2 where T' is the gamma function.
This is a generalization of the Hilbert transform into n—dimensions. Its Fourier transform

is given by R; = ik;/|k| and thus
0,0;f = —R;R;\\f. (15)

We recall how the Riesz transform is related with harmonic functions. A function of the

form

u(T,y) = /f(t)exp(—27rit - x)exp(—27|t|y)dt,
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(with £ € R™ and y > 0) is hamonic in R%*;
P?u X 0%u
Au= — — = 16
o7 " 2w = (16)
We write Poisson integral of f as
u(@,y) = [ Py(@)f(@ )t = (P,  f)(=),

where

P,(z) = / exp(—27it - @)exp(—2|t|y)dt
_ CnlY
- (|:1:|2 + y2)(n+1)/2

(17)

is called the Poisson kernel. Note that as y — 0, P,(z) — 6§("(x) (n—dimensional Dirac’s
delta). Let uo = P, * f,u; = Py * fi1,...,u, = Py * f,, then the connection between the Riesz

transform and harmonic function lies in the following fact!;

Ou,
fi=R;[flforj=1,..,n < Z@x]_ (18)
T ou; _ ou
Bxk_aa:j

Equations (15) is the called generalized Cauchy-Riemann condition (or the M. Riesz

system). On the other hand,

Q;(,j)(w) = Ry[P))(x) = (Jz]? _:T;;(nﬂ)/?

is called the conjugate Poisson kernel which satisfies
R;[P)] x f = P, * Rjlf]. (19)

The function f and its Riesz transforms are regarded as boundary values of these conjugates

harmonics; lim,_q uo(x, y) = f(x), limy_o u;(x, y) = f;(x).
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