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§1 Introduction

1.1 Let p be a prime number, k an algebraically closed field
of characteristic p , O a complete discrete valuation ring with
residue field k and quotignt field X of characteristic zero, G a
finite group , b a péblock of G ( i.e. a primitive idempotent of
Z(kG) ), P a defect group of b , e a root of b in CG(P) and E the
inertial quotient NG(P,e)/P'CG(P) of b. Let‘g be the unique primi~"

~tive idempotent of Z(0G) corresponding to b . We assume that K is
large enough for groups which we consider. Let D be the block of
NG(P) which is a Brauer correspondent of b. When P is abelian ,
Alperin's weight conjecture in [1] announces that the number 1(b)
of isomorphism classes of simple kGb-modules is equal to the
number l(%) of isomorphism classes of simple kNG(PfF;modules.
This is known to be true if |E | < 3 by the results of Brauer [ 3]
(Proposition (6G)) and Usami [13] , and if [E[ = 4 by Puig and
Usami [11],[12]. Our main result here proves it in the case the
inertial quotient is isomorphic to a dihedral group of order 6 ,

Z2,XZy (p 27) , or Z;XZ; (p # 2) ([14],[15],[16]).
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1.2 Actually , when P is abelian , we expect deeper categori-

cal eduivalence between b and b than merely an equality 1(b)=1(33,
Let ﬁ:be the unique primitive idempotent of Z(ONG(P)) correspond-
ing to > . When P is abelian , Broué conjectures an equivalence
of the derived module catégories between block algebras OGg and
ONG(P)% as triangulated categories(cf. Problem 6.2 in [4]), and in

particular , the existence of a perfect isometry between the

generalized ordinary characters in b and %’( See Definition 1.3).
By Theorem 3.1 in [4] , in general , the derivéd category equiv-
alence like this between two blocks guarantées the existence of

a perfect isometry and then Broue says that a perfect isometry

is a shadow of a derived category equivalence at the level of
group character theory. ( Since only a sketch of é proof of ip
is given in [4] , I have explained the details of a proof in
[17].5 In order to define a perfect isometry let CFO(G,b) be the
O-module of the O-valued class functions O on G such that 0((38)
=X(g) for any g €G. Also let BCFK(G,b) be ﬁhe K-vector space of
K-valued class functions & on G vanishing on the p-singular
conjugacy classes of G and satisfying (X(gg) = X(g) for any g €G,

Definition 1.3 Let b and f be blocks of a finite group G and

a finite group H respectively. A perfect isometry between b and f

is a bijective isometry between the generalized ordinary characters
of G in b and those of H in f which induces a bijection between
CFO(G,b) and CFO(H,f) and also induce a bijection Between

BCFK(G;b) and BCFK(H,f).
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1.4 If there is a perfect isometry between b and f , then it
preserves not only the number of irpeducible ordinary characters
and the number of irreducible Brauer characters (i.e. 1(b)=1(f)),
but also various properties between them by Theorem 1.5 in [4] as
follows. First there is an algebra isomorphism between Z(OG?) and
Z(OH%) , where ? denotes the unique primitive idempotent of Z(OH)
corresponding to f. Next it preserves»defect of blocks and the
height of irreducible ordinary characters. Moreover , Cartan
matrices for b and f determine the same quadratic form over Z and
then the elementary dividers of Cartan matrix are preserved.

1.5 Since we can not compare'b with %‘directly., we take
advantage of the following known result. By the result on blocks
with normal defect groups in [8] and Proposition 14.6 in [9] ,
without any hypothesis on E and ény hyppthesis on P, a blocklg
of NG(P) and a block e of NG(P,e) are Morita equivalent to a
suitable twisted group algebra over\k of the evident extension L
of E and P , simultaneously. Here we need a sgitable k*¥-central
extension E.of E for this twisted group algebra. Let € denote the
evident extension of‘E and P. Then using this @ we can make‘kgt
denote the above twisted group algebra. When P is abelian ,
necessary @ is defined rather easily in 2.4 in [11]. (See also
Lemma 2.5 in [11].)

We would like to construct a perfect isometry between kGb
(respectively kNG(PfB ) and k%f inlour case. In each known case
({EI é 4 ), a perfect isometry was constructed between kGb and

~ ‘ .
k,L explicitely or implicitely. When E is dihedral of order 6 ,
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: * : .
any k —-central extension of E splits. When E is isomorphic to

, : o , : o *
24><ZZ ( or ZB><Z3 ) , there are exactly two possiblé k -central
éxtensions of E ; splitting one andlthe unique non-splitting one.
If E splits , then k,LZ kL and kL has the unique block. Whether
E splits or not , fortunately there are a finite subgroup L' ( a
' : ; A
central extension of L by a p'-group ) of L and a block b' of kL'
~ A : :
such that O,LSOL'b" as algebras by Lemma 5.5 and Proposition

5.15 in [9], where %' is the primitive idempotent of Z(OL')

corresponding to b' (cf. Remark 5 in section 1 in [6] and 2.13

in [111).

1.6 Aside from categorical equivalence as general rings , we
need a éoncept, an isotypy which goes beyond a perfect isometry
by imposing locél group theoretic condition. In fact in the

known case ( [E | < 4), it was shown implicitely that b and D
are isotypic, and we also show that in our case. In the next
section we will introduce definitions of an isofypy and some
related concepts. Most of them are introduced in Broué's [4] and

summalized in [7].
§2 Isotypy

2.1 We need some preparations. In this section we state some
definitions in general situation.

Let G be a finite group. Let % and b be corresponding blocks
of 0G and kG. 1In Alperin and Broue's [2] , a b-subpair is a ﬁair

(Q,u) where Q is a p-subgroup of G, u is a block of kCG(Q) and
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(1,b) € (Q,u) in G‘(i.e. uG =b). A b-element is a pair (x,v)

where x is a p-element of G , v 'is a block of‘kCG(x)vand'(<x>,v)
is a b-subpair. As in [4] and [7] we also define %—subpair to be

a pair'(Q,ﬁ) whe;e'ﬁ is a block.of OCG(Q)'corresponding to u and
(Q,u) is a b-subpair. "~ We note that if (P,e) is a maximal
b-subpair of G , then P is a defect group of b and e is ‘a root of
b. We also note that if é maximal b-subpair (P,e) is fixed,‘

then each QS P determines a unique block bQ such that (Q,b )g

Ce(Q)

(P,e) in G. (i.e. BQ = e )

Q

Definition 2.2 The Brauer category Brg(G) has for objects the
‘g—subpairs (Q,G) of G, and morphisms (Q,G>-? (R,?) the maps in
Hom(Q,R) induced by elements g of G such ﬁhat (Q,’ﬁ)g g. (R,?) in
G. Let (P,e) be a maximal b-subpair of G and let Brg,P(G) be the
full subcategory of Brg(G) whose objects afe the ﬁ—subpairs

’(Q;gb) of G contained in (P,%).

2.3 Let CFK(G) be the K-vector space of K-valued class func-
tions on G, and let CFK(G,b) be the subspace of CFK(G) of class
functions { such that o((g/l;) = X(g) for any g € G. For each

b-element (x,v) we define the decomposition map

(x,v)
dg

CFK(G) —_— BCFK(CG(X),V)

by dG(X,V)((X)(x') (X(Xx'lv\) for of in CFK(G) and p'—element x!

in C,(x). If (x,v) is a b-element, then d (x,v)(o‘) # 0 only if
G , G

X € CFK(G,b) by Brauer's Second Main Theorem.
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Definition 2.4 ( Definition 4.3 and Definition 4.6 in [4])

Let G and H be finite groups, let b and f be a block of G and a
block of H, and P be a defect group of both b and f. ( Here we
fix a maximal b-subpair (P,e) of G setting bP = e . We also fix

a maximal b-subpair (P,fP) of H. ) The blocks b and f are
isotypic if the following conditions hold;

(i) The inclusion of P into G and H induces an equivalence of the

Brauer categories Br P(G) and Br? P(H)

D)

(ii) There exists a perfect isometry 1 from the generalized
ordinary characters of CH(Q) in fQ to the generalized
ordinary characters of CG(Q) in bQ for each cyclic subgroup

Q of P such that

(x,b,)
Q) <1>
dG I

(x,fQ)
H

=19, .4 2.4.1
p

for all generators x of Q, where Ig, is an induced K-linear

] Q i . .
map from I* between BCFK(CH(Q),fQ) and BCFK(CG(Q),bQ).
Note that I<1> is a perfect isometry between f and b . With this
family of perfect isometries we call I<1> an isotypy between £

ahd b.

Definition 2.5 ( Remark 2 after Definition 4.6 in [4])

Broue also proposed a "good definition"™ of isotypic , which

requires conditiqn (i) above and following condition (ii'):

(ii') There exists a perfect isometry'IQ from the generalized
ordinary characters of CH(Q) in fQ to the generalized
rordinary characters of CG(Q) in bQ for each éubgrbup Q of P

such that
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Q<z>

(z’bQ<z>)°
p|

IQ =1 od

d 2.5.1
Cg(Q) €y (Q)

for any element z in CP(Q).

2.6 There are typical examples of an isotypy. A p-nilpotent
block b of G with a defect group P and the unique block of P are
isotypic by Theorem 5.2 in [4]. ( Actually in this case , the
O-algebra 0Gb is isomorphic to a full matrix algebra over OP
and then 0GD is Morita equivalent to OP by Puig'sl.4.1 in [10],
If b is a block of G with a cyclic defect group P , then b , q;
( a Brauer correspondent of b ) and e , considered as blocks of
G, NG(P) aqd NG(P,e) are isotypic, where e is a root of.b by
Linckelmann's Theorem 5.3 in [4].

Note that if a defect group of b is abelian, then above
condition (i) for b and %’( respectively a block e of NG(P,e))
always holds, since NG(P,e) controles the fusion of b-subpairs
by Proposition 4.21 in [2]. Then Broue has posed the following

conjecture:

Broué's Conjecture 2.7 ( Conjecture 6.1 in [4]) Let b be a

block of a finite group G with abelian defect group P and let (P,e)
be a maximal b-subpair of G. Then b and e , considered as blocks

of G and NG(P,e) are isotypic.

2.8 Here we introduce recent results on Broué's Conjecture

2.7. Fong and Harris have proved that if G is a finite group
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with abelian Sylow 2-subgroup P , then the principal 2-blocks of
G and NG(P) are'isotypic.([7j) ( They used "Claséification of
finite simple groups".) Broué, Malle and Michel have proved the
following result in [5] ; Let GF be a finite reductive group.(Let
G be a connected reductive algebraic group over an algebraic
closure of a finite field Fq and-F: G —> G be a Frobenius
endOmorMﬁsh defining a rational structure on this finite field
and GF be the group of rational points.) If r is a " large"
pfime number which does not divide 'q , then for any ﬁnipotent
r-block of GF Broué's Conjecture 2.7 holds. ( A prime number r
is "large" means that there exists a unique positive integer d
such that r is a diviser of{id(q) where fd(x )is a cyclotomic
factor of the "polinomial order" of GF .) Now wé add our

theorem.

Theorem 2.9 Let G be a finite group, b beAa p«block with an
abelian defect group P and E ( = NG(P,e)/P-CG(P) ) be the
inertial quotient of b where e is a root of b in CG(P). If E is
isomorphic to a dihedral group of order 6 , Z4x ZZ (p 2 7 in this
case) , or Z3)<Z3 ( p # 2 in this case ) ,ithen b , its Brauer

correspondentfg'and e, considered as blocks of G , NG(P) and

NG(P,e) respectively , are all isotypic.
§3 (G,b)-local system

3.1 . As we mentioned in 1.5 , we will construct an isotypy

al
between b and the corresponding block b' of L' determined by kL.
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Whether £ splits;mﬂnd;fwé can treatrﬁvand~a pair L' and b'
equivalently. Note thdt P is the normal p-Sylow subgroup of'L;
and P is a defect group of b' and for any p-subgroup Q of P,
BrQ(b') is still'aublock‘qf CL,(Q)', where ErQ is a Brauer
homomorphism (cf. sé;tion 2 in [2}). Consequently we identify the
b'-subpairs with the éorresponding p—subgrpuﬁs of L'

(i.e. all the p-subgroups of P ) , and we omit. to mention

each block. ] (See 2.13 in [11].)

" , we have to-

3.2 Now for an isotypy in " good definition
construct a family of perfect isometries satisfying condition
(2.5.1) in (ii') .A family of bijections { Ig, l all cyclicw
subgroups Q & P} satisfying (2.4.1) in (ii) is called a local

system by Broué in Definition 4.3 in [4]. But we employ a

slightly different notation as below.

" "

We have developed general part of our method in section 3
in [11] , assuming only that P is abelian. Here we summalize it
briefly. Before we start , we need some notation. Let BCFK(G)
bea subspace of CFK(G) of the class functions vanishing on the
p-singular conjugacy classes of G. For a p-element x ﬁé define -

the twisted restriction dé : CFK(G)-———> BCFK(CG(X)) by dé(d)(xﬂ:

X (xx'"') for O(GCFK(G) and any p'-element x' € CG(x), and let

eé BCFK(CG(x))———> CFK(G) be its adjoint map. Similarly we also
use d% , interpreting it as one for a finite group by 3.1.

3.3 Let X be an E-stable non-empty set of subgroups of P
satisfying the following condition
If Q€X and QEREP , then REX,

and let f'=(|th2€X be a family of isometries
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For any subgroup Q of P , let TQ be a transversal for the orbits

of CE(Q) on P. Then for Q € X the map

T— = e (@ ace> oz 1) 3.3.1
ZEETQ

is a bijiective isometry. ( In (3.3.1) making use of the twisted
restrictions and their adjoint maps ,we have glued up a subset of
{rQ<z>}Q<_z>éX . ) We say that r is E-equivalent if for any

Q € X, any ”e BCFK(Cf(Q)) and any s € E we have rb()f)s =

rbs ()TS). (This condition guarantees that ZSQ does not depend

on the choice of TQ.) We call the family r.={[.Q} a (G,b)-

Q €X
local system over X if it is E-equivalent and if AQ , for Q€ X ,

maps generalized characters to generalized characters. From
(3.3.1) also notice that for Q€ X rQ is an induced K-linear
map froh ‘AQ between BCFK(Ci(Q)) and BCFK(CG(Q),bQ). Now we can
easily prove that (3.3.1) and the definition of a (G,b)-local
system imply that if r-is a (G,b)-local system over X , then for
any QE€X , AQ is a perfect isometry and it can be 1@ satisfying
(2.5.1) in (ii') (cf.3.3 in [11] and 3.1). For X = {P} , a
(G,b)-local system over X exists. The idea thereforé is to extend
an arbitrary (G,b)-local system to one over the set of all
subgroups of P ( with some modification , if necessary ).

3.4 Thus suppose that X is arbitrary, but does not contain
all subgroups of P. We choose a subgroup Q of P maximal with
respect to()¢X5 and X' be the union of X with the E-orbits of Q.

Then the map
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Aq : CFg(CR(Q)) ——> CFy(Cu(Q),by)
T = ec @ Taeroy 10
zeTQ\Q
induces a bijective isometry ‘
Aq : CFg(TR(Q)) ——>  CFR(T4(Q),By)
between the sets of K-valued class functions on Ct(Q) = Ct(Q)/Q
and GG(Q)= CG(Q)/Q, respectively, vanishing on the p'—cenjugacf
classes; here BQ denotes the image of bQ in kEG(Q). Moreever
Zg maps generalized characters to generalized characters by
Proposition 3.7 in [11]. In order to show thatr~extends to a
(G,b)-local system over X' it suffices to show that 58 extends
to an NE(Q)—stable isometry
Bq # CFy(T(Q) —— CF(Cc(Q),5)

mapping generalized characters to generalized characters.( Then
it will follow thet ZQ is bijective.) (cf. Proposition 3.11 tll])

Only the construction of ZQ is the task of each case  and we
use induction on |G' and’a case—by—ease analysis .according to
the structure of CE(Q) and its action on P/Q. (Note that EQ‘has
an abelian defect group P/Q and the inertial quotient CE(Q).

Hence if lCE(Q)lgﬁ-,~then we can make use ofvthe known results.)
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