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STRONG CONVERGENCE THEOREMS FOR
NONEXPANSIVE MAPPINGS IN BANACH SPACE

Jong-Yeoul Park

ABSTRACT. We prove for a nonexpansive mapping T that under certain conditions the strong
lim, ;. G¢{z) exists and is a fixed point of T, where G¢{z) = {1 =)z +tTGy{z), 0 <t < 1.

1. Introduction

Let C be a nonempty closed convex subset, of a Banach space £. A mappmg T :C—=C
1s said to be nonexpansive if

1Tz - Tyl < iz -yl

forall z. y in C.
Let E* be the dual space of E. Then the value of f € E* at £ € E will be denoted by
< z,f > With each r € E, we assoclate the set

ry={feE <z f>=|z=|/I°}

Using the Hahn-Banach theorem, it 1s immediately clear that J(z) # ¢ for each z € F.
The multivalued operator J : E — E* is called the duality mapping of E. Let B =
{z € E : ||z]| = 1} be the unit sphere of E. Then the norm of E is said to be Gateaux
differentiable (and F is said to be smooth) if '

lim ”.’L’ + T‘y” — ”‘t“

r—0 r

exists for each z and y in B. It is said to be Frechet differentiable if for each = in B,
this limit is attained uniformly for y in B. Finally, it is said to be uniformly Frechet
differentiable (and E is said to be uniformly smooth) if the limit is attained uniformly for
(z,y) in B x B. It is well known that if E is smooth, then the duality mapping J is single
valued. It is also known that if E has a Frechet differentiable norm, then J is norm to
norm continuous.

The purpose of this note is to continue the discussion concerning the strong convergence
of the path t — Gy(z), 0 < t < 1 defined by (1) below for each z in C. We prove for
a nonexpansive mapping T that under certain conditions the strong lim,_ ;- G,(z) exists
and is a fixed point of T. The first results of this nature were established by- Browet([‘)])
and Browder and Petryshyn( [4])
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2. Lemmas

Let E be a Banach space. Then the modulus of convexity of E 1s defined as ég(¢) =
inf{l - %z +yl|: 2,y € Bg and |z —y|| > <}, where By = { € E : ||lz|| < 1} is the
closed unit ball of E. We recall that E 1s said to have the modulus of convexity of power
type p > 2 (and E is said to be p-uniformly convex) if there exists a constant ¢ > 0 such
that

6p(e) > cef

for0<e<2
We now define the mapping Gy : C — C by
Gi(x) = (1 = t)z + tTGy(x) ' ' (1)

for all z in C and 0 <t < 1. It is clear that for each 0 < t < 1, the fixed point set of G,
coincides with that of T.
We also recall that a Banach limit LIM is a bounded linear functional on ¢ of norm 1
such that ' .
liminfz, < LIM{z,} < limsup z,

n—oo ‘n—oco
and :
L]].\/I{.’L'n} = LIM{(L'n+1}

for all {x,} in £%.

LEMMA 1. (Prus and Smarzewski [6]) Let E be a p-uniformly convex Banach space
(p > 1). Then there exists a constant ¢ > 0 such that

Az + (1= Ayll* < MzlP + (1= VllyllF = W (Ml — yll? ()

for all r,y € E and \ € [0,1], where W,(A) = \(1 = AP 4+ \P(1—]}).

LEMMA 2. Let C be a nonempty closed convex and bounded subset of a p-uniformly
convex Banach space E, and let {z,} be a bounded sequence in E. We define the functional
r: C — R by the formular

r(¢) = LIM{||z, — z|P}.

Then r(-) is continuous and convex.

Proof. For z,y € C, we have
llzn =2l = llzn = ylI?| < p(diamCP~llzn — 2| = |lzn — ylll
and
Ir(z) — r(¥)| = [LIM{||z» — z||"} — LIM{||zn — y||" }|
< p(diamCP ' LIM{ll|za — || = [lzn - ylli}
< p(diamCy~'LIM{]|z - y||}
< p(diamC Y~ ||z — y|.



For any fixed n € N and 0 < t'< 1, by the inequality (2), we get
flzn = (1 =)z + t)[IP = [|(1 = ) —z) + t(zn — Y
< (L= Oflen —z[” + thea — ylP — Wtz = y|l?
< =lzn =zl + tllz, -yl
Taking the Banach limit LIM on each side, we obtain
- LiM{flen — (1= )7 + )P} < (1~ )LIM{flzn — 2|7} + (LIM{]|zn — y]|"}.
Therefore we get

r(l=t)e+ty) < (1= thr(e) + tr(y)

LEMMA 3. Let C be a nonempty closed convex subset of a p-uniformiv convex and
uniformly smooth Banach space E. Let {zn} be a bounded sequence in E. Then for
39 € C,

LiM{fler, ~ z||"} = min LIM{]|z, — y||"}

if and only if '
LIM{< ¢ — 20, J(&p — 20) >} <O
forall z € C.

Proof. We first assume that LIM{||z, — %||’} = minyec LIM{||zn — y||?}. For : € C
and A:0 < A < 1, we have

lzn = 20]|F = llzn — Azo = (L= A)z + (1 = A)(z — 20)|
2 llzn — Azo — (1 = A)z|P
+p(l =A< 2=25,J(2n — Azg— (1 = A)2) >
since J(z) i1s subdifferential of the convex function i—”x[rlp([B,pQ?’]). Let ¢ > 0 be given.

Since E is uniformly smooth, the duality map is uniformly continuous on bounded subsets
of E from the strong topology of E to the weak® topology of E* ([3]). Therefore,

| < z2=z0,J(2n —Azg = (1 =A)z) = J(zn —29) > | < ¢
if A is close enough to 1. Consequently, we have
<z—20, (T —29) > <+ <2 — ;Q,J(x:n = Az = (1=X)z)>

Set oA ){llxn—zoll

— llzn = Azo = (L = X)z||P }-
Therefore, we have
LIM{< 2 — 20, J(zp — 20) >} <0

forall z € C.
To prove reverse, let z € C. Then since

om =P ~llzn = 0l 2 5 < 20 = 5, (20 = 20) >
for all n € N and LIM{< z — z,, J(-Tn —29)>}<0forall z € C, we have
LIM{ e ~ 20lP} = minLIM{ljz, — #IF }



LEMMA 4. Let C be a closed convex and bounded subset of a p-uniformly convex and
uniformlv smooth Banach space E, and {z,} be a bounded sequence of E. Then, the set

M = {u€C: LIM{||z, — u|"} = min LIM{]lz, - 2|I"}}
2L

consists of one point.

Proof. Let g(z) = LIM{||z, — z||?} for every z € C and r = inf{g(z}: : € C}. Then.
by Lemma 2, the function g on 7 is convex and continnous and giz) — x as ||z|] — .
From [1,p79], there exists u € C with g(u) = r. Therefore M is nonemptyv. By Lemma .
we know that « € M ifand only f LIM{< 2 —u. J(r,, —u) >} <0forzll 2 € C. We show
that M cousists of cne point. Let u,v € M and suppose uw # 1 Then by [7.Theorem 1],
there exists a pesitive number 2 such that ~

<tpn—u—{(zp—v),J(zn —u)j—J(tn —v)>>c¢
for every n € N. Therefore _
LIM{<v—u J(z, —u)=J(z, —v) >} > >0
On the other hand, since u,v € M, we have
LIM{< u—v,J(z, —v)>} <0
and ,
LIM{< v —u,J(z, —u)>} <0

Then we have
LIM{<v—-u,J(z, —u)— J(z, —v) >} < 0.

This is a contradiction. Therefore u = v.

3. Main Results

THEOREM 1. Let C be a closed convex and bounded subset of a p-uniformly convex
and uniformly smooth Banach space E, and {z,} be a bounded sequence of E such that
limp o ||£n — Tzp|| = 0. HT : C — C is a nonexpansive mapping, then

M = {u€ C: LIM{|lzn - ull'} = min LIM{ e = =|I'}}
4 I

is a fixed point set of T.

Proof. We will show that the set M is invariant under T'. In fact, since limp—co |0 —
Tz,|| = 0, we have, for u € M,

LIM{||z, = Tu|P} = LIM{||Tz, — Tu|P}
< LIM{||zn — uf’}

and hence Tu € M. On the other hand, by Lemma 4, we know that M consists of one
point. Therefore this point is a fixed point of T and M is a‘fixed point set of T'.

It is well known in ([8]) that a uniform smooth space has normal structure. Since such a
space is also reflexive, each bounded closed convex subset of it has the fixed point property
for nonexpansive mappings ([5]).



THEOREM 2. Let C be a closed convex and bounded subset of a p-uniformly convex and
uniformly smooth Banach space E, T : C — C a nonexpansive mapping, and G; : C — C,
0 < t < 1, the family of mappings defined by (1). Then, for each ¢ in C. the strong
lim,_, ;- Gy(z) exists and is a fixed point of T

Proof. Note that from the preceding statement T has a fixed point in C. Let w be a
fixed point of T. Fix a point z in C, denote G(r) by y(t). Since y(t) —w = (1 - t)(r -
w) + t(Ty(t) - Tw),

ly(t) = wll < llz — wil

and {y(t)} remains bounded as t — 1~. We also have
lim [ly(6) = Ty(8)] = lim }(1 = t)z — (1 = YTy(0)|
t—1- t—sl-
= 0.
Now let t, — 1~ and y, = y(t, ). Define f: C — [0,oc) by f(z) = LIM{||y, — :||}. From

Lemma 2 f is continuous and convex, f(z) — o as ||z]] — sc, which implies that f attains
its infimun over C. That is, there exists a zg € C such that

LIM{llyn — 20ll"} = min LIM{[lsn — v]1°}.

Let M be the set of minimizers of T. By Theorem 1, zg € M 1s the fixed point of T.
Therefore

< Yn = TYn, J(Yn — 20) > =< Yo — T20 + T20 — T¥n, J(Yn — 20) >
= lyn = Tz0l|*~ < Ty — T 20, J(yn — 20) > ‘\
> [[yn = To]|? = [Tyn = Tollllgm = 2ol
> |lyn = T20ll* = llyn — T2l = 0

for all n. It follows that for z € C,

0<< Yn = Tyn, J(yn — 20) >
=< (1 = tn)T + t,Tyn — Tyn, J(yn — 20) >
=< (1=tp)z = (1= t2)TYn, J(yn — 20) >
=(1—-t,)<z=Ty,, J(yo — 20) >

for all n. Thus, we get for z € C,
<Yn —,J(yn — 20) >L 0 - (3)
for all n. From Lemma 3

LIM{< z — 29, J(yn — 20) >} <O (4)



for all z € C. ‘Choosing z = y, in (4), we conclude that
LIM{{lyn — =of|} < O.

Thus there is a subsequence of {y, } which converges strongly to zo. To complete the proof,
suppose that y,, — z; and y,,, — 22. Then by (3),

<zp—z,J(z1—22)><0

and
<z —29.J(21—22) ><0.

Hence z; = z, and the strong lim,_.; - y(t) exists. which completes the proof.
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