A Fixed Point Theorem for Noncommutative Families of Nonexpansive Mappings in Banach spaces

by

Anthony To-Ming LAU and Wataru TAKAHASHI (高橋 涉)

Department of Mathematical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G-2G1

and

Department of Information Sciences, Tokyo Institute of Technology, Oh-Okayama, Meguro-ku, Tokyo 152, Japan

Abstract

Let C be a nonempty weakly compact convex subset of a Banach space which has normal structure and let S be a semitopological semigroup such that RUC(S) has a left invariant mean. Then we prove a fixed point theorem for a continuous representation of S as nonexpansive mappings on C.

¹⁹⁹¹ Mathematics Subject Classification. Primary 47H10. Key words and phrases. Fixed point, nonexpansive mapping, invariant mean.

1 Introduction.

Let S be a semitopological semigroup, i.e., S is a semigroup with a Hausdorff topology such that for each $a \in S$, the mappings $s \to sa$ and $s \to as$ from S into S are continuous and let RUC(S) be the space of bounded right uniformly continuous functions on S. Let C be a nonempty subset of a Banach space and let $S = \{T_t : t \in S\}$ be a family of self-maps of C. S is said to be a continuous representation of S as nonexpansive mappings on C if the following conditions are satisfied:

- (1) $T_{st}x = T_sT_tx$ for all $t, s \in S$ and $x \in C$;
- (2) for each $x \in C$, the mapping $s \to T_s x$ from S into C is continuous.

Let F(S) denote the set of common fixed points of T_s , $s \in S$. Fixed point theorems for noncommutative families of nonexpansive mappings on C have been investigated by several authors; see, for example, Bartoszek[1], Holmes-Lau[2,3], Lau[4,5,6], Lau-Takahashi[7,8], Lim[9,10], Mitchell[11,12], Takahashi[13,14,15,16], Takahashi-Jeong[17] and others. Among these, Lim[9] proved that if S is left reversible (i.e., any two closed right ideals in S have non-void intersection) and C is weakly compact, convex, and has normal structure, then S has a common fixed point in C.

In this paper, we prove a fixed point theorem for a continuous representation of S as nonexpansive mappings on C in the case of which RUC(S) has a left invariant mean and C is weakly compact, convex, and has normal structure. It is well known that left reversibility and existence of a left invariant mean on RUC(S) do not imply each other.

2 Fixed point theorem.

Let S be a set and m(S) be the Banach space of all bounded real-valued functions on S with the supremum norm. Let X be a subspace of m(S) containing constants. Then $\mu \in X^*$ is called a mean on X if $\|\mu\| = \mu(1) = 1$. Let $\mu \in X^*$ be a mean on X and $f \in X$. Then we denote by $\mu(f)$ the value of μ at the function f. According to time and circumstances, we write $\mu_t(f(t))$ the value $\mu(f)$. As is well known, $\mu \in X^*$ is a mean on X if and only if

$$\inf_{s \in S} f(s) \le \mu(f) \le \sup_{s \in S} f(s)$$

for every $f \in X$. If S is a semigroup, $a \in S$, and $f \in m(S)$, define $(\ell_a f)(t) = f(at)$ and $(r_a f)(t) = f(ta)$, $t \in S$. If $\ell_a(X) \subseteq X$ for all $a \in S$, then a mean μ on X is left invariant if $\mu(\ell_a f) = \mu(f)$ for all $a \in S$ and $f \in X$. Let S be a semitopological semigroup. Let C(S) be the Banach space of bounded continuous real-valued functions on S. Let RUC(S) denote the space of bounded right uniformly continuous functions on S, i.e., all $f \in C(S)$ such that the mapping $s \to r_s f$ of S into C(S) is continuous. Then RUC(S) is a closed subalgebra of C(S) containing constants and invariant under left and right translations (see [12] for details). A closed convex subset C of a Banach

space is said to have normal structure if for each closed bounded convex subset K of C, which contains at least two points, there exists an element of K which is not a diametral point of K. It is well known that a closed convex subset of a uniformly convex Banach space has normal structure and a compact convex subset of a Banach space has normal structure. Lim[9] also proved the following.

Lemma[9]. A closed convex subset C of a Banach space has normal structure if and only if it does not contain a sequence $\{x_n\}$ such that for some c > 0, $||x_n - x_m|| \le c$, $||x_{n+1} - \overline{x_n}|| \ge c - \frac{1}{n^2}$ for all $n \ge 1$, $m \ge 1$, where $\overline{x_n} = \frac{1}{n} \sum_{i=1}^n x_i$.

Now we can prove a fixed point theorem for noncommutative families of nonexpansive mappings in Banach spaces.

Theorem. Let S be a semitopological semigroup, let D be a weakly compact subset of a Banach space B which has normal structure and let $S = \{T_s : s \in S\}$ be a continuous representation of S as nonexpansive mappings on D. Suppose RUC(S) has a left invariant mean. Then S has a common fixed point in D.

Proof. We first prove that for any $x \in D$ and $y \in B$, a function h defined by $h(t) = ||T_t x - y||$ for all $t \in S$ is in RUC(S). In fact, we have, for

 $s, u \in S$,

$$||r_{s}h - r_{u}h|| = \sup_{t \in S} |(r_{s}h)(t) - (r_{u}h)(t)| = \sup_{t \in S} |h(ts) - h(tu)|$$

$$= \sup_{t \in S} ||T_{ts}x - y|| - ||T_{tu}x - y||| \le \sup_{t \in S} ||T_{ts}x - T_{tu}x||$$

$$\le ||T_{s}x - T_{u}x||.$$

Let

 $E = \{K \subset D : K \text{ is nonempty, closed, convex, and } T_s\text{-invariant }\}.$

Then by Zorn's Lemma, there exists a minimal element C of E. Let $\delta(C) > 0$ and let μ be a left invariant mean. Then, for any $x \in C$,

$$A_x = \{z \in C : \mu_t ||T_t x - z|| = \min_{y \in C} \mu_t ||T_t x - y||\}$$

is nonempty, closed, convex, and T_s -invariant (see [8,13] for details). So, we have $A_x = C$ from minimality of C. Since μ is a mean, there exists a net of finite means λ_{α} such that $\lambda_{\alpha} \longrightarrow^{w^*} \mu$. Let $x_0 \in C$, $\epsilon > 0$, and $x_1, x_2, \dots, x_n \in C$. Since $A_{x_0} = C$, there exists α_0 such that

$$(\mu_{\alpha_0})_t ||T_t x_0 - x_i|| \le r + \epsilon, \quad \forall i = 1, 2, \dots, n,$$

where $r = \min_{y \in C} \mu_t ||T_t x_0 - y||$. That is, there exists $z = \sum_{j=1}^{n_{\alpha_0}} \lambda_j T_{s_j} x_0$ with $\lambda_1, \dots, \lambda_j T_{s_j} x_0$

$$\lambda_{n_{\alpha_0}} \geq 0$$
 and $\sum_{j=1}^{n_{\alpha_0}} \lambda_j = 1$ such that

$$||z - x_i|| \le \sum_{j=1}^{n_{\alpha_0}} \lambda_j ||T_{s_j} x_0 - x_i|| \le r + \epsilon, \quad \forall i = 1, 2, \dots, n.$$
 (1)

Let $C_{y,\epsilon} = \{z \in C : ||z - y|| \le r + \epsilon\}$ for each $y \in C$. Then by (1),

$$\{C_{y,\epsilon}: y \in C\}$$

has finite intersection property. Since C is weakly compact, there is $z_0 \in C$ such that $||z_0 - y|| \le r + \epsilon$ for every $y \in C$. Since $\{T_t x_0\} \subset C$, we have $\sup_{t \in S} ||z_0 - T_t x_0|| \le \sup_{t \in C} ||z_0 - y|| \le r + \epsilon$. Since

$$|r = \mu_t ||T_t x_0 - z_0|| \le \sup_t ||T_t x_0 - z_0|| \le \sup_{y \in C} ||z_0 - y|| \le r + \epsilon$$

and

$$r = \mu_t ||T_t x_0 - x|| \le \sup_t ||T_t x_0 - x|| \le \sup_{y \in C} ||y - x||, \quad \forall x \in C,$$

we have

$$r \le \inf_{x \in C} \sup_{t} ||T_t x_0 - x|| \le \inf_{x \in C} \sup_{y \in C} ||y - x|| \le r + \epsilon.$$

Since $\epsilon > 0$ is arbitrary, we have

$$r = \mu_t ||T_t x_0 - x|| = \inf_{z \in C} \sup_{y \in C} ||y - z||, \quad \forall x \in C.$$
 (2)

Since $x_0 \in C$ is arbitrary, for any $x, z \in C$, we have

$$r = \mu_t ||T_t x - z|| = \inf_{u \in C} \sup_{t \in S} ||T_t x - u|| = \inf_{u \in C} \sup_{y \in C} ||y - u||.$$

So, let

$$A_0 = \{ z \in C : \sup_{t \in S} ||z - T_t x|| \le r, \ \forall x \in C \}.$$

By (2), since there exists $z_0 \in C$ such that

$$\sup_{y\in C}\|y-z_0\|=r,$$

we have that A_0 is nonempty. Let $z_0 \in A_0$ and $s \in S$. Then putting

$$A_s = \{ z \in C : \sup_{t \in S} ||T_{st}x - z|| \le r, \quad \forall x \in C \},$$

we have $z_0, T_s z_0 \in A_s$. Further, for any $x \in C$,

$$r = \mu_t ||T_t x - z_0|| = \mu_t ||T_{st} x - z_0|| \le \sup_{t \in S} ||T_{st} x - z_0||$$

$$\le \sup_{t \in S} ||T_t x - z_0|| \le r.$$

and

$$r = \mu_t ||T_t x - T_s z_0|| = \mu_t ||T_{st} x - T_s z_0|| \le \sup_{t \in S} ||T_{st} x - T_s z_0||$$

$$\le \sup_{t \in S} ||T_t x - z_0|| \le r.$$

For using Lim's Lemma, fix $z_0 \in A_0$. Then since $r = \mu_t ||T_t z_0 - z_0||$, there exists $s_1 \in S$ such that $||T_{s_1} z_0 - z_0|| \ge r - 1$. Since $z_0, T_{s_1} z_0 \in A_{s_1}$ and A_{s_1} is convex,

$$\overline{x_2} = \frac{1}{2}z_0 + \frac{1}{2}T_{s_1}z_0 \in A_{s_1}.$$

Let $x_1 = z_0$ and $x_2 = T_{s_1} z_0$. Since $r = \mu_t ||T_t z_0 - \overline{x_2}|| = \mu_t ||T_{s_1 t} z_0 - \overline{x_2}||$, there exists $s_2 \in S$ such that $||T_{s_1 s_2} z_0 - \overline{x_2}|| \ge r - \frac{1}{2^2}$. So, let $x_3 = T_{s_1 s_2} z_0$. Then, we have

$$||x_1 - x_2|| = ||z_0 - T_{s_1}z_0|| \le \sup_{t \in S} ||z_0 - T_tz_0|| = r,$$

$$||x_2 - x_3|| = ||T_{s_1}z_0 - T_{s_1s_2}z_0|| \le ||z_0 - T_{s_1}z_0|| \le r,$$

and

$$||x_3 - x_1|| = ||T_{s_1 s_2} z_0 - z_0|| \le \sup_{t \in S} ||T_t z_0 - z_0|| = r.$$

Similarly, let

$$\overline{x_3} = \frac{1}{3}x_1 + \frac{1}{3}x_2 + \frac{1}{3}x_3.$$

Then, $r = \mu_t ||T_t z_0 - \overline{x_3}|| = \mu_t ||T_{s_1 s_2 t} z_0 - \overline{x_3}||$, there exists $s_3 \in S$ such that $||T_{s_1 s_2 s_3} z_0 - \overline{x_3}|| \ge r - \frac{1}{3^2}$. So, let $x_4 = T_{s_1 s_2 s_3} z_0$. Then, we have

$$||x_4 - x_1|| = ||T_{s_1 s_2 s_3} z_0 - z_0|| \le \sup_{t \in S} ||T_t z_0 - z_0|| = r,$$

$$||x_4 - x_2|| = ||T_{s_1 s_2 s_3} z_0 - T_{s_1} z_0|| \le ||T_{s_2 s_3} z_0 - z_0|| \le \sup_{t \in S} ||T_t z_0 - z_0|| = r,$$

and

$$||x_4 - x_3|| = ||T_{s_1 s_2 s_3} z_0 - T_{s_1 s_2} z_0|| \le ||T_{s_3} z_0 - z_0|| \le \sup_{t \in S} ||T_t z_0 - z_0|| = r.$$

By mathematical induction, let $x_5 = T_{s_1 s_2 s_3 s_4} z_0, x_6 = T_{s_1 s_2 s_3 s_4 s_5} z_0, \cdots$. Then we have

$$||x_n - x_m|| \le r$$
, $\forall n, m$ and $||x_{n+1} - \overline{x_n}|| \ge r - \frac{1}{n^2}$.

Using Lim's Lemma, C has not normal structure. This is a contradiction.

References

- [1] W.Bartoszek, Nonexpansive actions of topological semigroups on strictly convex Banach space and fixed points, Proc.Amer.Math.Soc., 104(1988), 809-811.
- [2] R.H.Holmes and A.T.Lau, Asymptotically non-expansive actions of topological semigroups and fixed points, Bull. London Math. Soc., 3(1971), 343-347.
- [3] R.H.Holmes and A.T.Lau, Nonexpansive actions of topological semigroups and fixed points, J. London Math. Soc., 5(1972), 330-336.
- [4] A.T.Lau, Invariant means on almost periodic functions and fixed point properties, Rocky Mountain J. Math., 3(1973), 69-76.
- [5] A.T.Lau, Some fixed point theorems and their applications to W*-algebras, in Fixed Point Theory and Its Applications (S. Swaminathan Ed.), Academic Press, Orlando, FL, (1976), 121-129.
- [6] A.T.Lau, Amenability and fixed point property for semigroup of non-expansive mappings, in Fixed Point Theory and Applications (M.A.Théra and J.B.Baillon Eds.), Pitman Research Notes in Mathematics Series #252 (1991), 303-313.
- [7] A.T.Lau and W.Takahashi, Weak convergence and non-linear ergodic theorems for reversible semigroups of nonexpansive mappings, Pacific J. Math., 126(1987), 277-294.
- [8] A.T.Lau and W.Takahashi, Invariant means and semigroups of nonexpansive mappings on uniformly convex Banach spaces, J. Math. Anal. Appl., 153(1990), 497-505.

- [9] T.C.Lim, A fixed point theorem for families of nonexpansive mappings, Pacific J. Math., 53(1974), 484-493.
- [10] T.C.Lim, Asymptotic centers and nonexpansive mappings in conjugate Banach spaces, Pacific J. Math., 90(1980), 135-143.
- [11] T.Mitchell, Fixed points of reversible semigroups of non-expansive mappings, Kōdai Math. Sem. Rep., 2(1970), 322-323.
- [12] T.Mitchell, Topological semigroups and fixed points, Illinois J. Math., 14(1970), 630-641.
- [13] W.Takahashi, Fixed point theorem for amenable semigroups of non-expansive mappings, Kōdai Math. Sem. Rep., 21(1969), 383-386.
- [14] W.Takahashi, A nonlinear ergodic theorem for an amenable semigroup of nonexpansive mappings in a Hilbert space, Proc. Amer. Math. Soc., 81(1981), 253-256.
- [15] W.Takahashi, Fixed point theorems for families of nonexpansive mappings on unbounded sets, J. Math. Soc. Japan, 36(1984), 543-553.
- [16] W.Takahashi, Fixed point theorem and nonlinear ergodic theorem for nonexpansive semigroups without convexity, Can. J. Math., 35(1992), 1-8.
- [17] W.Takahashi and D.H.Jeong, Fixed point theorem for nonexpansive semigroups on Banach space, Proc. Amer. Math. Soc., 122(1994), 1175-1179.