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DISCONTINUITY OF SOLUTIONS OF PARABOLIC
INTEGRO-DIFFERENTIAL EQUATIONS
WITH TIME DELAY IN HILBERT SPACE

MEBMARE HE @ (Kenji MARUO)

0. Introduction and Theorem.

In this paper we consider the following integro-differential equation with time

delay in a real Hilbert space H:

0

01 guld)+ Au(®) + Avu(t = 1)+ [ a=s)dzu(t-+ )ds = £(0)

u(0) ==z, u(s)=y(s) —h<s <0.

Here, A 1s a positive definite self-adjoint operator and A; , As are closed linear
operators with domains containg that of A. The notations h and N denote a fixed
positve number and a large natural number respectively. Let a(-) is a real valued
function belonging to C3([0, A]). ,

The equations of the type (0.1) were investigated by G.Di Blasio, K.Kunisch
and E.Sinestrari [2], S.Nakagiri [4], H.Tanabe [6] and D.G.Park and S.Y.Kim
[6]. Particulary, G.Di Blasio, K.Kunisch and E.Sinestrari [2] showed the exis-
tence and uniquness of a solution.for f € L*0,T;H), Ay € L*(=h,0;H) and
¢ € (D(A), H)y/9,2 where (D(A), H)yjs,2 is a interpolation space.

Since the equation (0.1) is of parabolic type, we want z to be an arbitrary

element of H. Then the integral in (0.1) exists only in the improper sence no



matter what nice functions f and Ay may be. Hence, it would be considered

natural to investigate our problem under the following hypothesis:
f €Nssol?(6, T; H) and Ay € NssoLl*(—h+6,0;H),

f(t) and Ay(t — h) are improperly integrable att = 0.

For the sake of simplicity we put
Li,((0,T); H) = Ns>0L° (8, T; H).

We first shall state the deinition of a weak solution of (0.1).

DEFINITION. We say that a function u definited on [—h, T} is a weak solution
of the equation (0.1) if the following four conditions satisfied:(see Definition 1.1 in
[3)

1) u € LE,.((nh, (n+1)]; D(A) MWL ((nh, (n+ 1)K H)NC(0, NA); D(A=))

forn=0,1,2,-,-,,N —1 and any a > 0.
2) limy0A™%u(t) = A=

for any &« > 0 and u(s) = y(s) for —h<s<0.
3)Au(- + nh) € L2, ((0,h]; H) and A'~%u(- + nh) is improper integrable
at t =0.

4) The function u satisfies the equation (0.1) for a.e ¢.

In Theorem 1 in [3] we showed the existence and uniqueness of a weak solution
for which A™%*u is continuous in [0,T] for an arbitray positive number « but this

solution is not alway in C([0, T]; H).
As the notations we put

F_, ={g € L},.,((0,h] : H); there exists li\%/g(s)ds.},



; :
Frn={g € Fn_y;lim | (t—s)"ATS(t — s)g(s)ds = 0}
tNO Ji 2
where S(-) is an analitic semigroup of the positive defined self-ajoint operator A

and m=1,2,--,N —1.
In Proposition 6.9 of [3] we also showed the following resultant.

Let f belong to F_; N L% _((0, Nh] : H) and m is a nonnegative integer such
that 0 < m < N — 1. Then following two conditions are equivalent.
1) A weak solution of (0.1) is continuous on [0, mh], but at ¢ = mh this

solution is discontinuous.

2) f — Ary(- —h) € Fue1, but  f—Ary(-—h) & Fn.

In [3] we could not show that F,, is a proper subset in F,,_;. The object
in this paper is to show that F,, is a proper subset in F,,_; (i.e there exists a
inhomogeneous function f and a initial data function y such that the solution of
(0.1) is continuous on [0,mh], but at ¢ = mh this solution is discontinuous on H.)

Throughout this paper we assume

A—1) A=A =4y,

A ~—2) the operator A holds eigenvalues {A;}52; such that

(0.2) Ag = Cq* + o(q%), Ag £ Agh1
where o and C are some positive numnbers. We denote normal eigenfuctions of
eigenvalues A; by ;.

THEOREM Under the assumptions A-1) and A-2) there exist a inhomogeneous -
function f and the initial valued function y such that the weak solution of (0.1) is

continuous on [0, mh], but at t = mh it is discontinuous.

1. Properties of eigenvalues.

We denote 107! by €.



LeMMA 1. Let e be a small positive number and tg be sufficiently small posi-

tive number. Then there exists a eigenvalue Ay such that
(1.1). 1—€e <tA; <1+ ¢ for any t:0<t<t0.
Proof. We suppose that there exists a small positive number ¢g such that
tAg<l—-¢ or tA;21+¢ for any natural number gq.

We put p = maxg{q: Ay < (1 —¢€)/t} and r = ming{q: A; > (1 + €)/t. i to is
sufficiently small, p and r are sufficiently large natual number and p+1 = r. From

the assumption A-2) and (1.1) we get

Cp®+o(p*) < (1 —€)/t and .C(p +-1)°‘ +o((p+1)%) > (1+€)/t.

Then it follows

(1+e)(Cl+1)*+o((p+1)*)"" <t < (1—e)(Cp™ + o(p*)) 1.

Since p is sufficiently large natual number we obtain that the above inequalities

are contadiction. Thus the proof is complte.

Let 6 and N be 1/3 — 4/(3N) and 10® respectively.
We choose a sequence {t,} such that ti =t/2and 0<t,41 <t,0"/2 for
any n =1,2,3,4,---.

where #g 1s of lemma 1

LEMMA 2. Let j and n be natural number such that 0 < j < n. Thus there

exists a natural number £(n, j) such that

1— €0 < (#t,)Anj) < 1+ eo,



and if (ny, j1) # (n2,52)  then Ay(ny 1) F M(naia)-

where €g = 1071,

Proof. Since tg is sufficiently small positive number, from Lemma 1, we see
that there exists A;. Next we shall show the eigenvalue is unique. Suppose
| (n1,41) # (na,j2) and ny > ny. Then if ny > ny it follows ¢,,62 > 2¢, 671,
If ny = ny and j; > jo it also follows t,,672 > 2t,,671. From (1.1) and the above

inequalities we have
Ae(ng,iz) < (14+€0) (tn,82) 7" < (1+€0)27 (a0, 67*) 71 < (14€0)(1—€0) "' 27 Agny 1)

Thus it follows Ay, 5,) < Ag(ny,jy)-

2. Constitution of functions.

We shall constitute our aim’s function which satisfies the following conditions:
fe€Fna ﬂleoc((O,h];H) but ¢ .

For the sake of simplicity we suppose h = 1.

We first take a sequence {&, ;} such that
Tno=2"", and z,;=2zn;-1+(1+2/N)§’"'t,/3

wheren=1,2,-,-,- and j=1,2,--<n.

REMARK 1. Since Z;":l(l +2/N)§i~1/3 < 1/2 it follows ,/2 < z,; < 1,

where 7 =0,1,2,--,n.

For the sake of the simplicity we put v,; = 67t,/(3N), and T,,; = (1 +
1/N)§t, /3.

Let x; and x2 be functions such that



1) x1,x2 € C=(10,1]),
2) Supp x1 C [271,1] and Supp x2 C [0,27],
3) x1(-) =1 on [2/3,1] and x2(-) =1 on [0,1/3].
We denote x1((t—2n,;)/n,;) and x2((t=n,; —Tn,3)/7n,i) BY X1,n,5 (t) and x2,n,; (?)

respectively.

Let p be an arbitrary natural number. We define a function f} ;(t) € C([0, 1]; H)
by
: 0 if tel0,z,;]Uzn;+1,1],
2a=olt = Tnj = M) AP aaX1,n,i(t) i L€ [2n;, Tnj+ nil,
ATPS(t —anj — Tnj + €0 tn/3)0n;) U tE€[Tnj+Tnj, Tnj+njl,

‘ 1;:0(t Y Fn,j)aA_pbaXZn,J' (t) if te [‘”n,j + Ty, mn,j-H]

where

Ay = (al)_l(—A)"S(eo3“10jtn)<pl(n’j) and by = (a!)7H(—A)*S((1+€0)37 167t pn ;-

REMARK 2. 1) a, and b, are « order’s coeflicients of Taylor expansion of the
functions S(s)¢n ; at s = €001, /3 and s = (1 + €0)8t,, /3 respectively.

2) From the constructive method of the function fa; we see '
(Supp £ ;)0 (Supp f7,;,) =0 if (n1,51) # (n2, ja).
3) f7; € C?([0,1]; D(A*) and it is piecewise sufficiently smooth at ¢ € [0, 1].

- LEMMA 3. Let q and k be nonnegative integers such that ¢ < p. Then we have
k +k—
| (d/dt)? A% £} ;(t) |[H< Const Al 7P,

(d/dt)(d/dt)? A% fE . (t) € L*(0, 1; H).

Proof. We first shall show the former.

Let ¢t € [z, j,Zn j + Yn,;j]. From the definition of x1 ,; and Lemma 1 it follows

(2.1) | (d/ds)Px1,n, |< Const]+} ; < CAy, -



If 8 < a we have

(2.2) | (d/d0)°(t — @5 — 1m,5)* |< Consty;” < CALLS,.

From the semigroup properties we see
(2.3). | A*S(8)n,; |lB< Const/\f(n,j)ea:p(——s/\z(n’j))

Combining (2.1),(2.2) and (2.3) we get

Ao

(24) | (d/dt)qu ,’:,j |l < Const/\f(;f’j)ewp(—'yn,j Ae(n,j)) Z Z /\l(n 0 l(n i

=0 8=0

—p+q+k
< Const)\l(n’j) .

Using the similar method to the above, for t € [z, ; + Ty ;, znj4+1], we also get
the same estimate as the above.
For t € [@n,; + Vn,j, Tnj+Tn;], from (2.3), we also get the same estimate as (2.4).
Then the former is proved. '
Next we shall show the latter.
If ¢ + 1 is smaller than p, from the above, it is trivial. We suppose ¢ = p. If
t € (Tn,j + Yn,j> Tn,j + [n,j) it follows

| (d/dt)(d/dt)? A* f7 ;(t) |n< Const Af(“”.
Ift € (zn,j,@n,j +Yn,j) U(Zn,j + Lnj,on j+1) it follows

(d/dt)(d/dt)? A* 2 .(t) = 0.

Then the latter is proved.

Let b, be a decreasing sequence such that

(2.5) | lim b, =0, infn'/%b, > & > 0.

From 2) of Remark 2 we know that there exists ) -2, >>7_) f7 ;(¢)bn. Thus we
denote the above function by f? (?). ‘



LEMMA 4. The function fP(-) holds the following properties:

1) f* € C9([0,1]; D(A*)) N C?((0,1]; D(A>)) where g+ k < p.

2) Let & be any positive small number. This function is piecewise sufficiently
smooth on [6,1].

3) (d/dt + Ak fP € C([0,1]; H) and lim;_o(d/dt + A)*fP(t) =0

where k =0,1, -, p.

4Xd/dn)d/di + Ay §7 € L2, ((0,1]; ).

loc

Proof. Combining 2),3) of Remark 2 and lemma 3 and noting (2.5) we get the
proof of 1). Since the sum of f? is finite on [6,1], from 3) of Remark 2, the proof
of 2) is complete. From Lemma 3 and (2.5) the proof of 3) is complete. Noting

the sum of f? is finite on [6,1] and Lemma 3 we can prove 4).

LEMMA 5. Lett be any positive number such that 0 <t < 1. Then there exists

!i\% / (d/ds)(d/ds + A)* f(s)ds =0

where £k =0,1,--,p.
Proc;f. From 2) and 3) of Lemma 4 it is esay to prove this lemma.
LEMMA 6.
| A / t;2 St — 5) AP f7(s)ds | g > 6010,
tn
where § 1s a positive constant z'ndepend;nt of n.

Proof. From the definition of J? we have f? = Z;zl fi b on [tn/2,1,]. We

put

Tn,j4+1
/ AS(tn — s)A?f? ds =

n,j
ZTn,j+Yn,j ZTn,i+n,; Tn,j+1
(/ —I—/ +/ {AS(t, —s)A? ,’;,j(s)}ds
Tn,j mn,j+'7n,j zn,j+rn,j



=L +1L+ 1

We first shall estimate I;. From the definition of f} ; on [z ;,Znj + Vs ;] and

semigroup properties we have

| AS(tn — 8)APf} i |u

y4
< ST 1/(@) |8 = 2nj = Tn 1* A2 ezp(—(tn — 5 + 0840 /3)An ).
a=0

Since
§—&n; 2 Anj  andyn jAy(n,j) < 1/N
we see
P
(2.6) | I g < Z C’onst(’yn,j)““/\?‘(:’lj) < Const/N.

a=0

where Const is a constant independent of n,j and N. Using the similar method

to the above we get
(2.7) o | I3 | < Const/N.
Let us estimete I5. Using the semigroup properties we get
AS(tn — s)APf7 . = exp(—(tn — Ta; + (€0 — /N0, /3) i) Ani Pni -

Since t, —z,; = (1+ 2/N)(1 —6)"167t,/3, from lemma 2 and the above equality
we have

| I2 > (1 — €0)exp(—61)/3
where 8; = (1—€0){1/3(1+2/N)(1—8)"'+(eo—1/N)}. Then combining (2.6),(2.7)
and the above inequality and noting N is a sufficiently large number there exists

a constant 8y such that

I I]_+.[2+I3 I%IZ (l Iz IH - l 11 IH — l I3 |H)2 Z ((l—eo)ea:p(—51)—2COnst/N)2 = 6(2,
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Thus we complete the proof of this lemma.

LEMMA 7. Let k be a nonnegative integer such that k < p. Then we get the

following equality:
¢
(t — s)FAFTIS(t — 5)(d/dt + A) P (s)ds
t/2

k-1
== (t/2)¥ 1A 15(2/2)(d/ds + A)P I AT f7(2/2)C,
+C t S(t — s)(d/ds + AP~ E AR+ fP(5)ds

t/2

where Cy = k!/(k — ¢)!.

Proof. Using the integration by parts we get the following recurrence formula

for q.

//:(t — 5)F9AM*LS(t — 5)(d/ds + AP ~IfP(s)ds
t ,
= —(t/2)F A (/D) dfds + AT (1/2)
HE=g) [ (1= A )+ AP )
Solving the above recurrence formula we get the proof of this lemma.
LEmMMA 8. We get the following inequality:
lirtn\s‘élp | t/:(t — s)PAPS(t — 8)d/ds(d/ds + A)? f?(s)ds |g> 0.

Proof. From the definition of f? it follows, for any nonnegative integer «,

(2.8) ((d/de)* £7)(ta/2) =0 and  ((d/dt)*f*)(t) = 0.

Let p be 0. Using the integration by parts and (2.8) we see

tn tn
| S(tp —s)d/dsf°(s)ds |g = | —A
0 .

tn/

, St — 5)f(s)ds |ir -

tn



From Lemma 6 it follows the right term of the above equation is uniformly positive
about n.
Let p be larger than 1. Then from the integration by parts and (2.8) we have

/t t';z(t,, — $)PAPS(t, — 5)d/ds(d]ds + AY f7(s)ds

—p /t " (tn = 8PP APS(ta — 5)(d/ds + AY 7 (s)ds

n/2

tn
- / (t — )7 AP*1S(t,, — 5)(d/ds + A f7(s)ds = 1 + I.
tn/2

From Lemma 7 and (2.8) we get

tn
I = Const Sty — s)(d/ds + A)A? fP(s)ds.

tn/2

On the other hand from the integreation by parts it follows

/t: S(tn — s)(d/ds + A)AP fP(s)ds = 0.

Then I; = 0.
Combining Lemma 6 we obtain | I3 |g> 8p. The proof is complte.

LEMMA 9. Let k be a nonnegative integer smaller than p — 1. Then ot follows
t
lim | | (t—s)*A*S(t — s)d/ds(d/ds + AP fP(s)ds |g= 0.
t\,0 t/2
Proof. From the integreation by parts we get

/ : (t—s)F AR S(t—s)d/ds(d/ds+A)? f7 (s)ds = —(t/2)* AFS(¢/2)(d]ds+A) 7 (¢/2)

t

+k/ (t — s)F"LA*S(t — 5)(d/ds + A fP(s)ds = I + I,.
t/2 ‘

On the other hand we have the operator norm: | s¥ A¥S(s) |- g> Const. Com-

bining 3) of Lemma 4 and the above result we obtain lim;\ o Iy = 0. From Lemma

7 and 3) of Lemma 4 we get lim;\ o I; = 0. Thus the proof is complete.

11
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3. Proof of Theorem.

We take a function f defined on [0\, 1] such that

£(8) = (d/dt)(d/dt + AP £ ).
~ From then 4) of Lemma 4, Lemma 5, Lemma 8 and Lemma 9 we get
f€F,-1 and f¢&F,

Combining Proposition 6.9 in [3] and the above result we obtain the proof of

Theorem is complete.
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