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Linearised Stability for Abstract Quasilinear
Evolution Equations of Paravolic Type II,
Time Non Homogeneous Case
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1 Introduction.

We shall study the linearized stability of an abstract quasilinear
evolution equation
du/dt + A(t,w)u = f(t,u), 0<t< oo,
(@) { u(0) = u :
— U0,
of parabolic type in a Banach space X. Here, —A(t,u) are the gen-
erators of analytic semigroups on X which are defined for (¢,u) € -
IxU,where ] =[0,c0) and U = {u € Z; ||luljlz < R} (0 < R < o),
Z being another Banach space continuously embedded in X with
II-llx < |I-|lz. The domains D(A(t,u)) (which may not be dense in
X ) are allowed to vary with (¢,u). f(t,u) is an X-valued function
defined for (t,u) € I x U such that f(¢t,0) = 0 for¢t € I. wuy is
an initial value in U. And u = u(¢)(0 <t < o) is an unknown
function.

In the previous paper [8] we have already studied the stability
of (Q) in the case that the equation in (Q) is time homogeneous,
that is, in the case that A(¢t,u) = A(u) and f(¢t,u) = f(u). Under
suitable conditions on A(u) and f(u) which guarantee the existence



and uniqueness of local solution, we have in fact proved that the
following two Conditions: ‘
(Sp) p(A(0)) D {A € C; ReA < 6} with some é§ > 0;

(f.ii)
—-——-——”f(u)“X -0 as u—=0 in Z
[lullz
yield the asymptotic stability of the zero stationary solution to
(Q). By this we obtained a new result on linearized stability of the

problem (Q) which is, the authors believe (see [8;Introduction]),

more favorable in application than those known before, Amann -

[1,2,3,4], Drangeid [5]. In this paper we shall proceed to handle
the time non homogeneous case and shall establish an analogous
result on linearized stability of the (non homogeneous) problem

(Q)-

Let us here announce the Conditions we shall assume in this
paper. But, before that, we may introduce three more Banach
spaces Y;,7 = 1,2,3, such that Z C Y; C X and that Z C Y3 C
Y. C X. |

Assumptions on A(t,u):

(A.i) The resolvent sets p(A(t,u)) of A(t,u), (t,u) € I x U, contain
a sector ¥ = {)\ € C;larg(A —w)| > 6y or A = w}, where —oo0 <
w < oo and 0 < §p < 7/2, and there the resolvents satisfy:

(A — A, w) e < AEE, (tu)elIxU,

M=o +1’

~ with some constant M.
(A.ii) For some 0 < po,vp,4 <1, .

lw = A, w))(A = A(t,u)) " [(w — A(t,u) ™" = (0 = A(s,9) " lleen

A= s, llu=ovly
N —ol+17 " D=wl+ 17

SNl{
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AEZ, (tu),(s,v)elxU,

where h(r) = 7/(7 + 1),7 > 0,with some constant N;. In
addition, "

(w— A(t,u))™" = (w— A(t,v)) ™" = Ra(t;u,v) + Ra(t;u,v),
and forsome 0 <1, <153 <1

llv — vllv:
(A —wl +1)%°

lw — A, w)) (A = At w) 7 Ri(ts w, v)ll o) < Vi

AES,  (Hu),(tv) €IXU, i=23

with some constants N;i(i = 2,3).
(A.iii) A(¢,0) has a limit A(co,0) in the sense that

l(w— A(t,0))! — (w— A(00,0)) Hlgexy = 0, as t— oo,

where A(co, 0) is a closed linear operator in X with w € p(A(co,0)).

Assumptions on the spaces Z C Y; C X (i =1,2,3):
(Si) Forsome 0 <y < L, |- Ilv: < Il - %Il - IIz7,i=1,2,3, on Z.
(S.11) There is some 0 < a < 1 such that the domains of the frac-
tional powers [A(t,u) — w]®, (¢t,u) € I X U, are contained in Z with
continuous embedding:

| -z < D||[A(t,v) — w]* - ||x with some constant D.
(S.iii) There are some 0 < ay < a3 < « such that the domains of
the fractional powers [A(t, u) — w]*, (t,u) € I x U, are contained in
Y;,1 = 2,3, with continuous embedding;: o ' '

|- llvi £ Dil|[A(t,v) — w]* - ||x with some constants D;.

(S.iv) The unit ball {u € Z;||u||z < 1} of Z is closed with rerated

to (X, || - llx).
Relations among the exponents:

(Ex) po>mo; w>v; ma+y>1 for i=1,2,3;



a+vy;>a;+1 for i=2,3;' and a(l+y;) +ve > a3+ 1.

Spectral (or resolvent) Condition on A(oc, 0):
(Sp) The resoluvent set p(A(c0,0)) contains a half plane A = {A €
C; ReA < 4} with some § > 0.

Assumptions on f(t,u):
(EDIf(t,w) = @vmx<meh+ﬂﬂdﬁ—ﬂ“ﬂw—ﬂM}
(t,u),(s,v) € I x U,

with some 0 < ¢ < 1 and with a constant L .

(£ii)
ILf (¢, w)llx

—0 as t— and u—0 in Z.
[|u]|z

Assumptions on the initial value ug:
(In) up belongs to D([A(0, u) — w]*){(C 2).

We shall argue with dividing the problem (Q) into two parts:

du/dt + A(t,u)u = f(t,u), 0<t<T,
(QO) { u(0) = uy,

dufdt + Alt,w)u = f(t,u), T <t< oo,
(@r) { u(T) = ur,

where 0 < T < oo is some point fixed sufficiently large. As for
(Qo) it is already known by [17] that (A.1)(A.ii),(S.1)—(S.iv),(Ex)
and (f.i) provide, for each sufficiently small ug, existence of a unique
global solution on [0,T]. So that, the problem of stability is reduced
to studying (Qr). As for (Qr), then, we shall observe that the
techniques we devised in [8] for homogeneous case are still available
in proving, under (A.iii),(Sp) and (f.ii),existence and decay of a
global solution on [T, co0) for each sufficiently small uz.

As will be commented in Section 6, our result on the abstract
equation (Q) actually applies to quasilinear parabolic partial dif-
ferential equations. '
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Notations. The notations used in this paper are generally the
same as before, so we shall refer the reader to Notation in [8,Intro-
duction]. For example, by C we shall denote a universal constant
which may change in each occurrence and which is determined in a
specific way by the quantities in (A.i1)—(A.iii),(S.i)—(S.iv),(Ex),(Sp)
(fi) and (fii). If C depends on some parameter, say 6, however, it
will be denoted by Cl.

By no we shall denote a particular exponent given by
1—vy; azg+1l1—a—uv

,i=1,2; H< a from (Ex)).

= Max
o { 4! 72

2 Consequence of the Conditions (Sp)
and (A.iii). |

In this section we shall notice that, for sufficiently large ¢ and for
sufficiently small u, A(¢, u) also satisfy the same spectral condition

(Sp).

Proposition 2.1 The Conditions (A.ii1) and (Sp) jointed with (A.1),
(A.11) and (S.1) imply that, if 0 < Ty < oo is sufficiently large and if
0 < Ry < R is sufficiently small, then,for all (t,u) € [Ty, 0) x {u €
Z;|lullz < Ro}, p(A(t,u)) contain the half plain A.

Proof. See [9].
We next notice:

Proposition 2.2 (A.iii) jointed with (A.i) and (A.ii) implies that
1A, w)(A = A(t,w) AR w) ™~ A5, 9) 7 llecx)
< (M +1I{N@) + N(s) + M(l[ullz + [lvllz)},
(t’ u)’ (S, U) € [TOa OO) X U1
where N (-) is a non negative function on [Ty, 00) such thatlim,, N(t) =
0.



Proof. See [9].

3 Solution on a finite interval [0, T].

In this section we shall consider the equation (Q) in a finite interval
[0,T7]

du/dt + A(t,w)u = f(t,u), 0<t<T,
(Q@{mm=um |

here 0 < T < oo is an arbitrarily fixed point.
According to [17,Sec.3], we have:

Proposition 3. 1 Let0<T <0 be arbztmmly ﬁzed For any
function space:

| . N[A(t, u(t)) — w]*u(t)||x <, 0<t<T,
(Fojr K, ) {nmn_u@mxgku—qm 0<st<T

wherer > 0,k > 0 and ny < n < «, there exists € > 0 such that, for
each initial value ug satisfying (In) with ||[A(0, o) — w]%uo||lx <€,
(Qo) possesses a unique solution u € C!((0,T]; X) on [0,T] lying
in (Fu;mk,m) (€ may depend on T). In addition, u satisfies:

I[AE, 6(t) - w]*u@)llx < ClIAQ, u) — w]*uollx, 0<t<T.

Proof. Indeed, if w < 0, let us change the unknown function to
v = e*'u. Then (Qq)amounts to

[ dujdt+[Alt,et) — wlv = et f(t, e),  0<t<T,
(<o) v(0) = u. |

And the new coefficient operators A(t, e “*v) —w defined for (t,v) €
[0,T] x e“TU satisfy the Conditions (A.i),(A.ii),(S.ii) and (S.iii)
with w = 0. Then the Proposition is an immediate consequence of
[17,Theorem 3.3].
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4 Solutions on an interval [T, c0).

Let T be the point determined in Section 2. In view of the preced-
ing section, we shall now consider the equation (Q) in a half line
[T,00),To < T < o0, that is, the problem:

du/dt + A(t,u)u = f(t,u), T <t< oo,
(@n) { s A -

The initial value ur is assumed to satisfy:
(InT) ur € D([A(T, ’LLT)]O‘).

Let us begin with noticing:

Proposition 4.1 For any function space:

o [ NAGuEOx <7 T<t<oo,
(E5r ) {HU(t)-—u(s)llxﬁéz’lt—sl"', T<s,t< oo,

where ', k' > 0 and g < 11 < a, there exists 0 < & < 1’ such that,
for each initial value ur satisfying (Iny) with ||[A(T, ur)]*ur|x <
e, (Qr) possesses a unique local solutionu € C'((T, T + S]; X)
lying in (F;r' k',1), the length S > 0 being uniform in ur. In

addition, €’ and S are independent of the initial point T > Tj.

Proof. In fact this result has been already shown in [17,Proposition
3.1].
Let us next verify a priori estimates of the local solution to (Qr):

Proposition 4.2 One can take an initial point T € [Ty, 0) and a
function space:

.t gt I[A(, u(t)]*ult)||x < R”, T<t< o0,
(Fi B K ) { lu(t) — u(s)llx < K"t — |, T<s,t<oo



where R", K" > 0 and gy < 1" < @, as the following statement
holds. For any function subspace:

(F k" 77//) ]I[A(t,u(t))]“u(t)“x < 'r”, ) T<t< 00,
TR, lu(t) — u(s)||x < K"t —s|”", T <s,t<oo,

where 0 < " < R" and 0 < k" < K”, there erists 0 < &’ < r”
such that, for every local solution u € CI((T,T + S(u)]; X) to
(Q1) which lies in (F; R",K",n") on [T, T + S(u)], if ur satisfies:

WA(T, ur)]*ur|lx < €”, then actually u lies in (F;r",k",n") on

[T,T + S(u)], € being independent of the length S(u).

Proof. See [9].
From these Propositions we obtain:

Theorem 4.1 Under (A.i)-(A.ii),(S.i)-(S.w),(Ez),(Sp),(f.1) and
(f.ii), one can take an initial point T € [Ty, 00) and a function
space:

(Fr,k,m)

{ AG uE)eu®)lx <7, T <t <oo,
lu®) —u(s)||x < k|t—s|?, T <s,t< oo,

where )k > 0 and ny < 1 < a, as the following statement holds.
There exists a number € > 0 such that, for any initial value ur sat-
isfying (Inr) with ||[A(T, ur)]®ur||x <€, (Qr) possesses a unique
global solutionu € C!((T,00); X)on[T,o0) lying in (F;r,k,n) and
satisfying:

lA u@®)*u(t)lx < CeEPEDIAT, ur)urllx, T <t < oo.

(1)

Proof. Let T,R",K" and 7" be the point and the numbers de-
termined as in Proposition 4.2. Set the numbers 7/,k’ and 7 in
Proposition 4.1 as 7/ = R") k' = K"/2 and % = 7”; and, set
" = €' and k” = K”/2. Then the Theorem will be proved with
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r=r1"k = K'/2,n = 7' and € = £". In fact, let ur sat-
isfy: ||[A(T,ur)]*ur||x < e. Then, since ¢ < €', Proposition
4.1 first yields existence of a solution u in (F;7’,k',n') on the
interval [T,T + S]; but, since 7/ = R",F' < K" and € = €,
by virtue of Proposition 4.2, u actually lies in (F;r”;k";n") and
hence in (F';r;k;n). Assume next that this solution can be ex-
tended as a solution u € C*((T, T + S(u)]; X) on an interval, say
[T,T + S(w)] (S(u) > S) in the space (F;r;k;n). Take a point
T' =T + S(u) — S/2(where S is the length determined in Propo-

sition 4.1). Then, since ||[[A(T",u(T")]*uw(T")||x < r = €', Proposi- .

tion 4.1 yields again that there is an extension of u on the interval
[T,T" + S]; it is easy to observe that the extended solution @ lies
in (F; R", K" ") on the interval. By the same reason as above it
then follows that @ lies in (F';r, k,7n). In this way we have obtained
an extension of solution of S/2 length in the space (F;7,k,n). As
S/2 is uniform in each extension, we can continue this procedure
and finally construct a global solution to(Qr) in (F;r,k,n). The
estimate (6) was already verified by (5).

5 Asymptotic Stability of Zero Solu-
tion to (Q).

We are now in a position to prove the main result of this paper:

Theorem 5.1 Assume (A.i)-(A.i1),(S.1)-(S.iv),(Ex),(Sp),(f.3)
and (f.ii). Then, there ezist a function space: '

Birky [ [H@lz<n  0<t<oo,
(E;r k,m) { |lu(®) —u(s)|lx <klt—s|", 0<s,t< oo,

where .k > 0 and g < n < @, and a number € > 0 such that, for
any initial value uy satisfying (In) with ||[A(0,ue) — w]*uol|x < €,
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(Q) possesses a unique global solution u € C!((0,00); X) on [0, o)
lying in (E;r,k,n). Moreover, the solution decays as

lu(®)llz < Ce (A, u0) —w]™ugllx, 0<t<oo, (2)
C being independent of uyg.

Proof. This result follows immediately from Proposition 3.1 and‘
Theorem 4.1. Ounly thing to be noticed here is that

AR, W] - llx < Cll[AG,w) —w]*-lx,  (u) € [To,00) X T,

with some constant C; but, this is easily seen from [18,Chap. 2,
Lemma 3.5].
Furthermore, the decay estimate (7) is actually improved as:

Theorem 5.2 The global solution u constructed in Theorem 5.1
decays as, for any 0 < § < 4,

”A(t,u(t))u(t)nx S‘Cﬂt“‘le‘ﬂtH[A(O,uo)—w]"‘uollx, 0<t<oo,

(3)

Cp being independent of uy.

Proof. The proof will be accomplished by three Steps.
Step 1. Set, as before, A,(t) = A(t,u(t)),0 <t < co. As was
verified by (4), for any T € [T, 00), '

AL~ Aut) ™A™ ~ 4l et
<O+ s Juoll} { S

with any 0 < { < 1. While, in view of (7), N(T)+supr<;coo [|u(t) ||z —
0 as T — co. This then means, by virtue of Theorem A.2, that,
for any f < &' < § , if T is sufficiently large, then the evolution
operator Uy(t,s) for A,(t) satisfies:

1-¢
} AETLT<t< oo,

NMADPUut, 9)lleex) < Col(t —5) %) T <s <t < o0, (4)
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I[ALI Uty ) [Au( llex) S Coe™ ) T < s <t < 00, (5)

forall0<6<1. _

Step 2. We can then argue in the same way as in the second
Step of proof of Proposition 4.2. And indeed we obtain that, if T
is sufficiently large, then

N4 u@)lx < Coe DA u(T)[x, T < t < oo, (6)

lu®)~u(s)llx < Co(t—s)"e P D Au(T)*u(T)|lx, T < s <t ?7;0

Step 8. Let again § < §' < 4. Since 0 < §°< & was arbitrary

in the Step 2, we can assume that (11) and (12) hold with ¢ sub-
stituted for . On the other hand, we verify from Theorem A.2
that

14u(®)Uu(t, 5) — Au(t)eap(—(t = 8) Au(®)lcix)
< Cup(t— 3)(1'“()(717)+V1)—2e—6’(t—s),

T<s<t<oo, (8)

if T is sufficiently large. In order to estimate A,(¢)u(t), we shall
now start with

u(t) = Uu(t, T)u +/U (t,7)f(r,u(r))dr, T <t< oco.
Operating A,(t), it is written in the form

Au(t)u ()—I+II+III+IV

where

I = Au(8)Ua(t, T)[Au(D)] ™ [Au(T)]"u(T),
1= [ AOU( 7 (r,u(r) - 1 u®)}dr,
HI=Aj&ﬁwumﬂ—AAﬂwm (t = 7)Au(t)) }d7 - £(2,u(2)),
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IV = {1 — exp(—(t — T) Au(t)) } f (2, u(?)).
After some culculation, we have verified the estimate (8) for large
t>T+1.For 0 <t <T+1, however, the proof is more immediate;
indeed, by a similar argument we easily verify that

4. u®)llx < Ct[A(0, wo) — w]®uollx, O0<t<T+1.

6 Comment on Application.

As a model of application of our abstract result, we can consider
the following quasilinear parabolic differential equation:

Ou /ot —FA(t,:v,u;D)u\: f(t,a:,'u; Vu) in (0,00) x €,
(D)< B(t,z,u;D)u =0 on (0,00) x 09,
u(0,z) =uo(z) in Q,

in a bounded region 2 C R™ . Here,

| A(t,z,u; D)v =—Z 66 a,thu)aa; + c(t, z,u)v

i,j=1 J

are differential operators in {2 with real valued functions a;; and ¢
on I x 2 x C, where I = [0, 00).

n

B(t,z,u; D)v Z a;j(t, z, u)vi( x)%_—i—g(t,x,u)v
Nt -

are boundary differential operators on 9 with a real valued func-
tion g on I x 02 x C,v(z) = (v(z), - -,v.(z)) being the outer
normal vector at z € 0. f(¢,,u,q) is a complex valued func-
tion on I x  x C x C*. wg is an initial function in . And
u=u(t,z), (t,z) € (0,00) x §, is an unknown function.

We shall assume the following Conditions:
() Q is a bounded region in R™ of C?-class .
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(a.) a;j € C’(I_; C#+1(Qx (R+iR)))NC'(I; C'(Ix (R+iR))),1 <
i,j < n, with some 1/2 <1< 1.
(a.ii) a;; = aji(1 < 4,5 < n), and there exists some £ > 0 such that

n

Z aij(t):v,u)qiqj > €IQl2, q€ Rn)
i,j=1

for each (¢,z,u) € I x Q x C.
(c) ce C(I; C*(2 x (R +iR))) N CYI; C(2 x (R + iR))) with
some 1/2 <1< 1.
(f1) fe€ C(I x 2 x C x C"), and for some 0 < 0 < 1

|F(t,2,u,9)= £ (5,,0,7)] < La{(lul+olHal+rl) |+ u—vl +Ha—r]},

OSS,t<OO; er ;(U,q),(’U,T)EG,

in each bounded subset G C C x C".

|f(t, 2,4, q)]|

sup—F/———— =0 as t—o00, u—0 and ¢ —0.

(g)g € C(I; C*(02 x (R+14R))) N CYI; C(82 x (R+iR))) with
some 1/2 <1< 1.

Notation. For I = [0,00) and a Frechet space X, C(I; X) de-
notes the set of X valued continuous functions ¢(t) defined on I
which have, as t = oo, limits ¢(c0) in X. C!(I;X) denotes the
set of X' valued functions ((t) on I which satisfy, for each semi-
norm g, p(p(t) — ¢(s)) < Cpuh(lt — s|)',0 < 5,8 < oo, where
h(r) =7/(r+1),7>0.

Obviously (f.1) and (f.2) imply that f(t,z,0,0) = 0, so that u =
0 is a stationary solution to (D). Our question is then examining
when the zero solution is asymptotically stable.
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Set

X=1L,Q), n<p<oo, and Z=W:Q), 1+%<h<2.

We shall then formulate (D) as an abstract equation:

du/dt + A(t,u)u = f(t,u), 0<t< oo,
@ { A

in X. Here

(A) { D(A(t,u)) = {v € W2(Q); B(t,s,u; D)v =0 on 99}
A(t,u)v = A(t, z,u; D)v S

for (t,u) € I x U, where U = {u € Z;|lu|]lz < R} with some
O<R<oo (t) ft,z,u,Vu) for (t,u) € I x U. And,
uy € W3 (Q) with h < a < 2. In addition, we set:

Yi=Y=WrlQ), Yi=Wi(Q)

We shall next verify, in order to apply the Theorems 5.1 and
5.2, that the Conditions (A.i)—(A.iii),(S.i)—(S.iv),(Ex),(f.i)(f.ii) and
(In) (except (Sp)) are all fulfilled. But essentially such verifica-
tion has been already done through our previous papers [16, Sec.5],
[17,Sec.4] and [8,Sec.6]. Let us recall that so that very briefly.

When u vary in U, u are contained in some compact subset
of C!(£2) because of the embedding: W}*(2) C C*(£2). So that,
from (a.1), a;;(t, z,u) are also contained in some compact subset of
C1(f2) when (t,u) vary in I x U; similarly, from (g), g(¢, z,u) are
contained in some compact subset of C?(842). Therefore, (A.i) is
verified from the strong ellipticity (a.2). As was verified in [16,Sec.5]
and in [17,Sec.4], (A.ii) holds with po =, with any 1y = 1 < 1/2,
with any 15 < (p+1)/2p and with v3 = 1 respectively. In the same



way, (A.iii) is verified from the condition that the coefficients of
A(t,z,u; D) and B(t,z,u; D) are continuous at t = oo .

(S.i) holds with 43 = 79 = 1/h and with any v3 < (h — 1) /h.
As was done in [15,Appendix], we can estimate the domains of the
fractional powers [A(¢,u) —w]?, 0 <6 <1, by using the Sobolev
spaces W2°(Q); according to this, (S.ii) and (S.iii) are the case
provided h/2 < a, (h —1)/2 < a3 and 1/2 < a3 respectively. (S.iv)
is seen, on the other hand, from the sequentially weak compactness
of the closed unit ball in the reflexive Banach space Z.

(Ex) is now evident. Indeed, it suffices to take a > h/2,a3 >

1/2 and ag > (h — 1)/2 sufficiently small and v3 < (h —1)/h,1p =
vy < 1/2 and ve < (p + 1)/2p sufficiently large respectively.

(f.i) is an immediate consequence of (f1), since, when u vary
in U,u(z) and |Vu(z)| are bounded on Q. Similarly, (f.ii) follows
from (f.2), since ||u||z — 0 implies that u(z) and |Vu(z)] — 0 on
Q.

Finally, in order to verify (In), we shall assume further that
(uo) The initial function uo belongs to W7 () with a > 2a and
satisfies the compatibility condition:

n

> a;,-(O,:c,uO)ui(x)% +g(0,z,u0)ug =0 on ON.
ij=1 Oz;
Then, (In) follows from (ug) by virtue of [15,Theorem A.2].

As a conclusion we can state now that, under (2),(a.1),(a.2),(c),
(g),(f1) and (f2), the stability problem of the zero solution is
reduced to verifying the spectral Condition (Sp) of the operator
A(00,0) defined by (A). That is, if A(co,0) satisfies (Sp), then
(D) possesses, for each sufficiently small initial function ug satis-
fying (uo), a unique global solution which decays exponentially as
t — oo. ’

It is similarly possible to examine the stability for another
stationary solution @(# 0) to (D). Changing the unknown functions
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from u to v = u—%, we shall rewrite (D) round @. Then our abstract
result will become applicable; for detailed procedure, however, we
shall refer the reader to [8,Sec.6].

Appendix;Related Linear Equations.

In this section we shall consider an abstract linear evolution equa-
tion
du/dt + A(t)u = f(2), 0<t<T,
(L) _
U(O) = Uy, .

in X . Here, —A(t),0 <t < T, are the generators of analytic

semigroups on X, f : [0,7] — X is a Holder continuous function
and uy € D(A(0)) is an initial value.

It is already known that an evolution operator U(¢,s),0 < s <
t < T, for (L) can be constructed under the following three Condi-
tions: :
(L.A.i) The resolvent sets p(A(¢))(0 < t < T) of A(t) contain
Y ={X € C;largA| > 6y},

where 0 < 8y < 7/2, and there the resolvents satisfy:

A= A@) ey < AEL, 0<Lt<LT,

M
(IA+1)°

with some constant M.
(L.A.ii) For some 0 < p,v <1,

JAB - A6 AO - A6) ey < Nk

(Al +1)*

AEE) OSS,tST,

with some constant V.
(L.Ex) The exponents satisfy a relation: p+v > 1.
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Theorem A.1 Under (L.A.i),(L.A.ii) and (L.Ex), there ea:ists
bounded linear operators U(t,s),0 < s < t < T, which provides
a unique solution v € CY((0,T]; X) N C([0,T); X) to (L) by the

formula
ut) =U,0)w + [ UGf(dr,  0<t<T,

For the proof, see [13,14].

Assume, in addition to the above three, the spectral Condition
for each A(t): |
‘ (LSp) ( ())DA {AN€C;ReN < 6},6>0,for 0<t<T;and
Then the various decay estimates to U (t s) are established:

Theorem A.2 Let (L.A.i),(L.A.i1),(L.Sp) and (L.Ez) be satis-
fied, and fiz a p such that1—pu < p < v . Then, for any 0 < § < 6,
the estimates:

”A(t)oU(t, S)HL',(X) < Cgl(t - s)‘eexp{(CglNl/(P+“‘1) — 5’)(15 - S)},

IA®)°U (2, 5)A(s) |l cxy < Coeap{(CoNYPHD — §)(t - 5)},
U (t, 5)=1}A(5) llex) S Cor(t—s)°[exp{(Cor NV EHH=D —8') (t—5) }+1],

JAMU(E, 5) = Alt)eap(—(t — s)A®)llccx)
< Co(t — ) ~2eap{(Cor N0 — )t = 5)},

hold for0 <8 <1and0<s<t<T with some Cg which is
independent of N and T. : :
For the proof, see [8,Th.2.3].
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