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Recurrent Sets for Dynamic Fuzzy Systems
LA RZFAEFFER  HHEE (Yuji YOSHIDA)

0. Introduction

This paper discusses a recurrent behavior of dynamic fuzzy systems defined by fuzzy
relations on a Euclidean space. By introducing a recurrence for crisp sets, we give
probability-theoretical properties for the fuzzy systems. When the fuzzy relations sat-
isfy a contraction condition, the existence of the maximum recurrent set is shown. We
also consider a monotonicity condition for the fuzzy relations as an extended case of a
linear structure in one-dimensional fuzzy numbers. Then we present the existence of the
arcwise connected maximal recurrent sets.

1. Notations

Let S be a metric space. We write a fuzzy set on S by its membership function
§:85 +— [0,1] and an ordinary set A(C S) by its indicator function 14 : S — {0,1}. The
a-cut $, is defined by

S5 :={reS|5z)>2a}l(ae(0,1]) and 5 :=c{z e S|3) >0},

where cl denotes the closure of a set. F(.5) denotes the set of all fuzzy sets 5on S s'atisfying
the following conditions (i) and (ii) :

(i) 3, € E(S) for a €[0,1];

(i) () Sw =35, for a€(0,1],
o' <o
where £(S) := {A| A =3, Cn, C, are closed subsets of S (n =0,1,2,---)}. We also

n=0
define

Gg(S) := { fuzzy sets on S | there exists {3, }nen C F(S) satisfying §= \/ &, } ,
neN

where N := {0,1,2,3,- -} and for a sequence of fuzzy sets {3, },en on S we define

A Su(z):= inf $,(z) and \/ 5,(z) = sup §n(l) z€8.
" neN - neN neN neN

Let a time space by N and put N := NU{oco}. Let a state space E be a finite-dimensional
Euclidean space. We put a path space by Q := [[32, F and we write a sample path by
w = (w(0),w(l),w(2), --) € Q. We define a map X, (w) := w(n) and a shift 0,(w) :=
(w(n),w(n + 1),w(n +2),---) for n € N and w = (w(0),w(1),w(2),---) € Q. We put
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o-fields by M,, := a(Xo, X1, -+, Xy) Yforn € N and M := 0(U,en Mn) % Let A be
not a point of £ and put E, := EU{A}. We can extend the state space E to E,, setting
5(A):=0for $€ G(Ep) and Xoo(w) := A for w € Q2 ([10, Section 2]). Let ¢ be an upper

semi-continuous binary relation on E x E satisfying the following normality condition :

sup d(z,y) =1 (y € E) and supi(z,y) =1 (= € E).
zeE . yeE

We call § a fuzzy relation. We define a fuzzy expectation : For an initial state z € E and
an M-measurable fuzzy set h € F((2),

Eo(h) = ][ h(w) dP(w),

{weQ:w(0)=z}
where P is the following possibility measure :

P(A) = sup A §(Xow, Xnpiw) AeM

w€A neN
and ][ dP denotes Sugeno integral (Sugeno [9]).

We need the first entry times (the first hitting times) of a set, which is adapted to the
dynamic fuzzy system X := {X,},eN, in order to define a recurrence of sets in Section
3. We define

E={A|Ac&(FE)and E\ A€ &E(F)}

and we call a map 7 : @ — N an E-stopping time if
{r=n} e M,NENQ) n € N.

For example, a constant stopping time i.e. 7 = ng for some ng € N, is an E-stopping
time. For A € £ we put ‘ v

Ta(w) :=inf{n € N | X, (w) € A} we;
oa(w):=inf{n e N|n ‘2 1, X, (w) € A} weq,

where the infimums of the empty set-are understood to be +00. Then the first entry time
74 of A and the first hitting time o4 of A are also £-stopping times ([10, Lemma 1.5]).

Define é'map P:G(F)— G(FE) by
P3(z) := E.(3(X;)) = sug{(}(w,y) AN§y)} ze€FE  for s€ G(FE), (1.1)
ve '
where we write binary operations a Ab := min{a, b} and aV b := max{a, b} for a,b € [0, 1].

We call P a fuzzy transition defined by the fuzzy relation §. We also define n-steps fuzzy
transitions P, : G(E) — G(F), n € N, by

Posi= E((Xy)) = zgg{f}"(wy) A(y)} for s€ G(E),

11t denotes the smallest o-field on { relative to which Xy, X1, -, X, are measurable.
?It denotes the smallest o-field generated by U, N Mn-
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where for n € N

~n+1

#(z,y) = i(z,y) and 79(2,y) = sup{7 (2, ) A i) 2,y € B,

Further for an £-stopping time 7, a fuzzy transition P; : G(E) — G(FE) is defined by
P.5:= E(3X,)) for§e G(E),
where X, := X,, on {r =n}, n€ N.

2. Transitive closures and P-superharmonic fuzzy sets
We define a partial order > on G(FE) : For 3,7 € G(E)
§>271 < §z)>Hz) z€E.
Definition ([10, Section 4]). A fuzzy set 5(€ G(E)) is called P-harmonic (P-superharmonic)

provided that
' §=P

W

(32> PS5 resp.).

Clearly a constant fuzzy set, § = 8 for some 3 € [0,1], is P-superharmonic. We
represent the fuzzy set by g8 simply.

Theorem 2.1. Let § be P-supérharmonic and let aset A € £. Then P, 5 is the smallest
P-superharmonic fuzzy set which dominates §A 14.

We define an operator G := VN Py on G(E). Then we note that
PGlyy(a) = V Palgy(@) =sup @'(z,y)  a,y € E.

n>1

This is called a transitive closure ([3, Section 3.3]). In this paper we also call PG a
transitive closure. Now we need to investigate the operator G in order to analyse the
transitive closure PG := V5> P,. We have the following properties regarding G.

Lemma 2.1 ([10, Lemma 4.1(ii)]). Let § € G(FE). Then :

(i) It holds that
Gi= sV P(G3);

(i1) GS§ is the smallest P-superharmonic dominating 3.
For A € £(F) we introduce an operator [4 : G(E) — G(FE) by
I45:=3N1, e gG(E).
We define a sequence of hitting times {07 }nen of a set A(€ &) by
n { 0 ifn=20

Ta= o% M +o,0 002-1 ifn>1.
Then o7 means the first time to hit A after time o7~ (c.f. [8]).

Proposition 2.1. Let A€ £. Then :
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(i) P,,§= GI4§ for P-superharmonic 3;

(ii) Pon5= (PGI1s)"§ for P-superharmonic § and n € N.

3. a-recurrent sets

Definition. Let o € (0,1]. A set A € E(F) is called a-recurrent provided :
(a) A is non-empty;

(b) Ponl > aon Aforall n € N and all non-empty B € £ satisfying B C A.

The a-recurrence of a set A means that a possibility to transit infinite times from any
point of A to any point of A is greater than a.

We give simple necessary and sufficient criteria for a-recurrence by the transitive

closure PQG.

Proposition 3.1. Let a € (0,1] and let non-empty A € E(FE). Then the following
statements are equivalent :

(i) A is a-recurrent; .
(ii) PGlg > a Aly for non-empty B € E(F) satisfying B C A;r
(ili) PGlyy 2 aAly fory € A

We gives, by the fuzzy relation §, a representation of the union of all a-recurrent sets.

Theorem 3.1. It holds that

U A= {:L € E |sup {*(z,2) > a} for a € (0,1].
n>1

A€E(E) : a—recurrent sets

4. The contractive case

We consider the contractive case in [5] and we give the maximum a-recurrent set for
the dynamic fuzzy system X. ‘
Let F. be a compact subset of £. We deal with a dynamic fuzzy system restricted
on the compact space E. according to [5]. ‘Let C(E.) be the set of all closed subsets of
E, and let p be the Hausdorff metric on C(E,). Let F°(E.) be the set of all fuzzy sets
5 on E. which are upper semi-continuous and satisfy sup, g 3(z) = 1. Then we note
FOE.) C F(E.). Let p, € F°(E,) be a fuzzy set. Define a sequence of fuzzy sets {p,}2,
by
Py1(y) = sgé) {P(2) N §(z,y)} y€E, forn>0. (4.1)
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The fuzzy set gy, in [5], is called an initial fuzzy state and the sequence {p,}°%, is called
a sequence of fuzzy states. The fuzzy relation § is also restricted on F. x E, and it
is assumed to be continuous on E, x E. and satisfy §(z,-) € F°(E). Define a map
ot C(E.) — C(E;) (a € ]0,1]) by

{yv | 4(z,y) > @ forsomex € D} fora >0, DeC(E.,), D+#09,
To(D):=1¢ {y | gz,y) >0 for somexz € D} fora=0, DeC(E,), D #0,
E. for0<a<1, D=0

In the sequel we assume the fol'lowing contraction property for the fuzzy relation ¢ (see
[5, Section 2]) : There exists a real number 4 € (0, 1) satisfying

p(Ta(A), 7a(B)) < B p(A,B) forall A,B € C(E.) and all a € [0,1].

Lemma 4.1 ([5, Theorem 1]).
(1) There exists a unique fuzzy state p € F°(E,) satisfying

ply) = max{p(e) A glz,y)}  y € Ee. (4.2)

(i1) The sequence {p, }>>, converges to a unique solution p € F°(E.) of (4.2) indepen-
dently of the initial fuzzy state p,. Namely,

Jim 5, = p,

where the convergence means sup,(o1) PPy asPa) — 0 (R — o) provided p,, ,, ,
are a-cuts (a € [0,1]) for the fuzzy states p,, p respectively.

Proposition 4.1. The a-cut of the solution p of (4.2) is

Pa :cl{erc | sup ¢*(z, ) Za} for o € (0, 1].

n>1

Finally we prove that the closure of the union of all a-recurrent sets equals to a-cuts of
the limit fuzzy state p. Now we compare (1.1) and (4.1). Using the inverse fuzzy relation
g ([3, Section 3.2]):

: q(z,y) == qly, ) 2,y € Ee,
we find that (4.1) follows

Prpr(z) = sup {4(z,y) A p(y)} =€ E. forn >0.

Therefore we can apply the results in Sections 1 - 3 to a dynamic fuzzy system defined
by the inverse fuzzy relation ¢.

Theorem 4.1.

Py, =cl {x € E, | sup {*(z,2) > a} =l ( U A) for o € (0,1].
n>1 » A€

E(FE): o—recwrrent sets

Further it is the maximum «a-recurrent set for X .
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5. The monotone case

In general, there does not always exist the maximum a-recurrent set for the dynamic
fuzzy system X, however we can consider the existence of the maximal a-recurrent sets.
In this section we deal with a case when the transition fuzzy relation ¢ has a certain
monotone property (see Section 6 for numerical examples). Then we prove the existence
of at most countable arcwise connected maximal a-recurrent sets.

In this section we use the notations in Sections 1 — 3. Further we introduce the
following notations of a-cuts ([5, Section 2]) :

1a(@) = {y € B | iz,y) 2 a} for v € E and a € (0, 1]
4 (A) = Gul2) for A€ E(E) and o € (0,1];
z€A
Bo(A) :=c(J ¢,(A) for Aec E(E).
a>0

For a € (0,1] and z € E we define a sequence { ¢ (2)}m=1.2,
1) = 4@ and T = () frm=1,2---.

We also need some elementary notations in the finite dimensional Euclidean space E:
x + y denotes the sum of z,y € E and 2 denotes the product of a real number v and
z€E. Weput A+ B:={a+y|2z€ A, y€ B} for A,B € E(E). Then we define a half
line on E by

l(z,y) := {7(y — 2) | real numbers v > 0} for z,y € E.

Definition. We call a transition fuzzy relation ¢ unimodal provided that ¢,(z) are
bounded closed convex subsets of E for all o € (0,1] and all z € E.

Definition. We call a unimodal transition fuzzy relation ¢ monotone provided that

0,(y) C q,(z) + {(z,y) forall « € (0,1] and all 2,y € E.

From now on we deal with only unimodal fuzzy relations g, which is monotone and
continuous on £ x E. The monotonicity is a natural extension of one-dimensional models
with the linear structure in [12] and means that the fuzzy relations ¢ keeps the partial
order of fuzzy numbers (see (C.iii’) in Section 6).

Theorem 5.1. Assume that § is monotone. Let o € (0,1]. Then

U A:{$€E|§(m,$)2a}.

A€E(E) : ao—recurrent sets

We need the following assumption on ¢, which is technical but not so strong. It means
that the function ¢ does not have flat arcas as a curved surface (Section 6).
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Assumption (A). For a € (0,1),
int {(z,y) € Ex E | j(z,y) > a} = {(v,y) € Ex E | §(2,y) > a},
where int denotes the interior of a set.

Since § is continuous, {z € E | §(z,2) > «} is represented by a disjoint sum of at
most countable arcwise connected closed sets ([4]), we represent it by

{ceE|j(z,z)2a}= |J F.n forae(0,1),
n€N(a)

where F,, ,, are arcwise connected closed subsets of £ and we put the index set N(«) (C N).

Theorem 5.2. We suppose Assumption (A). Let a € (0,1). Then maximal a-recurrent
sets for X are I, , (n € N(a)).

6. Numerical examples

Let a one-dimensional state space £ = R. We consider one-dimensional numerical
examples. In Section 5 we have assumed the following conditions (C.i) — (C.iv):

(C.i) ¢is continuous on E x F;
(C.ii) ¢ is unimodal;
(C.ii1) ¢ is monotone;
(Civ) §

When E = R, F°(R) means all fuzzy numbers on R. From (C.ii), §,(z) are bounded
closed intervals of R (a € (0,1],2 € R). So we write ¢,(z) = [min ¢,(z), max ¢,(z)],
where min A (max A) denotes the minimum (maximum resp.) point of a interval A C R.
Then (C.iii) is equivalent to the following (C.iii") :

satisfies Assumption (A).

(C.iit") min §,(-) and max §,(-) are non-decreasing functions on R for all o € (0, 1].
Next we consider the following partial order < on FY(R) (Nanda [6]) : For 3,7 € F°(R),
5 <7 means that min3, < min 'f;a and max 3, < max 7, for all a € (0,1].
Then we can easily find that (C.iii) is equivalent to the following (C.iii") :
(C.iii") If &, 7 € FO(R) satisfy 5 < #, then Q(5) < Q(#), |
where Q : F(R) — .7:0(_R), see (4.1), is defined by
Q3ly) = max{3(x) A jla,y)}, 'y R for s € FU(R).
(C.iii”) means that @ preserves the monotonicity on F(R) with respect to the order <.

Finally (C.iv) means that the a-slice {¢ € R | {(z,z) = o} (a € (0,1)) are drawn by
not areas but curved lines. We give an example of monotone fuzzy relations, which is not
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contractive and does not have the linear structure in [12]. Then we calculate its maximal
a-recurrent sets.

Example 6.1 (monotone case). We give a fuzzy relation by
fz,y)=(1—-ly-2°h)Vv0, z,yeR.

Then ¢(z,y) satisfies the conditions (C.i) - (C.iv) (see Figure 6.1 for the fuzzy relation
g(z,y) and Figure 6.2 for the 2-slice).
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Fig. 6.2. The 2-level sets {(x,y) | §(z,y) = 2}.
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Then we have
gz, 2)=(1 -] =2°HhVv0, 2¢€R.

Therefore N(2) = {0, 1,2} and

{zeRldz,2)2 8} =R uF, 0,
~ [-1.10716, —0.837565] U [—0.269594, 0.269594] U [0.837565,1.10716].

By Theorem 5.2, the maximal %-recurrent sets are given by three intervals

Fy, ~[-1.10716,-0.837565],
Fiy = [~0.269594,0.269594]
Fs, ~[0.837565, 1.10716].
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