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Abstract. The aim of this paper is to present an approach to approximating solutions
in vector optimization problems with arbitrary ordering cones. This paper presents a
study of approximately efficient points of a given set with respect to a convex cone in
an ordered Banach space. Existence results for such approximate points are obtained.
Moreover, the domination property related to them is observed, and then it is proved
that each element of a given set is approximated by the sum of a point in a convex
cone inducing the ordering and a point in a finite set consisting of such approximate
points of the set.
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1. Introduction

In vector optimization field, theoretical existence results have been studied to conditions
which ensure the existence of minimal and$/or$ maximal points (i.e., efficient points) with
respect to the partial ordering induced by a convex cone in a topological vector space. Many
papers [1, 2, 3, 5, 6, 8, 9, 13, 16, 21] give us some interesting answers.

Furthermore, many researches related to $\epsilon$-optimal solutions has been made in various
areas of applied mathematics, optimization, and mathematical economics as well as vector
optimization. The concept of such solutions is considered as a perturbation by $\epsilon>0$ or a
satisfactory compromise with a given prescribed error $\epsilon>0$ . This optimal criterion is called
an $\epsilon$-optimal criterion. Recently, Loridan [11] extended the $\epsilon$-optimal criteria to multiple
criteria for multiobjective optimization problems in finite dimensional spaces. Thus, the
following questions come to us.

First, what are vector-version’s concepts with correspondence to the notions of an infi-
mum and a supremum in $R$ ? In general, we can define the infimum and supremum of a given
subset in an ordered set, but these notions do not harmonize with the notion of an efficient
point in a multiple criteria problem. Because their points of a bounded subset in a general
ordered set may be far from the set, while those of a bounded subset in $R$ is ncar the set.
Secondly, what is an approximate solution, or $\epsilon$-optimal solution, in a vector optimization
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problem ? In $R$, approximation solutions are made with satisfaction at conditions that they
are near the infimum or supremum of a given subset. Thirdly, is it possible that we construct
a sequence of approximate solutions such that it tends to a point with correspondence to an
infimal point or a supremum of a given set ? In $R$ , we can construct a sequence which tends
to an infimal point (or a supremum) of a given set.

The aim of this paper is to present an approach to approximation of solutions of vector
optimization problems in partially ordered Banach spaces. In particular, we introduce a
notion of an 6-approximately efficient solution of a given set. The concept of approximation
herein is different than that studied by Loridan[ll], and has the advantage that it excludes
certain pathological points. In addition, under certain conditions, given any prescribed error
$\epsilon>0$ , the set of efficient points (if it exists) as well as the set of infimal points is approximated
by a finite set of lower $\epsilon$-approximately efficient points.

This paper is organized as follows. In Section 2, we give the preliminary terminology
and define minimal points, infimal points, and approximately efficient solutions of a set in an
ordered Banach space, and prove existence results for such solutions. In Section 3, we show
that under certain conditions, the set of strict infimal points of a given set is approximated by
a finite set of approximately efficient solutions. In Section 4, we consider some connections
between efficient points and separation.

2. Efficient Points and Approximately Efficient Points

The definition of approximate solutions is meaningful in any ordered topological vector space
$X$ where the vector ordering $\leq c$ is defined by a convex cone $C$ . For ease of presentation, we
shall assume throughout the paper that $X$ is a Banach space.

Let $X$ be an ordered real Banach space, where the norm is denoted by $\Vert\cdot\Vert$ , with the
vector ordering $\leq c$ induced by a convex cone $C$ , that is, for $x,$ $y\in X,$ $x\leq cy$ if $y-x\in C$ .
For ease of presentation in this section, the convex cone $C$ is assumed to be pointed, i.e.,
$C\cap(-C)=\{0\}$ , and then the ordering is antisymmetric and $C\ni O$ . Moreover, $C$ is assumed
to be acute, that is, cl $C\cap(-c1C)=\{0\}$ , and hence $C$ is pointed. Hence, clC induces another
antisymmetric vector ordering $\leq c1c$ stronger than $\leq c$ in $X$ . With respect to each of the
orderings $\leq c$ and $\leq c1c$ ’ we define minimal points and infimal points of a subset $A$ of $X$ .

An element $x_{0}$ of a subset $A$ of $X$ is said to be a C-minimal point of $A$ (or an efficient
point of $A$ with respect to $C$ ) if $\{x\in A|x\leq cx_{0}, x\neq x_{0}\}=\emptyset$, which is equivalent to
$A\cap(x_{0}-C)=\{x_{0}\}$ . Also, we say that an element $x_{0}$ of the closure of a subset $A$ of $X$

is a C-infimal point (resp., strictly C-infimal point) of $A$ if $\{x\in c1A|x\leq c^{x_{0},x}\neq x_{0}\}=\emptyset$

$($ resp., $\{x\in$ cl$A|x\leq c1c^{x_{0},x}\neq x_{0}\}=\emptyset)$ , which is equivalent to clA $\cap(x_{0}-C)=\{x_{0}\}$

(resp., clA $\cap(x_{0}$ –clC) $=\{x_{0}\}$ ). That is, a C-infimal point and strictly C-infimal point
of $A$ are an efficient point of clA with respect to $C$ and that of clA with respect to clC,
respectively. It is remarked that infimal points of $A$ are near $A$ . We denote the set of all
C-minimal (resp., C-infimal, strictly C-infimal) points of $A$ by $MinA$ $($ resp., $InfA,$ $Inf_{s}A)$ .
Then, it should be remarked that $Inf_{i;}A\subset InfA={\rm Min}(c1A)$ , and hence that $InfA=MinA$
whenever $A$ is closed.

Let $X^{*}$ denote the topological dual space of $X$ . We denote the nonnegative polar
cone and the positive polar cone by $C^{*}$ $:=\{x^{*}\in X^{*}|\{x^{*}, x\rangle\geq 0,\forall x\in C\}$ and $C^{*+};=$

$\{x^{*}\in X^{*}|\langle x^{*}, x\rangle>0,\forall x\in C\backslash \{0\}\}$ , respectively.
Throughout the paper, the axiom of choice is assumed without being mentioned in each

instance, and also the ball centered at $x$ with radius $r$ is denoted by $B_{r}(x)$ . $Morc()r^{r}er$ , the
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symbol int $C$ denotes the topological interior of $C$ . Also, the symbol $A\backslash B$ is the set of all
$x$ in $A$ which are not in $B$ .

Now, we introduce a concept of approximately efficient solutions.
Definition 2.1. Let $A$ be a nonempty subset of $X$ and $\epsilon>0$ . A point $x\in X$ is

said to be a lower 6-approximately efficient point of $A$ with respect to $C$ if $x\in A$ and
$(x-C)\cap(A\backslash B_{6}(x))=\emptyset$ , as illustrated in Figure 2.1. We denote the set of all lower

$\epsilon$-approximately efficient points of $A$ with respect to $C$ by $prox\min_{C}(A|\epsilon)$ .

Figure 2.1: Illustration of a lower $\epsilon$-approximately efficient point

For a sufficiently large $\epsilon$ , the lower $\epsilon$-approximately efficient points are near infimal
points of a given set, and we can choose a sequence of lower $\epsilon$-approximately efficient points
tending to an infimal point of the set. This fact is demonstrated in the following propositions.

Proposition 2.1. Let $A$ be a nonempty subset of $X$ and $\epsilon_{1},\epsilon_{2}>0$ . If $\epsilon_{1}<\epsilon_{22}$ then

$prox\min_{C}(A|\epsilon_{1})\subset prox\min_{C}(A|\epsilon_{2})$ .

Proposition 2.2. Let $A$ be a nonempty subset of $X_{f}$ then

$prox\min_{C}(A|\epsilon)\supset MinA,$ $\forall\epsilon>0$ , (2.1)

$\bigcap_{\epsilon>0}prox\min_{C}(A|\epsilon)=MinA$ , (2.2)

$\cap prox\min_{C}$ $(c1A |\epsilon)=InfA$ . (2.3)
$\mathcal{E}>0$
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Since the sets $MinA$ and $InfA$ are possibly empty, we observe the behavior of sets of
lower $\epsilon$-approximately efficient points. In the remainder, the set $A\cap(x-C)$ is called the
C-section of $A$ at $x$ .

Definition 2.2. Let $A$ be a nonempty subset of $X$ . We say that $A$ has a compact
clC-section of clA, if

$tbd_{C}A:=$ { $x\in X|$ cl$A\cap(x$ –clC) is nonempty and compact} $\neq\emptyset$ .

Lemma 2.1. Let $A$ be a nonempty subset of $X$ and $x_{0}\in Inf_{s}$A. If there are $r>0$
and $yo\in tbd_{C}A$ such $tha$ オ

$A\cap B_{r}(x_{0})\subset.y_{0}$ –clC, (2.4)

オんen there exists $x\in A\cap B_{r}(x_{0})$ such that $A\cap(x-C)\subset B_{r}(x_{0})$ .

Proof. Suppose that for any $x\in A\cap B_{r}(x_{0}),$ $A\cap(x-C)\backslash B_{r}(x_{0})\neq\emptyset$ . Since $x_{0}\in Inf_{s}A$

(and hence $x_{0}\in$ cl $A$), $A\cap B_{s}(x_{0})\neq\emptyset$ for all $s>0$ . By the axiom of choice, choose a vector
$x(s)\in A\cap B_{s}(x_{0})$ for each $s\in(0, r]$ . Then, the net $\{x(s)\}$ converges to $x_{0}$ . By the axiom
of choice again, choose a vector $z(s)\in A\cap(x(s)-C)\backslash B_{r}(x_{0})$ for each $x(s)$ . Thus, we get
the net $\{z(s)\}$ . Since $A\cap B_{r}(x_{0})\subset y_{0}$ –clC, we have

$\bigcup_{0<s\leq r}$
A $\cap$ (x $($棚 唄

$\ovalbox{\tt\small REJECT} - c1C)$
,

and the latter set is compact. Then there is a subnet $\{z(s(k))\}$ which converges to some
vector $z_{0}\in c1A\cap$ $(y_{0} - c1C)$ . Since $x(s(k))-z(s(k))\in C$ and $z(s(k))\not\in B_{r}(x_{0})$ for each $k$ ,
we have $x_{0}-z_{0}\in$ cl $C$ and $x_{0}\neq z_{0}$ . This is a contradiction to $x_{0}\in Inf_{s}A$ . This completes
the proof. 1

Theorem 2.1. Let $A$ be a nonempty subset of $X$ and $x_{0}\in Inf_{s}$ A. Iアオゐere are $r>0$
and $y0\in tbd_{C}$ A sa擁 sfying condition (24) then for each $\epsilon_{f}0<6\leq r,$ there exists a lower
$(2\epsilon)$ -approximateiy efficienオ point of $A$ (approximating $x_{0}$).

Proof. By the assumption, we have $A\cap B_{6}(x_{0})\subset y_{0}$ –clC for each 6, $0<\epsilon\leq r$ .
By Lemma 2.1, there exists $x(\epsilon)\in A\cap B_{6}(x_{0})$ such that $A\cap(x(\epsilon)- clC)\subset B_{6}(x_{0})$ . Since
$B_{\mathcal{E}}(x_{0})\subset B_{2\epsilon}(x(\epsilon))$, we have $(x(\epsilon)- clC)\cap(A\backslash B_{2\epsilon}(x(\epsilon)))=\emptyset$, which shows that $x(\epsilon)$ is a
lower $(2\epsilon)$-approximately efficient point of $A$ . Moreover, the net $\{x(\epsilon)\}$ converges to $x_{0}$ (and
so we say that $x(\epsilon)$ approximates $x_{0}$). I

Proposition 2.2 and Theorem 2.1 show that given any prescribed accuracy $\epsilon>0$ , there is
a corresponding subset $prox\min_{c}(A|\epsilon)$ of $A$ which approximates the set $(Inf_{s}A)\cup(MinA)$ .
It means that we can construct a sequence of lower $\epsilon$-approximately efficient points tending
to a given infimal point of the set.

Remark 2.1. In Theorem 2.1, the set $A$ is assumed neither to be C-bounded in the
sense of downward-directed[19] (that is, there exists a point $a\in X$ such that $A\subset a+C$ ) nor
to be Luc’s $C$-bounded[14] (that is, there is some $\epsilon>0$ such that $A\subset B_{6}(O)+C$ ) includes an
example which satisfies the assumption of Theorem 2.1 in spite of satisfying neither notions
of C-bounded. Therefore, Theorem 2.1 can be applied to a large class of sets.
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In Corollary 2.1 we give sufficient conditions for Eq.(2.4); and hence, for the existence
of lower $\epsilon$-approximately efficient points. Condition (i) of the corollary is the condition given
in Loridan [11].

Definition 2.3. A subset $A$ of $X$ is said to be strongly C-compact if the set $(x-$
$c1C)\cap A$ is empty or compact for each $x\in X$ (not $A$).

Corollary 2.1. Let $A$ be a nonempty subset of $X$ and $x_{0}\in Inf_{s}$A. If either

(i) clA is C-compact and $(x_{0}+intC)\cap A\neq\emptyset$ , or

(ii) clA is strongly C-compact and int $C\neq\emptyset$ ,

オんen for each $\epsilon>0$ , there exisオ$s$ a lower $\epsilon$ -approximately efficient poinオ of $A$ (approximating
$x_{0})$ .

Proof. (i) Since clA is C-compact, $A\subset tbd_{C}A$ . Since $(x_{0}+$ int $C)\cap A\neq\emptyset$ , there
exists $y_{0}\in A$ such that $x_{0}\in y_{0}$ –int $C$ , and hence there is $r>0$ such that $B_{r}(x_{0})\subset y_{0}-C$ .
This implies that $y_{0}\in$ tbd$c^{A}$ and $r>0$ satisfy the condition (2.4). By Theorem 2.1 and
Proposition 2.1, we have the conclusion.

(ii) Since int $C\neq\emptyset$ , let $z\in$ int $C$ and $y_{0}:=x_{0}+z$ . Then $x_{0}\in y_{0}-$ int$C$ . Since $x_{0}\in c1A$

and clA is strongly C-compact, we have $y_{0}\in$ tbd$cA$ . In the same way of the proof of (i),
we have the conclusion. I

Remark 2.2. Clearly, any strongly C-compact set is also a C-compact set. However,
the converse is not always true. Moreover, there is no connection between conditions (i) and
(ii) of the above corollary.

Corollary 2.2. Let $\dim X<\infty_{f}$ int $C\neq\emptyset_{f}$ and $A$ be a nonempty subset of X. If
there exisオ$s\lambda\in C^{*+}suc$ん $tha$オ

$\inf_{\in}\langle\lambda,$
$a\rangle>-\infty$ ,

オんen for each $\epsilon>0,$ $prox\min_{C}(A|\epsilon)\neq\emptyset$ .

Proof. Let us define the following closed half-space

$H^{(\lambda,c)}:=\{x\in X|\langle\lambda, x\rangle\geq c\}$ ,

where $c$ $:= \inf_{a\in A}\langle\lambda,$ $a\rangle$ . For each $x\in X$ , $(x-clC)\cap H^{(\lambda,c)}$ is either empty or a closed bounded
set, and hence a compact set. Then, the half-space is strongly C-compact and cl $A\subset H^{(\lambda,c)}$ .
Hence, clA is also strongly C-compact. By Corollary 2.1, we have the conclusion. I
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3. Domination Property

In this section, we observe a domination property for lower $\epsilon$-approximately efficient points.
We say that a set $A$ is dominated by a set $B$ with respect to an ordering cone $C$ if $A\subset B+C$ .
Also, we say that the domination property[13, 14] holds for $A$ if $A\subset MinA+C$ .

Lemma 3.1. For any $\epsilon>0$ and $A\subset X,$ $A+c1C\subset(A+B_{\mathcal{E}}(O))+C$ .

Theorem 3.1. We assume $t$ん at $A\subset X$ satisfies the following domination property:
$c1A\subset Inf_{s}A+c1C$ . (3.1)

If オん $ere$ are $r>0$ and $yo\in tbd_{C}A$ such that
$A\cap(Inf_{s}A+B_{r}(0))\subset y_{0}$ –clC, (3.2)

オん en for each $\epsilon,$ $0<\epsilon\leq r,$ $t$ん$eree$厩$sts$ a subset $P(\epsilon)$ of $prox\min_{C}(A|\epsilon)suc$ん that $A$ is
dominated by $P(\epsilon)+B_{\epsilon}(O)$ , that $is_{f}$

$A\subset(P(\epsilon)+B_{\mathcal{E}}(O))+C$ . (3.3)

Mooeover, if $Inf_{s}A$ is compact, the set $P(\epsilon)$ is a finite set.

Proof. By the assumption and Lemma 3.1, we have
$A\subset$ cl$A\subset Inf_{s}A+$ cl $C\subset Inf_{s}A+B_{\epsilon/2}(0)+C$ . (3.4)

By Theorem 2.1, there exists a subset $P(\epsilon)$ of $prox\acute{\min}_{C}(A|\epsilon/2)$ such that $Inf_{s}A\subset$

$P(\epsilon)+B_{\epsilon/2}(0)$ . Hence, by Proposition 2.1, we get $P( \epsilon)\subset prox\min_{C}(A|6)$ , and thus
Eq.(3.3). Furthermore, if $Inf_{s}A$ is compact, there is a finite subset $A(\epsilon)$ of $Inf_{s}A$ such that

$Inf_{s}A\subset A(\epsilon)+B_{\mathcal{E}/4}(0)$ .

By replacing $\epsilon/2$ in (3.4) by $\epsilon/4$ , we have
$A\subset A(\epsilon)+B\epsilon/2(0)+C$ .

In the same way, there exists a finite subset $P(\epsilon)$ of $prox\min_{C}(A|\epsilon/2)$ such that $A(\epsilon)\subset$

$P(\epsilon)+B_{\mathcal{E}/2}(0)$ . This completes the proof. I
Corollary 3.1. Let $A$ be a subset of X. If clA is $s$ オrongly C-compact and int $C\neq\emptyset$ ,

オんen ア$or$ each $\epsilon>0$ , there exists a subset $P(\epsilon)0$ア $prox\min_{C}(A|\epsilon)$ satisfying $Eq.(3.3)$ .
$Mooeover_{f}$ if $Inf_{s}A$ is compact, オん $e$ set $P(\epsilon)$ is a finite set.

Proof. By Luc[14], it follows that Eq.(3.1) holds. By Corollary 2.1 and Theorem 3.1,
we have the conclusion. 1

Corollary 3.2. Let $\dim X<\infty$ , int $C\neq\emptyset$ , and $A$ a nonempty subset of X. If there
exists $\lambda\in C^{*+}suc$ん that

$\inf_{\in}\langle\lambda,$
$a\rangle>-\infty$ ,

then for $eac$ん $\epsilon>0$ , there exists a subset $P(\epsilon)$ of $prox\min_{C}(A|\epsilon)$ sa翻 sfying $Eq.(3.3)$ .
Moreover, if $Inf_{s}A$ is compact, the set $P(\epsilon)$ is a finite set.

Proof. In the proof of Corollary 2.2, we verify that clA is a strongly C-compact set
in $X$ , and hence we have the conclusion by the above corollary. 1

Theorem 3.1 and its corollaries show that under some conditions, each element of a
given subset $A$ of $X$ can be approximated by the sum of a point of $C$ and a point in a finite
set consisting of lower $\epsilon$-approximately efficient points of $A$ .
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4. Efficient Points and Separation

Given a convex set $A\subset R^{n}$ and an efficient point (C-minimal point) $x_{0}$ of $A$ , there exists
a hyperplane that separates $A$ and $x_{0}-C$ , and hence there exists a nonzero vector $p$ such
that $\langle p,$ $x_{0}\rangle\leq\langle p,$ $y\rangle$ for all $y\in A$ . In non-convex case, we can consider a similar situation
([4, 18]); given a set $A\subset R^{n}$ and an efficient point (C-minimal point) $x_{0}$ of $A$ , there exists
a nonzero vector $q\in$ int$C$ such that $z_{x0,q}(x_{0})\leq z_{x0,q}(y)$ for all $y\in A$ , where

$z_{a,q}(y)$ $:= \inf\{t\in R|y\in a- clC+tq\}$ (4.1)

with parameters $a\in X$ and $q\in$ int $C$ . Thus lower 6-approximately efficient points of $A$ can
be also calculated via scalarization.

5. Conclusions

We have proposed an approximate optimal criterion for approximate multiple criteria de-
cision makings, and introduced a harmonious concept (an infimal point), corresponding to
an infimum, with the notion of an efficient point. Then, we have defined an approximate
solution (a lower $\epsilon$-approximately efficient point), being near infimal points of a given set.

The approach is based on the concept of approximate solutions of efficient points, but
it is different from that of Loridan[ll]. The approach taken has the following advantages:

(i) the approximate solutions exclude certain pathological points;

(ii) the approximate solutions are near infimal points of a given set;

(iii) for each infimal point, there is a sequence of approximate solutions converging to the
point;

(iv) under certain conditions, the set of efficient points (if it exists) as well as the set of
infimal points is approximated by a finite set of approximate solutions corresponding
to a given prescribed error $\epsilon>0$ .
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