0Ooooooooon
900 0 19950 28-41 28

Bes = T F AR SN +z BH a5 Bh
7 P8 Emden-rowler TAFEINR D 15 P38

R KERAF  FA4hE A~ (Hiroyuki USAMI)

1. Introduction and Results

This is a joint work with Professor Manabu Naito (Hiroshima

University).

Let us consider the following binary elliptic system of the

Emden-Fowler type in an exterior domain Q c RN:
0'1"]. _
Auy + pl(r)|u2| u, = 0,
(S)
co-1 _
Au, + pz(r)lull u; =0,

where we always assume the next conditions:

(Al) 0,5 0o > 0;

(A2)~pi € C(Q;[0,»)), and supp p; is unbounded, i = 1, 2.
System (S) is called oscillatory if, for any R > 0, it has no

solutionsv(ul,uz) satisfying U, > 0 in @ n {x ; |z| > R}.

For the single elliptic equation
o-1
Au + p(zx)|ul u =0, g > 0, (0)

useful oscillation criteria have been obtained by many authors;
see e. g. [3, 4, 10, 11]. Of course, (0) is called oscillatory

if it has no positive solutions which are of constant sign near
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o, The next oscillation criteria are well-known:

Theorem 0. Let 0 # 1 and p be a continuous function
satisfying 0 < p(r) = minlr|=r p(z) for large |rx|.

(i) Let N = 2. Then (0) is oscillatory if

00
f r(log r)G*ﬁ(r)dr = oo, o. = min{l,0}.

(i) Let N = 3. Then (0) is oscillatory if

x

fmrN_l-G*(N_z)ﬁ(r)dr = oo, ¢ = max{1l,0}.
By considering the case where p(r) has radial symmetry, we find
that this theorem characterizes the oscillation situation of (0)
in some sense. However, turning our attention to system (S), we
realize that there exist few results which give effective
criteria for oscillation of system (S). Motivated by this fact
we make an attempt to give a contribution to this problem.
Other related results of asymptotic theory for elliptic systems
like (S) ére found in [1, 2, 5, 6, 7, 12, 13].

First we introduce some notation. Let ﬁi, i =1, 2, be

continuous functions such that

0 =< ﬁi(r) = min p,(z) for |z| 1arge.
lzl=r

Define the functions Pi(r), i =1, 2, by

Q0
P, (r) = f sﬁi(s)ds if N = 2; and
T

© -0.(N-2)-3_
P, (1) Js ! p;(s)ds if N = 3.

7

1l
8

It will be seen below that system (S) is oscillatory if Pi
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for some i. Hence assuming the existence of Pi’ i =1, 2, loses
no generality.

Our oscillation criteria for (S) are as follows:

Theorem 1. Let 01, 04 > 1. Suppose that there are

constants li >0 (i =1, 2) and ¢ > 0 satisfying

Al + 12 =1, Xiai - lj - ¢>0 for i, je{1,2}, i # j,

and

[ e ntie, it

T N AogOo=R{—€pT Ajo1-Rg-€
U sV 3Pl(s)ds) U s 3P2(s)ds) dr = .

Then, (S) is oscillatory.

Theorem 2. (i) Let 0,0, < 1 and N = 2. Suppose that for

172

some i, j € {1,2}, i # j,

o.(o.+1)

” g.
f r(log 1) [31-(7‘)[Pj(r)] Ydr = oo,

Then, (S) is oscillatory.

(i) Let 0,0, < 1 and N = 3. Suppose that for some i, j €

172

{1,2}y, i # ],

00 , g.
[roree 28 5 e ) Hdr = .

Then, (S) is oscillatory.

Theorem 3. Let 0,05 > 1. Suppose that for some i, j €

{1,2}, i # 7,
+1
o CPT) T oA 7"
f rN 3Pi(r)dr = o0 and lim inf 51777 [I sN 3Pi(s)ds] > 0.

70 ]

Then (S) is oscillatbry.
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Theorem 4. Let 0102 = 1. Suppose that

f AN-3 min{P, (r),Py(r)}dr = w.

Suppose moreover that
T 1 1/(o+1)
1lim sup (f s min{Pl(r),Pz(r)}dr - 0 log log r) > —o0
700
if N=2, or

r .
lim sup (f sN_3min{P1(r),p2(T)}dr _ (N_Z)Ul/(a+l)

log r) > -0
T

if N= 3, where o = max{al,oz}. Then (S) is oscillatory.

This report proceeds as follows. In § 2 we give a
comparison principle to the effect that the existence of a
positive solution of (S) guarantees the existence of a positive
solution of an ordinary differential system (S) in § 2
associated to (S). (Here and in the sequel, a vector function
is defined to be positive if both components are positive.)
Hence, the problem of finding oscillation criteria for (S)
reduces to the problem of finding oscillation criteria for
one-dimensional problem (S). This problem is fully discussed in
§ 3. The author believes that the results in this section is of
independent interest. The proofs of Theorems 1-4 are actually
omitted in this report, because they can be easily carried out

by combining Proposition 2 with Propositions 38-6 in § 3.

2. Reduction to One—Dimensional Problems

We begin with the following proposition.
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Proposition 1. Supbose that (S) has a positive solution
(ul,uz) for |z| = R, with R sufficiently large. Then, there is

a positive solution (wl,wz) of the ordinary differential system

N -1

N -1~ (8]

(r -1wi)' + 7

N-1 .., N-1-~ -1
(r" Twy)" o+ T 1)2(T)|wl|02 w, = 0,

for r = R, such that

0 < wi(r) < min wu.(zx), r =R, i=1, 2.
lxl=r

Proposition 1 yields the following simple comparison

principle on which our results are heavily based:

Proposition 2. FElliptic system (S) is oscillatory if the

one-dimensional system (S) is oscillatory.

- The proof of Proposition 1 is similar to that of [8,
Theorem 2.1]. We give only the sketch of the proof. The

following lemma is needed to prove Proposition 1.

Lemma 1. Let b > R, and (ul,uz) a positive solution of (S)
defined on R < |r| = b. Then, there is a positive solution

(w),w,) of system (§) on R < r < b such that

wi(R) = ﬁi(R), wi(b) = ﬂi(b), i =1, 2; and,
0<wi(r)5ﬁi(r). R=<r=<%5b, i=1, 2,

=Tui(-r); T ZR, [ ]_, 2.

where u.(r) = min
z( ) Izl

Proof of Proposition 1. Let {bm} be a sequence such that
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R < bl < b2 < eee < bm < +«++, and llmm_Wo bm = o0,

By Lemma 1 we obtain a sequence {(w such that

o0
1m’w2m)}m=l

N-1 , , 1
(r wlm) + TN pl(r)wgl = 0,
R=<r=<2b_;
m
N—'l ' ' N_l’“ 02 _
(r me) + 7 pz(r)wlm =0,

wim(R) = ui(R), wim(bm) = ui(bm)’ i =1, 2; and,

0 < wim(r) =< ui(r), R=r1r =< bm’ i =1, 2.

We can choose a subsequence {(wlu’pr)} of {(wlm’me)} such that
{(wlu,wzﬂ)} converges to a positive function {(wl,wz)} uniformly
on each compact subinterval of [R,») as py » . This (wl,wz)

gives a desired solution of (§). For the detailed argument we

refer the reader to [8].

3. Oscillation Theorems for One-Dimensional Problems

Instead of dealing with system (S) directly, we shall

transform it into the simple system of the form
" 0'1"1 -
yl -+ al(t)lyzl yz O!
(S
|02-l

1
(=]

vy o+ a2(t)|yl ¥y =

When N = 2, consider the change of variables t = log r, zi(t) =
wi(et), i =1, 2. We then find that (§) is equivalent to the

system

. 2t~ ¢ o-1_ |
z; + e“'p; (e )|22| z, = 0,
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- 2t~ t ogg9-1
z, + e" pyle )|zll 277z, = 0,
where - = d/dt. When N = 3, we make the change of valuables ( =
rN_z, z, () = twi(tl/(N—z)), i =1, 2. Then (8) reduces to the
system
- -2 -0;-N/(N-2)~ 1/(N-2 o1-1
z, * (N-2) t -1 /1 )pl(t /1 ))Izzl 1 zy = 0,
- -2 . -09-N/(N-2)~ 1/(N-2 Go-1 ‘
2, v (N-2)72 702 /( )pz(t/( M 1zy1%27 2, = o,
where - = d/dt. Note that the transformations used here keep

the oscillatory property. For our purpose, it is sufficient to
consider system (SO).
Now, let us consider system (SO) under the following basic
assumptions:
(Bl) 0y, 0y > 0;
(Bz) a; € C([to,w);[o,w)), and supp a,; is unbounded, i = 1, 2.

Define the functions Ai(t)’ i =1, 2, by

Ai(t) Jtai(s)ds, t = to.

As seen below, if A.

; o for some i, then (SO) has no positive

solutions.

Proposition 3. Let gy, 0o > 1. Suppose that there are
constants li >0 (i =1, 2) and € > 0 satisfying

ll + 22 =1, liai - lj - &¢>0 for i, je{1,2}y, i #j,

and

% p A
[ta ot iyt
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t /.(20'2—111—8 t 1‘10’1-12—6
'(J Al(s)ds) (J AZ(S)ds) dt = o,

Then, (SO) is oscillatory.

Proposition 4. Let 0,045 < 1. Suppose that for some i, j €

(1, 2y, i # j,
00 oi(0.+1) Gi
f c T a0 e = =,

Then, (SO) is oscillatory.

Proposition 5. Let 0,0, > 1. Suppose that for some i, j €

172
{1, 2}, i # j,
oo A.(t) ot o+l
J Ai(t)dt = oo gnd lim inf 21777 [f Ai(s)ds] > 0.
{0 i
Then (SO) is oscillatory.
Proposition 6. Let 0,05 = 1. Suppose that
00 .
J min{Al(t),Az(t)}dt = o0 (1)
and
t
1im sup (f min{4, (s),A,(s)}ds - ot/ (1+0) 1 4e t) > oo, (2)
{0

where o = max{al,az}. Then, (SO) is oscillatory.

Proof of Proposition 3. Suppose to the contrary that (So)
has a solution (yl,yz) such that yl(t)yz(t) >0 for t = T. We
may assume that yl(t) > 0 and yz(t) > 0. Then by (SO) we have

yp(e) =0, t =T, k=1, 2, and
yi@) -y + [a )y ()] s =0, r =T, (3)
t

for i, j € {1,2}, i # j. 1In view of.yk(w) > 0, this implies
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that the functions Ak(t)’ k =1, 2, are well defined, and

' o,
yi(1) = A (DIy;(0)1 ", 1 =T, for i, j € (1,2}, i #j. (4)

Put w(t) = yl(t)yz(t), t = 7. Then w(t) > 0, ¢t =T, and

1

w (1) = A (D 1y, (D17 v A (0 1y,(01%2, =T (5)

Now, in the right hand side of (5), we apply the well-known
inequality

AvA
X + Xz = C(Xl,lz)xllXZQ

1 for Xl, X

220,

where C(4,,42) > 0 is a constant. We then obtain

' A |
w' (1) = C [A; ()] 1A, (2)172

11(01+1)—1—€[ 12(02+l)—1‘8

¥y (1)] 7, (D] w1, ¢ =T, (6)

where Cl > 0 is a constant. Since (4) shows that
Gl. t
¥ (1) = [y, f A(s)ds, t=T: i, je{l.2}, i# ],
T

substituting these inequalities into (6) and integrating the

resulting inequality, we have
-£ t
L@ ¢, [ 14,1 114,017
T .

)22(02+1)—1-£( )Al(al+1)—1—e

°(I;A1(r)dr I;Az(r)dr

where C2 = C2(T) > 0 is a constant. Letting t - o, we have a

ds, t =T,

contradiction. The proof is complete.

Proof of Proposition 4. Let (yl,yz) be a positive solution

of (SO) for t = T. We then obtain (3), and an integration
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implies that

(e}

0.
yi(t) > Citj ai(s)[yj(s)] Y'ds, t = T i, Jj e {1,2}y, i # j, (7)

t

where Ci > 0 is a constant. This yields yj(t) = Cthj(t)~

0.
[yi(t)] ], t = T. Substituting this inequality in (7), we have

yi(t) 00 ai(1+oj) oi[
— > fts a; ($)[A;(s)]

where C > 0 is a constant. Define w(t) by the right hand side

of the above. Then,

ci(1+0.) g.
- w'(t) = Ct J a; (1)14;(0)] "lw(e)19192, 4 =T,

from which, by an integration,

l-0,0 t o.(1l+o.) 0.
[w(T)] 192 AJ i J i
1-0,0, = C . s a;(s)lA;(s)] "ds, ¢t =T.

Letting t = «, we get a contradiction. Hence the proof is

complete.

In proving Proposition 3 we need the follwing lemma. The

proof of this lemma is found in [9].

Lemma 2. Let a < B be positive constants, and q € C[tl,w)

a positive function such that
lim inf tl+ﬁq(t) > 0.
{00 _

Then, there exist no positive functions w(t) which satisfy

w'(t) >0, ([w()1%" = q(t)[w(t)]ﬁ for all large t.

Proof of Proposition 5. Let (yl,yz), t =T, be a positive

solution of (SO)' As seen before, we have (4). An integration
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gives

g

> t .
yi(t) > yi(T) + JTAi(S)[yj(S)] Lds, t = T.

We denote the right hand side of the above by wi(t):

t g.
w (¢) = y (1) + f Ay (] ds,  t=T.
T J

Then, it is easy to see that

(i) = s
w; > 0, Ai(t) = Aj(t)wi , t =T.

The change of variable 1 = f;Ai(s)ds transforms this inequality

into

4 (aw, /9;1 A1) o,
a— - > L w.J T = 0.
Th\dr

Observe that dwi/dr >0, T =2 0. Then, in view of Lemma 2, we

reach a contradiction. The proof is complete.

Proof of Proposition 6. For simplicity we put B(t) =
min{Al(t),Az(t)},rt z tg- We may suppose that ¢ = gy Since
(1) implies that fwtal(t)dt = o, we have fwtolal(t)dt = oo,

To prove the theorem, suppose to the contrary that there is

a positive solution (yl,yz), t =T, of (SO). We first show that

lim yz(t)/t = lim yé(t) = 0. (8)
00 {00

In fact, if this is not the case, the identity

t

y{(6) - (D) + [ () yy()170ds = 0, 1 =T,

T
o0 01 . . © 01

shows that [Ya,(t)[y9(£)1%1dt < », implying that [ ¢ la,(t)dt <

. This contradiction proves (8). Exactly as in the proof of

Proposition 5, we find that the function w defined by
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t
w(t) = y,(T) + JTB(S)[yl(S)]szs (s y,(1)), t=T, (9

satisfies

w' Gl' o
[(B(t)) = B(t)w, t =T. (10)

Notice that (8) and (9) implies that

1im w(t)/¢t 0. | (11)

{0

I

1]

The change of variable 7 f;B(s)ds transforms (10) into

g
Ei_—i[(g—lf) ] zwa, 7 = 0.

Now, introduce the auxiliary function v = defined by

Vc

v(t) = C exp(o—l/(a+l)r), T =20,

with C > 0 a constant. It is easily seen that, for any C >0, v

solves the half~linear equation

ol
A@)°] - =0

-1/(o+1)

Since v(0) C, and v'(0) = Co we can choose
sufficiently small C > 0 so that w(0) > »(0) and w'(0) > v'(0).
Then, by the well-known comparison principle, we have w(t) =

v(t), T = 0, namely,
t
w(t) = C exp(c_l/(0+l)f B(s)ds), t = T.
T

On the other hand, condition (2) assures the existence of a
constant cq > 0 and a sequence {tn} c [T,») such that tn t o as
n - o, and

1

t

t
n ,
exp(o—l/(0+l)f B(s)ds) = ¢y for n € N.
n T

From this, we have lim 1nfn+ww(tn)/tn > 0. . This contradicts
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(11), and hence the proof is complete.
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