Metrizability of spaces having certain k-networks

田中祥雄 (Yoshio Tanaka)

Department of Mathematics, Tokyo Gakugei University

As is well-known, each of the following properties implies that X is metrizable.

- (A) X is a paracompact developable space (R. H. Bing [2]).
- (B) X is a paracompact space having a σ -locally countable base (V. V. Fedorcuk [9]).
- (C) X has a σ -hereditarily closure-preserving base (D. Burke, R. Engelking and D. Lutzer [5]).
- (D) X is a paracompact M-space, and a σ -space (A. Okuyama [15]; the paracompactness can be omitted; see F. Siwiec and J. Nagata [16]).
 - (E) X is an M-space having a point-countable base (V. V. Filippov [10]).

In terms of these properties, we give some metrization theorems by means of certain k-networks, or generalizations of M-spaces, etc.

We assume that spaces are regular and T_1 .

Definitions. (1) A cover C of a space a k-network if, whenever $K \subset U$ with K compact and U open in X, then $K \subset U$ $C' \subset U$ for some finite $C' \subset C$. If the K is a single point, then such a cover is called network (or net). Recall that a space is an \mathcal{H} -space (resp. σ -space) if it has a σ -locally finite k-network (resp. network).

- (2) A space is countably bi-quasi-k [14] if, whenever $\{F_n: n \in N\}$ is a decreasing sequence with $x \in \overline{F_n}$, there exists a decreasing sequence $\{A_n: n \in N\}$ such that $x \in \overline{A_n \cap F_n}$ for each $n \in N$, and if $x_n \in A_n$ for each $n \in N$, then the sequence $\{x_n: n \in N\}$ has a cluster point in $\cap \{A_n: n \in N\}$. Recall that a space X is a q-space if each point has a sequence $\{V_n: n \in N\}$ of nbds such that if $x_n \in V_n$, the sequence $\{x_n: n \in N\}$ has a cluster point in X. Every q-space is a countably bi-quasi-k-space. Every countably bi-quasi-k-space is precisely the countably bi-quotient image of an M-space; see [14].
- (3) A space X is a monotonic w\(\Delta\)-space (simply, mw\(\Delta\)-space) [18] (resp. monotonic developable [7] (equivalently, space having a base of countable order in the sense of Arhangel'skii [1])), if there exists a sequence ((B_n)) of bases for X such that any decreasing sequence $\{B_n: n \in \mathbb{N}\}$ with $B_n \in (B_n)$ satisfies (*):
- (*) If $x \in \cap B_n$, and $x_n \in B_n$, then the sequence $\{x_n : n \in N\}$ has a cluster point in X (resp. the cluster point x).

If the sequence $\{B_n: n \in N\}$ with $B_n \in \mathcal{J}_n$ is not necessarily decreasing, then such a space is called a w Δ -space; developable space respectively.

Every w Δ -space or every (monotonic) p-space [7] is an mw Δ -space. Every mw Δ -space is a q-space, hence countably bi-quasi-k. Among θ -refinable (= submetacompact) spaces, mw Δ -spaces (resp. monotonic developable spaces) are w Δ -spaces (resp. developable spaces); see [18] (resp. [7]).

The lemma below holds by means of [13; Proposition 3.2], [17; Section 4], [4; Theorem 4.1], and [18], etc. Here, we note that, in a space having a σ -locally countable k-network, each point is a G_{δ} -set. So, every countably bi-quasi-k-space with a σ -locally countable k-network is countably bi-k by [14; Theorem 7.3].

- **Lemma.** (1) Suppose that X is a k-space; a normal space in which every closed countably compact set is compact; or each point of X is a G_{δ} -set. Then (i) and (ii) below hold.
- (i) X has a point-countable base if and only if X is a countably biquasi-k-space with a point-countable k-network.
- (ii) X is a nomotonically developable space with a point-countable base if and only if X is an mwΔ-space with a point-countable k-network (cf.[18]).
- (2) (i) A space has a σ -locally countable base if and only if it is a countably bi-quasi-k-space with a σ -locally countable k-network.
- (ii) A space is a nomotonically developable space with a σ -locally countable base if and only if it is an mw Δ -space with a σ -locally countable k-network.

Metrization Theorem The following are equivalent.

- (a) X is metrizable,
- (b) X is a paracompact M-space having a point-countable k-network,
- (c) X is an M-space, and a k-space having a point-countable k-network,
- (d) X is an M-space having a point-countable k-network, and having a σ -locally countable *network*.
 - (e) X is an M-space having a σ -locally countable k-network,
- (f) X is a paracompact, countably bi-quasi-k-space having a σ -locally countable k-network,
- (g) X is a countably bi-quasi-k-space having a point-countable k-network, and having a σ -closure preserving k-network; cf. [12].
 - (h) X is an mw Δ -space having a σ -closure preserving k-network; see [18].
- (i) X is a countably bi-quasi-k-space having a σ -hereditarily closure preserving k-network.

Remark. In the previous theorem, it is possible to replace "countably bi-quasi-k-space" by "countably bi-quasi-k-space, but the sequence $\{x_n: n \in N\}$ has a cluster point in X (instead of $\cap \{A_n: n \in N\}$) in the definition of countably bi-quasi-k-spaces".

We see that each condition in (b) \sim (h) of Metrization Theorem is essential by means of the following examples.

- **Examples.** (1) Not every countably compact (resp. countably compact, first countable) space having a point-countable k-network (resp. locally countable network) is a σ -space.
- (2) Not every Čech-complete (resp. metacompact developable) space having a σ -locally countable base is a σ -space [8] (resp. metrizable; cf. [11]).
- (3) Not every first countable, Lindelöf space having a σ -closure preserving base is developable [6].

But, the following holds by means of [3] and [18], etc.

Proposition (1) Every θ -refinable space X is developable if (a) or (b) below holds.

- (a) X is an mw Δ -space having a point-countable k-network, or having a σ -locally countable *network*.
- (b) X is a countably bi-quasi-k-space having a σ -locally countable k-network.
- (2) Every mwΔ-space which is the quotient compact image (resp. quotient s-image) of a metric space is developable (resp. monotonically developable); see [18].

We note that every $mw\Delta$ -space having a σ -locally finite network (resp. σ -locally countable k-network) is developable (resp. monotonically developable; cf. [18].

In view of the above results, we have the following questions.

- Questions. (1) Every w\Delta-space having a σ -locally countable k-network (resp. σ -locally countable network) is developable (resp. monotonically developable)?
- (2) Every wA-space which is the quotient countable-to-one image of a metric space is developable?

References

- [1] A. V. Arhangel'skii, Certain metrization theorems, Usp. Mat., Nauk, 18(1963), 139-145.
- [2] R. H. Bing, Metrization of topological spaces, Canad. J. Math., 3(1951), 175-186.
- [3] D. Burke, Refinements of locally countable collections, Topology Proceedings, 4(1979), 19-27.
- [4] _____, Paralindelöf spaces and closed mappings, ibid. 5(1980), 47-57.
- [5] D. Burke, R. Engelking and D. Lutzer, Hereditarily closure-preserving collections and metrization, Proc. Amer. Math. Soc., 51(1975), 483-488.
- [6] J. G. Ceder, Some generalizations of metric spaces, Pacific J. Math., 11(1961), 105-126.

- [7] J. Chaber, M. M. Coban and K. Nagami, On monotonic generalizations of Moore spaces, Čech complete spaces and p-spaces, Fund Math., 84(1974), 107-119.
- [8] S. W. Davis, A nondevelopable Cech-complete space with a point-countable base, Proc. Amer. Math. Soc., 78(1980), 139-142.
- [9] V. V. Fedorcuk, Ordered sets and the product of topological spaces, (Russian), Vestnik Mos., 21(1966), 66-71.
- [10] V. V. Filippov, On feathered paracompacta, Soviet Math. Dokl., 9(1968), 161-164.
- [11] W. G. Fleissner and G. M. Reed, Paralindelöf spaces and spaces with a σ -locally countable base, Topology Proceedings, 2(1977), 89-110.
- [12] Z. M. Gao, The closed images of metric spaces and Fréchet \mathcal{H} -spaces, Q & A in General Topology., 5(1987), 281-291.
- [13] G. Gruenhage, E. Michael and Y. Tanaka, Spaces determined by point-countable covers, Pacific J. Math., 113(1984), 303-332.
- [14] E. Michael, A quintuple quotient quest, Gen. Top. Appl., 2(1971), 91-138.
- [15] A. Okuyama, On metrizability of M-spaces, Proc. Japan Acad., 40(1964), 176-179.
- [16] F. Siwiec and J. Nagata, A note on nets and Metrization, Proc. Japan Acad., 44(1968), 623-627.
- [17] Y. Tanaka, Metrization II, in: K. Morita and J. Nagata, eds., Topics in General Topology (Elsevier, Amsterdom, 1989), 275-314.
- [18] Y. Tanaka and T. Murota, Monotonic generalization of wΔ-spaces, and developable spaces, to appear.