0oooo0O0oooo
9020 19950 103-116 103

Concurrent Programming in Linear Logic

Naoki Kobayashi Toshihiro Shimizu
koba@is.s.u-tokyo.ac.jp shimizu@is.s.u-tokyo.ac.jp

Akinori Yonezawa
yonezawa@Qis.s.u-tokyo.ac.jp
Department of Information Science
University of Tokyo
7-3-1 Hongo, Bunkyo-ku, Tokyo, 113 Japan

Abstract

HACL is a novel asynchronous-concurrent programming language developed
based on linear logic. It provides fruitful mechanisms for concurrent program-
ming including higher-order concurrency and an elegant ML-style type system.
Although HACL provides only a small set of primitive constructs, various con-
structs for communication and synchronization between processes are definable in
terms of primitive asynchronous message passing and higher-order processes. In
this paper, we demonstrate the power of HACL by showing several programming
examples. For readers who are not familiar with linear logic and concurrent linear
logic programming, we also give a brief introduction to the logical background
of HACL.

1 Introduction

We developed a novel typed, higher-order, concurrent programming language called
HACL based on a higher-order extension of ACL[3][2]. ACL is a variant of linear logic
programming, whose operational semantics is described in terms of bottom-up search
for a cut-free proof in linear logic. ACL naturally models concurrent computation
based on asynchronous message passing, while traditional concurrent logic program-
ming languages model stream-based communication. In the previous papers[3][2], we
have shown most of computational models for asynchronous concurrent computation,
including actor models, Linda, concurrent constraint programming, and asynchronous
counterpart of CCS and -calculus, can be naturally embedded in ACL. The power
of ACL can be further strengthened by replacing the underlying logic with higher-
order linear logic. The resulting framework, Higher-Order ACL[5] (in short, HACL),

allows higher-order concurrent programming, where processes can be parameterized

by other processes, communication interfaces, and functions. HACL is also equipped
with an elegant ML-style type system, hence the type inference system infers the
most general types for untyped programs, and ensures that any well—typed program
never causes type mismatch error at run-time.

The purpose of this paper is to demonstrate the power of HACL by showmg
several programming examples. Higher-order processes allow us to define a large
process by composing smaller subprocesses, by which improving the modularity and
code reuse of concurrent programs, and are also useful for making topologies between
multiple processes. Therefore, various constructs for concurrent programming, which
are introduced as primitives in an ad hoc manner in many concurrent programming
languages, can be defined using higher-order processes. HACL also allows object-
oriented style programming, as is shown in [4]. We believe that HACL can be used
not only as a specific concurrent programming language, but also as a common vehicle
to design novel, clean and powerful concurrent programming languages, to develop
program analysis techniques for concurrent programming languages, and to discuss
efficient implementation techniques.

Prototype interpreter of HACL and examples given in this paper are available via
anonymous ftp from camille.is.s.u-tokyo.ac.jp: pub/hacl.

2 Overview of Higher-Order ACL

This section informally overviews the syntax and operational semantics of higher-
order ACL. For the concrete definitions, please refer to [5][4]. For readers who are
not familiar with linear logic and concurrent linear logic programming, we attach a
brief introduction to both linear loglc and its connection with concurrent computation
in Appendix.

As in the first-order ACL[3][2], computatlon in Higher-order ACL (in short, HACL)
is described in terms of bottom-up proof search in Girard’s (higher-order) linear
logic[1]. Each formula of (a fragment of) higher-order linear logic is viewed as a
process, while each sequent, a multiset of formulas, is regarded as a certain state of
the entire processes. A message is represented by an atomic formula, whose predi-
cate is called a message predicate. The whole syntax of HACL process expressions is
summarized in Figure 2. The first column shows textual notations for process expres-
sions. The second column shows corresponding formulas of linear logic. In the figure,
z is ranged over variables, P over process expressions, and R over process expres-
sions of the form z(zy,...,2,)=>P. A behavior of each process is naturally derived
from inference rules of linear logic. For example, from the inference shown in the
Figure 1, we can regard a formula 3z, - - - 3z,..(z(zy, .. ., 2,)* ® P) as a process which
receives a message z(vy, ..., v,) and then behaves like P[v,/z1, ..., v,/z,]).} Message
predicates are created by the $(V, in linear logic notation) operator. $x.P creates a
message predicate and binds z to it in P. A choice (m(x)=>P)&(n(x)=>Q) either re-
ceives a message m(v) and becomes P[v/x], or receives a message n(v) and becomes

1For other correspondence between process transitions and inference rules, please refer to [3][2].

104

105

F z(vy,... ,vn),x(vl;.. N N = P[bl/xl,. ey Unf25),T
F z(vy,... ,vn)l ® Plvi/z1,...,0./z5],z(v1,... ,v,,),I‘a
F 3z, - 3z,.(2(21,...,20)" ® P),z(v1,...,v,),T

Figure 1: Inference corresponding to Message Reception

QLv/x]. A proc statement defines a recursive process just as a fun statement defines
a recursive function in ML. For example,

proc forwarder m n = m x => n Xx;

val forwarder=proc: (’a->0)->(’a->0)->o0

defines forwarder as a process which takes two message predicates m and n as argu-
ments, and receives a value of x via a message m and sends it via a message n. The
line printed in slanted sfyle is the system’s output. It indicates that forwarder has
the following type:

Va.((a — 0) = (& — 0) — o),

where o is the type for processes or messages. Therefore, the type of forwarder
implies that it takes two message predicates, which should take an argument of the
same type.?

A process p01nt is defined in HACL as follows:

proc point (x, y) (getx, gety, set) =
getx(reply) =>
(reply(x) | p01nt(x,y)(getx,gety set))
& gety(reply) =>
(reply(y) | point(x,y) (getx,gety,set))
& set(newx,newy, ack)=>
(ack() | point(newx,newy) (getx,gety,set));

val point=proc: ’ax’b->((’a->0)->0)*((’a->0)->0)x(’a*’b->0)->0

The process point has two internal state variables x and y, and is parameterized by
message predicates getx, gety, and set. If it receives a getx message, it sends the
value of x to the reply destination reply. If it receives a set message, it sends an
acknowledgement message ack(), and changes values of x and y to newx and newy.
The following expression creates a new point process, and sends to it a getx message.

$getx.$gety.$set.
(point (1.0, 2.0)(getx,gety,set) | $reply.(getx(reply) | reply(x) >...))

2More refined type system, where I1/O information of messages is inferred, is given in [5].

| Textual Notation I Linear Logic Formula | Description |
[- L inaction
z(ey,...,en) | P z(e1,...,€,)8P *1
z(z1,...2,) => P Jzy - 3z,.(z(21,...,22)" @ P) | *2
Ri1& R, R & R, behaves like R; or R,
P | P, Pie P, parallel composition
$z.P Vz.P name creation
P P unbounded replication
let proc Azy...zn = P | fix(AA.Azq. -+ Az,.P)e1---e, | process definition
in Ae;...e, end

*1 ... sends a message z(ey,...,ey,), and then behaves like P
*2 ... receives a message z(€1,...,€,), and then behaves like Ple1/x1,...,en/2n]

Figure 2: Syntax of HACL process expressions

3 Programming in HACL

This section demonstrates the power of HACL, by showing several examples of con-
current programming in HACL. In HACL, processes can be parameterized by other
processes and interfaces (message predicates), just as functions can be parameterized
by other functions in functional programming. This dramatically improves the mod-

106

ularity and code reuse of concurrent programs. We also show that HACL extended

with records naturally allows concurrent object-oriented style programming.

3.1 Ob ject-Oriented Style Programming

In the definition of point process in the previous section, readers might have noticed
that it is very cumbersome to separately create getx, gety, and set message predi-
cates, and to remember in which order they should be applied to the point process.
In order to overcome this problem, it is very natural to introduce records, and put
the three message predicates together in a record:

proc point (x, y) self =

#getx self (reply) => (reply(x) | point(x,y) self)
& #gety self (reply) => (reply(y) | point(x,y) self)
& #set self (newx,newy)=> (point(newx,newy) self);

val point = proc: ’a*’b->’c::{getx:(’a->0)->o0, gety:(’b->0)->0, set:’ax’b-
>o0}->o0 ' :

#(field-name) is an operator for field extraction. The resulting process definition just
looks like the definition of concurrent objects[10]. self, which is a record consisting
of at least three fields getx, gety, and set, can be considered as an identifier of
a concurrent object point. self can be used for sending a message to itself, as in

107

ordinary object-oriented languages. The type inference is based on Ohori’s algorithm
for polymorphic record calculus[6]. The inferred type indicates that point takes a
pair of values of type a and B as its first argument, and a record of type {getz :
(¢ — 0) — o,gety : (B — 0) = o,s€et :a X f — 0,...} as its second argument self.

The following is an expression for creating a new point object and sends to 1t a
message getx.

$id. (point (1.0, 2.0) id | $reply.(#getx id reply | reply(x)=> ...)

If a programmer wants to ensure that messages except for getx, gety, and set are
never sent to the point object, he can explicitly attach the following type constraints
on self:

proc point (x, y) (self:{getx:’a, gety:’b, set:’c}) =

#getx self (reply) => (reply(x) | point(x,y) self)
& #gety self (reply) => (reply(y) | point(x,y) self)
& #set self (newx,newy)=> (point(newx,newy) self);

val point = proc: ’ax’b->{getx:(’a->0)->o0, gety:(’b->0)->o0, set:’a*x’b->0}-
>0

Then, sending a message other than getx, gety and set is statically detected as an
invalid field extraction from the record self.

Based on these observations, we can easily construct a typed concurrent object-
oriented programming language with inheritance and method overriding on top of
HACL. By the type system of HACL, all message not understood errors can be
statically detected at type-checking phase.[4]

3.2 Synchronization and Sequencing between Processes

It is often important to write synchronization or serialization of execution of pro-
cesses. Constructs for such purposes can be defined using higher-order processes. For
example, consider the following process seq:

proc seq (p1l, p2) = $token.(pi(token) | token()=> p2());
val seq = proc: ((unit->o0)->0)*(unit->0)->o0

seq (soutput("helrlo "), fn ()=>output("world\n"));
hello world

seq(pl, p2) executes a process pl(token) at first, and p2() is invoked only when
the process p1 sends a message token(). soutput is a built-in process which takes
a string s and a message predicate m as an argument. It displays the string s, and
then sends the message m().

- It is also easy to write processes for realizing broadcast, barrier synchronization,
etc. For example, the following process make_group takes a message predicate m and
a list of processes procs as arguments. Sendmg a message m(x) from the externals
causes a value of z is broadcasted to a process in procs.

108

local 4
proc broadcast x ns =
case ns of
nil => _ ,
| n::ns’ => (n(x) | broadcast x ns’)
in '
proc broadcaster m ns = ,
m(x) => (broadcast(x, ns) | broadcaster m ns)
end
local
proc parapp procs ms =
case procs of
nil => _
| pr::procs’ => (case ms of m::ms’ => (pr(m) | parapp procs’ ms’))

in
proc make_group m procs =
‘let
‘ val gsize = length(procs)
in o :
make_mpred_list(gsize, fn x => (broadcaster m x | parapp procs x))
end
end

3.3 Higher-Order Processes for Making Topologies between
Processes

Higher-order processes in HACL are especially useful for making topologies between
processes. For example, consider the following higher-order process linear:

proc linear procs left right =
case procs of
nil => _
| pr::nil => pr(left, right)
| pr::procs2 => $link.(pr(left, link) | linear procs2 link right);

val linear = proc: ((’a->0)x(’a->0)->0) list->("a->0)->’(a->0)->0
We use the notation of ML for the case statement and list expressions. The higher-
order process linear takes a list of processes procs as the first argument, and con-
nects them in a linear topology. A ring structure can be constructed by just assigning
the same message predicate to the left and right of linear process.
" proc ring procs = $m.(linear procs m m);
val ring = proc: ((’a->0)*(’a->0)->o0) list -> o

The dining philosopher problem can be described by defining a behavior of each
philosopher, then connecting them by ring:

109

FHRHLETIPuYIOBO 2 ERLEERTH 3.

(B%3.1] 2
(1) ve Viop(Pu(x))iz 51, label(s *

(2) ve Vpot(Pu(y))z 5, label(s *

(ZiF BA #g)
(B3 .2OHMHOKE) z2xDLEJL YD TEFE2EBLE2RTTF -7,
T4hbhb,
i) Q1(Z)=Q2(Z):2m’
ii) =z[(1,1),(m,2m)]1=x[(1,1),(m,2m)],
iii) z[(m+1,1),(2m,2m)]l= y[(m+1,1),(2m,2m)]
95, 22T, VIHGFERAORH S vo 2HEEL T3 Pu(x)€Puly) LOKKKNE
#EZ5B .
@ vi=vek B<.
@ BHL, V)=V IR BHEV eV(IPu(x)QPu(Y))P EETIZIHSIE, vi=V’
EBWTQQEEDRYT . E5THFHIE, BikT 5.
HBE3.1LD, ZEEVOFEORIY (ZTHHERROHA vk LT us Ofih
PERFELTEZ)MOz LOBALmMEREETHEHERBPuWz) 2R T I
o, MEICED, ze TMPEIN D, ZHIZ TM:=T: B3EWOREILRT
5 (z€T1i2¥E) . O

Pu(x)&Py(y) (V) =18bel(d *p (V).
Pu(x)&Pu(y) (V)= 18bel(d oy (V).

(F13.1] RMSEZBIS2D, CITREAVEZDOI R N lavel (V)EZ KL &
WIZElZd D, 2RAT T xLyiixT2FHFIERREPX),Pu(y)INZE2RERN,
ter g ViigUyyeee y U2, V2,0 , V3, U3, , U,V e,
e 3V 5 U500 ,Ug,VEgeee yViyU7yree yUg, Vg voo
75Uz,
“'JV’11U31"'yU’Z)VS)“’1V’31U51"'iu,41V2)
"'1V,59u11“')U’SyVG,"',V’?,U7,"',u’s,V5 oo
ERINBZ3BOLTE (KH20@EBTIMBR) . COLE, xXOLESLyDTF
FPRoeEBELE2RAET—7zRALT, ROII G XHHEERPW)P HKR X h
5.
ViUl ;U 6, Vayeer 3 Vs, Us,eee yU 4, Vayeer , V3, Uy ,U’ 2,V oo
(B2 (c)&lR) O

(B3 . 20HBPOKE] Wedic, | Vm|=Cm» TH3., -4, Emljzx
LT,
C(m)= {Cross_Pair(Pu(x))| IxeV(m) [Pu(xIIMDOXx F D

Lim) AR EZ B EER] |

relm}/2; efm] e[m] e[m] /e[m] 2 2-e[m]
C(m) | S z . s{ = (} £2
L=0 L L L=0O\ L

PEDIAID. T2z, elm]l=s(2m2)L(2m)ti2m) | s IIMOEBHEAFO K EL, t

2. 797 GORARE, HEEY, TREAVO), EQDL &, HVeVOIHLT,
g te(v)= (v eV(G)| (v,v')EEG L EET 5.

110

(ack() | point(x+dx+0.0, y+dy+0.0) self);

val point = proc: real*real->’a::{getx:(real->0)->o, gety:(real->0)->o0, move:real*real*(unit
>0)->0}->0

We can define a rectangle process by composing two point processes as follows.

local
proc rectangle’(pl, p2) self =
#getcx self (reply) =>
($m. (#getx p1i m | m(x1)=> (#getx p2 m | m(x2)=>
(reply((x1+x2)/2.0) | rectangle’(pl, p2) self))))
& #getcy self (reply) =>
($n. (#gety pl m | m(y1)=> (#gety p2 m | m(y2)=>
(reply((y1+y2)/2.0) | rectangle’(pi, p2) self))))
& #move self (dx, dy, ack) =>
($ack2. (#move p1 (dx,dy,ack2)
| ack2()=>(#move p2 (dx,dy,ack) | rectangle’(pl, p2) self)
in
proc rectangle (pointl, point2) self =
$id1.$id2. (pointl idl | point2 id2 | rectangle’(idl, id2) self)
end;

A particular instance of rectangle process is created by instantiating p1 and p2 to
point processes as follows:

proc new_rectangle (x1, yi, x2, y2) self = :
rectangle(point(x1, y1), point(x2, y2)) self;

val new_rectangle = proc: realsrealxrealxreal->’a::{getcx:(real->0)->o, getcy:(real-
>o0)->0, move:real*real*(unit->o0)->0}->o0

Important point about the above rectangle process is that it is independent of a
particular implementation of point processes. Let point2 be another implementation
of the point process. Then, we can make a rectangle process by applying point2
instead of point:

proc new_rectangle2 (x1, yl, x2, y2) self =
rectangle(point2(x1, y1), point2(x2, y2)) self;

3.5 Atomic Execution of Methods

Some of successive executions of methods should be made atomic. For example, con-
sider the point process in the previous section. When implementing a move method
using getx, gety, and set methods, one might want to invoke getx, gety, and set
methods atomically, so that values of x and y are not changed by other objects be-
tween executions of the getx method and the set method. The following lpoint
process allows such an atomic execution of methods.

111

local
proc philosopher n (lfork, rfork) =
(* get left and right forks *)
1fork()=>rfork()=>
(* start eating *)
seq(soutput (makestring(n)“": I am eating\n"),
(* finish eating *) ,
fn ()=>seq(soutput(makestring(n)~": finished\n"),
(* release forks, and *)
fn ()=> (1fork() | rfork()
(* repeat the same behavior *)
| philosopher n (1fork, rfork)))));
in
proc philosopher_and_fork n (1fork, rfork) =
lfork() | philospher n (1fork, rfork)
end;
fun nlist n £ = if n=0 then nil else f(n)::(nlist (n-1) £f);
proc philosophers () = ring (nlist 5 philosopher_and_fork);

philosophers();

5: I am eating
5: finished -

3: I am eating
1: I am eating

3: finished

In the same manner, we can also define higher-order processes for making any topolo-
gies between processes, such as mesh topology and torus topology. Note that this
kind of programming was cumbersome with traditional concurrent object-oriented
languages such as ABCL[9].

3.4 Hier_archical Construction of Processes

By using higher-order processes, we can construct a large process by composing

smaller subprocesses. Although it might look possible with only first-order processes

(as is shown in [3]), higher-order processes are very important in the sense that it

makes a process independent of a particular implementation of its subcomponent

processes, by which enhancing the modularity. - '
For example, consider the following point process:

proc point (x, y) self =
#getx self (reply) => (reply(x) | point(x, y) self)
& #gety self (reply) => (reply(y) | point(x, y) self)
& #move self (dx, dy, ack) =>

112

proc lpoint (x,y,oldself) self = _
#lock self(reply) => $key.(reply(key) | lpoint (x,y,self::oldself). key)
& #unlock self() => v
(case oldself of self’::oldself’ => lpoint (x,y,oldself’) self’)
& #getx self(reply)=> ...
& #getx self(reply)=> .
& #set self (newx,newy, ack)=>...;

proc new_lpoint (x, y) self = lpoint (x, y, []) self;

Then, a 1point can be moved as follows: (1)send lock message to the lpoint pro-
cess, and get key, (2)send getx and gety messages to key, and get values of x and y,
(3)send a set message to key, and (4)send a unlock message. This kind of program-
ming is possible because communication interfaces (message predicates, or identity)
of each process can be directly manipulated in HACL.

3.6 Invocation of Processes from Functions

HACL allows functions to be defined using a fun statement just as in ML, and to
be called from a process. Conversely, HACL also has the catch expression to invoke
processes from a function. The catch expression takes the following form:

catch m in p end,

which means “create a new message predicate m, and execute a process p. If a
message m(v) is eventually sent, the whole expression is evaluated to v.” e[(catch
m in p end)/z] can be considered an abbreviated form of the following expression.

$m.(p | m(x)=>e)
The following function pfib computes the fibonacci number in parallel.

fun fib(n) =
if n=0 then 1 else if n=1 then 1
else fib(n-1)+fib(n-2);
fun pfib(n) =
if n<5 then fib(n)
else catch result
in
$mi.$m2. (m1(pfib(n-2)) | m2(pfib(n-1))
| m1(x) => m2(y) => result (x+y))-
end;

If n is less than 5, pfib(n) computes the fibonnaci number sequentially. Otherwise
computes pfib(n-2) and pfib(n-1) in parallel, and add results. In this manner,
processes can be easily invoked from functions, and vice versa. :

4 Related Work

Pierce and Turner[7] are developing a concurrent language called PICT, based on
Milner’s 7-calculus. We believe that concurrent linear logic programming potentially
offers a more fruitful programming model than w-calculus; It can formalize many kinds
of communication[2] including Linda’s generative communication, and also allow a
natural integration with traditional logic programming. '

5 Conclusion

We proposed HACL, a higher-order extension of the concurrent linear logic program-
ming language ACL. Outstanding features of HACL include higher-order processes,
which dramatically enhances the modularity of concurrent programs, and the elegant
ML-style type system. We demonstrated the power of HACL by showing several ex-
amples. We have already implemented a prototype system of HACL. We are currently
developing an efficient compiler system for HACL. Our current work also includes the
design of a high-level ¢concurrent object-oriented language on top of HACL, and the
development of static analysis techniques for concurrent programs based on HACL.
It would be also interesting to integrate HACL with traditional logic programming.

References

[1] Girard, J.-Y., “Linear Logic,” Theoretical Computer Science, vol. 50, pp. 1-102,
1987. ‘

[2] Kobayashi, N., and A. Yonezawa, “Asynchronous Communication Model Based
on Linear Logic.” to appear in Journal of Formal Aspects of Computing,
Springer-Verlag. '

[3] Kobayashi, N., and A. Yonezawa, “ACL — A Concurrent Linear Logic Program-
ming Paradigm,” in Logic Programming: Proceedings of the 1993 International
Symposium, pp. 279-294, MIT Press, 1993. '

[4] Kobayashi, N., and A. Yonezawa, “Type-Theoretic Foundations for Concurrent
Object-Oriented Programming,” in Proceedings of ACM SIGPLAN Conference
on Object-Oriented Programming Systems, Languages, and Applications (OOP-
SLA’94), to appear, 1994.

[5] Kobayashi, N., and A. Yonezawa, “Typed Higher-Order Concurrent Linear Logic

. Programming,” Tech. Rep. 94-12, Department of Information Science, University

of Tokyo, 1994. to be presented at Theory and Practice of Parallel Programming
(TPPP’94), Sendai, Japan.

[6] Ohori, A., “A Compilation Method for ML-Style Polymorphic Record Calculi,”
in Proceedings of ACM SIGACT/SIGPLAN Symposium on Principles of Pro-
gramming Language, pp. 154-165, 1992.

113

114

[7] Pierce, B. C., “Programming in the Pi-Calculus: An Experiment in Program-
ming Language Design.” Lecture notes for a course at the LFCS, University of
Edinburgh., 1993. '

[8] Troelstra, A. S., “Tutorial on Linear Logic,” 1992. Tutorial notes in JICSLP’92.
[9] Yonezawa, A., ABCL: An Object-Oriented Concurrent System. MIT Press, 1990.

[10] Yonezawa, A., and M. Tokoro, Ol;ject-Orz'ented Concurrent Programming. The
MIT Press, 1987.

A The Essence of Concurrent Linear Logic Pro-
gramming

A.1 Brief Guid? to Linear Logic

This section gives an intuitive idea for understanding Girard’s linear logic[1], using

the well-known examples.[8] Let us consider. the following three formulas A, B and
C: '

A : You have one dollar.
B : You can buy a chocolate.
C : You can buy a candy.

We assume here that each of a chocolate and a candy costs $1. Then, it is trivial that
A implies B, and A implies C. But what’s the meaning of “implies”? Let’s consider
it as an implication in classical logic, that is, interpret “A implies B” as “A D B”
and “A implies C” as “A D C.” Then, we can deduce A D (BAC) from A D B and
A D C. Therefore, we are led to the strange conclusion that “if you have one dollar,
then you can buy a chocolate and a candy.”

What was wrong with the above reasoning? It was the interpretation of “implies.”
If you have one dollar, then you can buy a chocolate, but at the same time, you lose
one dollar, that is, you can deduce B from A, but you do not have A any more. In
order to express the above “implies,” we need to introduce a new implication ‘—o’
of linear logic, which is called linear implication. A—oB means that if we have A,
we can obtain B by consuming A. Therefore, each formula of linear logic should be
considered as a kind of consumable resource.

Going back to the above example, we also need to reconsider the interpretation of
“and.” If you have one dollar, it is both true that you can buy a chocolate and that
you can buy a candy. But they cannot be true at the same time. In order to express
it, we need to use ‘&’, one of linear logic conjunctions. A—oB&C means that “we
can obtain any one of B and C from A, but not both at the same time”. In contrast,
the other linear logic conjunction ‘A ® B’ means that we have both A ® B at the
same time. Therefore, A ® A—oB ® C means that “If you have one dollar and one
dollar (that is, two dollars), you can buy both a chocolate and a candy at the same
time (and you lose two dollars!).”

Linear logic disjunction @ and ’® is respectively de Morgan dual of & and ®:

(A&B)* = AL @ B*
(A®@ B)* = AtwB*

where (o) is a linear negation. A @ B means that “at least one of A and B holds.”
(Compare with A&B.) A’®B can be also defined as A* —oB = Bt —oA. 1and 1is
‘respectively unit of ® and &. The above Girard’s choice of symbols for connectives
seems to be motivated by the following distributive laws:

AQ(B®C)=(A®@B)®(A®C)
A&(B®C) = (A&B)®(A&C)

Girard also introduced exponential ‘"’ for expressing unbounded resource. If we
have ‘! A’, we can use A any number of times. ‘?’ is de Morgan dual of ‘!".

A.2 Connection between Linear Logic and Concurrent Com-
putation

What is the connection between linear logic.and concurrent computation?

Consider the situation where multiple processes perform computation while com-
munication with each other via asynchronous message passing. Each message disap-
pears after read by a process, that is, a message is a consumable resource. Therefore,
it is natural to interpret a message as a formula of linear logic. From now on, we rep-
resent a message by an atomic formula of linear logic. How about process? Consider
a process A, which waits for a message m and behaves like B after reception. A con-
sumes m and produces B, hence A is interpreted by a linear logic implication m—o B.
Therefore, a process is also represented by a formula of linear logic. Consumption of
a message m by a process m—o B is represented by the following deduction:

m®(m—oB)®C—-oB®C

where C can be considered as other processes and messages, or an environment. Note
that we cannot interpret it by connectives of classical logic. With classical logic, we
can deduce

mA(mDB)DB
but we can also deduce
mA(m>DB)DmA(mDB)AB

which implies that the original message m and process m D B may still remain after
message reception!

Let us try to interpret other connectives. A® B means that we have both a process
A and a process B at the same time, i.e., we have two concurrent processes A and

3This material gives a connection based on proof search paradigm. Regarding the alternative
approach, proof reduction paradigm, please refer to other literatures.

115

116

B. Therefore, ® represents a concurrent composition. If A is a message, we can also
interpret A ® B as a process which throws a message A and behaves like B.

(m; —0 A;)&(my—0 Ay) means that we have any one of m; —0 A; and my;—0 A,, but
not both at the same time. So, if there is a message m;, we can obtain a process A;,
and if there is m,, we can obtain A,. But even if we have both m; and my, we can
only obtain either of A; and A, (compare with (m;—04;) ® (my—0A,)):

my ® ((my—0A;)&(m;—04;)) C—o04,0C
my ® ((ml —oAl)&(m2—oA2)) ® C—0A2 ® C

Therefore, (m; —o A;)&(m2 —0 A;) can be interpreted as a process which waits for any
one of m; and m2, and becomes A; or A; depending on the received messége.

Let us consider predicate logic. An atomic formula m(a) can be interpreted as a
message carrying a value a. A predicate m can now be considered a communication
channel, or a port name. Then, what does Vz.(m(z)—0 A(z)) mean? It implies that
for any z, if m(z) holds, we can deduce A(z). Computationally, it can be interpreted
as “for any z, if there is a message m carrying z, we obtain a process A(z).” Therefore,
Vz.(m(z)—o0 A(z)) represents a process which receives a value of z via a message m,
and becomes A(z):

m(a) ® Vz.(m(z) —A(z)) ® C -0 A(a) ® C

How about existential quantification? 3z.A hides = from externals. Therefore, can
be used as a private name, which is used for identifying a message receiver.

There are several minor variants for expressing communication. For example, if
we allow a formula of the form: Vz.(m(a,z)—0A(z)), it receives only a message m
whose first argument matches to a, hence we can realize Linda-like generative com-
munication. Vz.(m(z,z)—o0A(z)) receives only a message m whose first and second
arguments match. A formula Vz.Vy.(m(z) ® n(y) —0A(z,y)) receives a value z via
m, and y via n, and behaves like A(z,y). Since the formula is equivalent to

Vz.(m(z) —oVy.(n(y) < A(z,y))) = Vy.(n(y) —oVz.(m(z) 0 A(z,y))),

it can receives a message m(a) and n(b) in any order. Whether to delay the message
reception until both m(a) and n(b) are ready or not is up to the choice of language
designer.

Figure 3 summarizes the connection between linear logic formula and process.
Some of concurrent linear logic programming languages, including ACL and Higher-
Order ACL, are formalized using dual connectives. We show this dual representation
in the second column (In the second column, positive and negative atoms are also
exchanged). '

A.3 Higher-Order ACL

Higher-Order ACL[5] is based on Girard’s second-order linear logic[1] with A-abstraction.
Note that with higher-order linear logic, a predicate can take predicates as arguments,
hence we can express processes which take processes as arguments. Quantifications

117

[Linear Logic Formula | Dual Representation | Process Interpretation |
1 4 inaction T
m (atomic formula) m message .
AQB : A®B ' concurrent composition
Vz.(m(z) —0 A(z)) Jz.(m(z)" ® A(z)) | message reception
Ri& Ry : R, ® R, selective message reception |
dz. A Vz.A name creation
P 7P unbounded replication

Figure 3: Connection between formula and process

can be also over predicates, hence processes can communicate processes and commu-
nication channels via a message.

Higher-Order ACL is equipped with an ML- style type system. Note that types
in Higher-Order ACL have nothing to do with Curry-Howard isomorphism, because
we regard formulas as processes, not as types. Higher-Order ACL took. the similar
approach to AProlog in introducing types. We have a special type ‘o’ for propositions.
Computationally, it corresponds to the type of processes and messages. int — o is a
type of predicate on integers. Computatinally, it is a type of processes or messages
which take an integer as an argument. (int — 0) — o is a type of processes or
messages which take a process or a message that takes an integer as an argument.
(int — 0) — int is a type of functions which take a process that takes an integer as
an argument, and returns an integer. Processes can be defined and used polymorphi-
cally, by using let proc p(x) = el in e2 end statement, which is analogous fun
statement in ML. Process definitions could be expressed by a formula !(p(z) —oel), (or
!(p(z)o—el) by the dual encoding), which corresponds to clause in traditional logic
programming. However, we prefered to interpret it as let p = fix(Ap.Az.el) in e2 end
where fix is a fixpoint operator, for the introduction of ML-style polymorphic type
system. It makes sense, because unlike traditional logic programming, we can restrict
so that each predicate has only one definition clause. '

