POWERS AND COMMUTATIVITY OF SELFADJOINT OPERATORS

MITSURU UCHIYAMA (内山 九)

Dept. of Math. Fukuoka University of Education Munakata, Fukuoka 811-41, Japan (fax 0940-35-1710) MSC(1991):47B15,47B44,47B65,47C25

1. Introduction

Let $B(\mathfrak{H})$ be the algebra of bounded operators on a Hilbert space \mathfrak{H} . If $T \in B(\mathfrak{H})$ satisfies $(Tx,x) \geq 0$ for every $x \in \mathfrak{H}$, then T is said to be nonnegative, and we denote it by $T \geq 0$. If $ReT = \frac{1}{2}(T + T^*)$ is nonnegative, then T is said to be accretive.

DePrima and Richard [2] showed the following:

Theorem A. If T^n is accretive for $n = 1, 2, ..., then <math>T \ge 0$.

They have proved this theorem by using a mapping theorem for numerical ranges due to T.Kato. For completeness, we give another proof dependent on Sz.-Nagy's technique[8]. Since, for scalar a>0, $(T+a)^n$ is accretive, we may assume that $Re\sigma(T)>0$ and that ||T||<1. Since the inverse T^{-n} of T^n is accretive, $T^{-n}(I-T)^{-m}$ is accretive too for n, m=1, 2, ..., because the coefficients of its power series expansion are nonnegative. Thus $ReT^n(I-T)^m\geq 0$. Using Bernstein's polynomials, for any polynomial $f\geq 0$ on the interval [0,1], we have $Ref(T)\geq 0$. Therefore the sequence $\{ReT^n\}_{n=0}^{\infty}$ satisfies the moment problem. Thus there is a nonnegative dilation $H\in B(\mathfrak{K})$ of T, that is $\mathfrak{H}\subset \mathfrak{K}$, $ReT^n=PH^n|_{\mathfrak{H}}$, where P is the orthogonal projection from \mathfrak{K} to \mathfrak{H} . Hence we get Kadison's inequality $(ReT)^2\leq Re(T^2)$, which implies $0\leq (T-T^*)^2=-4(ImT)^2$. Consequently we obtain $T\geq 0$.

2. Powers of Operators

In this section we shall extend Theorm A. For $X \in B(\mathfrak{H})$, a subspace $\mathfrak{L} \subset \mathfrak{H}$ is said to reduce X if $X\mathfrak{L} \subset \mathfrak{L}$ and $X^*\mathfrak{L} \subset \mathfrak{L}$. Then X can be represented as

$$X = X|_{\mathfrak{L}} \oplus X|_{\mathfrak{L}^{\perp}}.$$

An operator X is called completely non selfadjoint (c.n.s.) if there is no non-zero reducing subspace \mathcal{L} for X such that $X|_{\mathcal{L}}$ is selfadjoint.

MITSURU UCHIYAMA

Let us remark that every operator X can be uniquely represented as a sum of a selfadjoint operator and a c.n.s. operator. In fact, $\mathcal{L} := \{x \in \mathcal{H} : X^n x = X^{*n}x, n = 1, 2, ...\}$ is a closed subspace of \mathcal{H} ; since $X^n(Xx) = X^{*(n+1)}x = X^{*n}Xx$ and $X^nX^*x = X^{*n}X^*x$ for any x in \mathcal{L} , \mathcal{L} reduces X, so that $X|_{\mathcal{L}}$ is selfadjoint and $X|_{\mathcal{L}^{\perp}}$ is c.n.s.

Theorem 1. Let X and Y be in $B(\mathfrak{H})$, and assume that $ReX \geq ReY$. If $X^n + Y^n$ is a selfadjoint operator for n = 1, 2, ..., then there is a subspace \mathfrak{L} such that \mathfrak{L} reduces both X and Y to selfadjoint operators and $(X|_{\mathfrak{L}^{\perp}})^* = Y|_{\mathfrak{L}^{\perp}}$, that is,

$$X = s.a. \oplus T, Y = s.a. \oplus T^*.$$

Proof. Since $ImX^n = -ImY^n$, $\mathfrak{L} := \{x \in \mathfrak{H} : X^nx = X^{*n}x, n = 1, 2, ...\}$ reduces X and Y to selfadjoint operators. We have only to show $(X|_{\mathfrak{L}^{\perp}})^* = Y|_{\mathfrak{L}^{\perp}}$. X and Y have the representations: X = A + iB, Y = C - iB, where A, B and C are selfadjoint operators. Then the assumption means $A \geq C$. Let us note that \mathfrak{L} reduces A, B and C, and that $B|_{\mathfrak{L}} = 0$. We determine the sequences of operators $\{A_n\}, \{B_n\}, \{C_n\}$ and $\{D_n\}$ by $A_1 = A, B_1 = B, C_1 = C, D_1 = -B, A_{n+1} = AA_n - BB_n, B_{n+1} = AB_n + BA_n, C_{n+1} = CC_n + BD_n, D_{n+1} = CD_n - BC_n$. It is easy to see that they are selfadjoint; for instance, if they are selfadjoint for n, then

$$A_{n+1}^* = A_n A - B_n B = (AA_{n-1} - BB_{n-1})A - (AB_{n-1} + BA_{n-1})B$$

$$= A(A_{n-1}A - B_{n-1}B) - B(B_{n-1}A + A_{n-1}B) = AA_n - BB_n = A_{n+1}.$$
Thus we have $X^n = A_n + iB_n, Y^n = C_n + iD_n$. $B_2 + D_2 = 0$ means $(A - C)B + B(A - C) = 0$, from which it follows that $(A - C)B = B(A - C) = 0$, because $A \ge C$. Since $B_{n+1} + D_{n+1} = 0$, we have $(A - C)B_n + B(A_n - C_n) = 0$, from which it follows that $(A - C)B_n = B(A_n - C_n) = 0$, because the range of B is orthogonal to the one of $A - C$. Thus $(A - C)\mathfrak{H} \subset \mathfrak{L}$, and hence $(A - C)|_{\mathfrak{L}^{\perp}} = 0$. Consequently we obtain $(X|_{\mathfrak{L}^{\perp}})^* = Y|_{\mathfrak{L}^{\perp}}$. \square

From this theorem and Theorem A we get the following:

Theorem 2. Let X and Y be bounded operators satisfying $ReX \ge ReY$. If $X^n + Y^n \ge 0$ for n = 1, 2, ..., then X and Y are selfadjoint operators.

Corollary 1. If $X^n + Y^n \ge 0$ for n = 1, 2, ..., and $ReX \ge ReY \ge 0$, then $X \ge Y \ge 0$.

In the above theorems the assumption $ReX \geq ReY$ is indispensable. For instance, take 2×2 matrices:

$$X = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, Y = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}.$$

Then $X^n + Y^n \ge 0$. However neither matrix is selfadjoint.

POWERS AND COMMUTATIVITY OF SELFADJOINT OPERATORS

3. Commutativity

We consider applications of the above theorems to commutativity of selfadjoint operators.

Theorem 3. Let A, B and C be selfadjoint operators satisfying $B \geq C$. If $AB^n + C^n A \geq 0$ for n = 1, 2, ..., and if $A \geq 0$ or $C \geq 0$, then A commutes to B and C.

Proof. Suppose that $A \geq 0$. Substituting $B + \delta$ and $C + \delta(\delta > 0)$ for B and C, respectively, we may assume that $B \geq C \geq 0$ and hence that A is invertible. $AB + CA \geq 0$ implies that A(B - C) is selfadjoint, so that A commutes to (B - C). We have

$$(A^{\frac{1}{2}}BA^{-\frac{1}{2}})^n + (A^{-\frac{1}{2}}CA^{\frac{1}{2}})^n \ge 0.$$

Since

$$Re(A^{\frac{1}{2}}BA^{-\frac{1}{2}}) = Re(A^{-\frac{1}{2}}CA^{\frac{1}{2}}) + (B-C),$$

by Theorem 2 we get AB = BA, AC = CA. Suppose next that $C \ge 0$. Then we may assume that $A \ge 0$. Therefore from the above it follows that A commutes to B and C. \square

Corollary 2. Let A and B be selfadjoint operators, and suppose that $A \geq 0$ or $B \geq 0$. If $AB^n + B^nA \geq 0$ for n = 1, 2, ..., then A and B are commutative.

This was shown in [7]. And then M.Fujii, R.Nakamoto, M.Nakamura[3] and S.Izumino[4] have given the other proofs of it. Let us remark that in this corollary we may exclude the condition $:A \geq 0$ or $B \geq 0$. Indeed, from $A(B^2)^n + (B^2)^n A \geq 0$ for n = 1, 2, ..., it follows that $AB^2 = B^2 A \geq 0$. Since the closures of the ranges of B, B^2 and |B| are equal, for the orthogonal projection P onto this space, we have $PA = AP \geq 0$. Therefore we get $PAPB^n + B^nPAP \geq 0$ for n = 1, 2, ..., which implies B commutes to PAP. Thus AB = APB = PAPB = BPAP = BPA = BA.

Lemma. Let A and B be nonnegative selfadjoint operators. If $AB + BA \ge 0$, then $AB^t + B^tA \ge 0$ for $0 \le t \le 1$.

Proof. We may assume that B is invertible. For 0 < t < 1 we have

$$B^t = rac{sin(\pi t)}{\pi} \int_0^\infty \lambda^{t-1} (B+\lambda)^{-1} B d\lambda,$$

from which $AB^t + B^t A \ge 0$ follows. \square

Let $\{E_{\lambda}\}$ and $\{F_{\lambda}\}$ be the spectral families corresponding to selfadjoint operators A and B, respectively. Then we denote $A \prec B$ if $\{E_{\lambda}\} \geq \{F_{\lambda}\}$ for every λ . For any

MITSURU UCHIYAMA

 $B \ge 0$ and $C \ge 0$, there is the supremum $B \lor C$ of B and C in this order and it is equal to $\lim_{n\to\infty} (B^n + C^n)^{\frac{1}{n}}$ (see [6],[5],[1]).

Proposition. Let A be a selfadjoint operator, and B and C nonnegative selfadjoint operators. If

$$AB^{n} + C^{n}A \geq 0 \text{ for } n = 1, 2, ...,$$

then A and $B \vee C$ are commutative.

Proof. We may assume that A is nonnegative. We can easily obtain

$$A(B^{n}+C^{n})+(B^{n}+C^{n})A\geq 0 \ for \ n=1,2,...$$

For each m, we have

$$A(B^n + C^n)^{\frac{m}{n}} + (B^n + C^n)^{\frac{m}{n}} A \ge 0 \text{ for } n = m, m+1,$$

Thus $A(B \vee C)^m + (B \vee C)^m A \geq 0$. By Corollary 2, A commutes to $B \vee C$. \square

Corollary 3. Let P and Q be orthogonal projections, and suppose that A is a selfadjoint operator. If $AP + QA \ge 0$, then A and $P \lor Q$ are commutative.

Theorem 4. Let A, B and C be selfadjoint operators satisfying BC = CB. If $AB^n + C^n A \ge 0$ for n = 1, 2, ..., and if $A \ge 0$ or $B, C \ge 0$, then A commutes to B and C.

Proof. We may assume that A, B and C are nonnegative. Proposition implies that A commutes to $B \vee C$. Since A(B-C) is selfadjoint, A commutes to B-C. From $B \vee C = \lim_{n \to \infty} (B^n + C^n)^{\frac{1}{n}}$, it follows that $B \vee C$ commutes to B and C, and hence we gain

 $B \vee C = \min\{X : X \geq B, X \geq C, XB = BX, XC = CX\} = \frac{1}{2}(B + C + |B - C|).$ Consequently A commutes to B and C. \square

Corollary 4. Let P and Q be commutative orthogonal projections, and suppose that A is a selfadjoint operator. If $AP + QA \ge 0$, then A commutes to P and Q.

At the end of this paper we give a counter example so that in Corollary 4 we can not exclude the condition: P and Q are commutative. Take 2×2 matrices:

$$P=\left(egin{array}{cc} 1 & 0 \ 0 & 0 \end{array}
ight), Q=rac{1}{2}\left(egin{array}{cc} 1 & 1 \ 1 & 1 \end{array}
ight), A=\left(egin{array}{cc} 4 & -1 \ -1 & 2 \end{array}
ight).$$

Then $AP + QA \ge 0$, but $AP \ne PA$.

The author thanks F.Kubo and Y.Watatani for relating him to DePrima and Richard's paper [2] after [7] was accepted. Also he would like to express his thanks to the referee for finding some typing errors and for his nice suggestions.

POWERS AND COMMUTATIVITY OF SELFADJOINT OPERATORS

REFERENCES

- 1. Ando,T.: Majorization, Doubly stochastic Matrices, and Comparison of Eigenvalues. Linear Alg. its Appl.118,163-248(1989).
- DePrima, C. R., Richard, B.K.: A Characterization of the Positive Cone of B(5). Indiana Univ. Math. Jour. 23,163-172(1973).
- 3. Fujii, M., Nakamoto, R., Nakamura, M.: Uchiyama's Commutativity Theorem on Positive Operators. Math. Japonica 38,1085-1087(1993).
- 4. Izumino, S.: Uchiyama's Commutativity Theorem on Positive Operators II. Math. Japonica (to appear).
- Kato,T.: Spectral Order and a Matrix Limit Theorem. Linear and Multilinear Alg. 8,15-19(1979).
- 6. Olson, M.P.: The selfadjoint operators of a von Neumann algebra form a conditionally complete lattice. Proc. Amer. Math. Soc. 28,537-544(1971).
- 7. Uchiyama, M.: Commutativity of Selfadjoint Operators. Pacific Jour. Math. 161,385-392(1993).
- 8. Sz.-Nagy,B.: A Moment Problem for Selfadjoint Operators. Acta Math. Acad.Sci.Hungaricae 3,285-293(1952).