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1 Introduction

This is the second of three lectures on introduction to vertex operator algebras. In this
lecture, we shall continue Professor Dong’s lecture to present more fundamental properties
of vertex operator algebras.

(From the mathematical point of view, a vertex operator algebra formally resembles
a Lie algebra because the Jacobi identity is used as one of the main axioms. For the Lie
algebra aspect of vertex operator algebras, the notion of contragredient module [FHL] and
the notion of tensor product ([HL], [L4]) have been developed. On the other hand, from
the physical point of view, a vertex operator algebra looks like a commutative associative
algebra with identity because roughly speaking, a vertex operator algebra is a sort of
quantization of the commutative associative algebra of observables in conformal field
theory [BPZ]. For the associative algebra aspect of vertex operator algebras, it has been
proved [FHL] that the product of any finitely many vertex operator algebras has a natural
vertex operator algebra structure. In concrete examples, for a fixed level £, one of the
generalized Verma modules, called the vacuum representation for any affine Lie algebra
g, has a natural vertex operator algebra structure ([FZ], [L2], [Lian]) and the universal
enveloping algebra [FZ] of the vertex operator algebra is a certain completion of the
universal enveloping algebra of g. This fact together with some facts on tensor products
([HL], [L4], [KL],..) strongly indicates that a vertex operator algebra is analogous to a

quasi-Hopf algebra or a quantum group.
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In this lecture, we shall discuss certain analogies between vertex operator algebras
and classical algebras such as commutative associative algebras and Lie algebras. More
specifically, we shall discuss commutativity and associativity and we give an analogue of
the endomorphism ring for vertex operator algebras. All the materials presented here are

taken from [DL], [FLM], [FHL] and [L2].

2 Commutativity and associativity

In this section, we shall present two versions of commutativity and associativity, which

are given in terms of formal variables and in terms of analytic functions, respectively.

2.1 Commutativity and associativity in terms of formal vari-
ables ‘ ‘
The version of commutativity and associativity in terms of formal variables was first
presented in [DL]. Now it has been realized that the formal variable technique is powerful
some time even though the Jacobi identity is such a beautiful identity.
Proposition 2.1. Let V be a vertex operator algebra and let a and b be two elements

of V. Then there is a nonnegative integer k such that
(71— 2)*Y (a,21)Y (b, 25) = (21 — 2)¥Y (b, 22)Y (a, 1). (2.1)

Proof. In order to obtain (2.1), we need to force the term on the right hand side to

vanish. For any nonnegative integer m, taking Res,, zJ* of the Jacobi identity, we obtain:

(21 - zZ)m[Y(aa zl)a Y(ba 22)]

= (21— 2z2)" (Y(a,21)Y (b, 25) — Y(b,25)Y (a, z1))

21— 20

= Res, 2,6 ( ) z5'Y(Y (a, 20)b, 22)

22

_ f:zl_' ( (a%)iz;l& (j—j)) Y (amaib, 22)- (2.2)

=0
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Let k be a nonnegative integer such that a,b = 0 for n > k. Then setting m = k we
obtain the commutativity (2.1). O
Proposition 2.2. Let V be a vertez operator algebra and let a and c be two elements

of V. Then there is a nonnegative integer k such that for any b €V we have
(20 + 22)*Y (Y (a, 20)b, 22)c = (20 + 22)¥Y (a, 20 + 22)Y (b, 22)c. (2.3)

Proof. Similar to the case for commutativity, in order to obtain the associativity we
force the second term on the left hand side to be zero. Taking Res,, of the Jacobi identity,

we obtain the following iterate formula:

Y(Y(a, 20)b, z3)

= Res,, (zo'ld (-Zl;z-z—) Y(a,2)Y (b, 22) — 258 (“_2_2:_21) Y (b, Z2)Y(a721))
0

20

= Y(a,20+ 22)Y (b, 22) — Y (b, 22)(Y(a, z0 + 2z2) — Y(a, 22 + 20)). (2.4)

For any ¢ € V, let m be a positive integer such that ™Y (a, z)c involves only positive

powérs of z, so that
(20 + 22)™(Y(a,20 + z2) — Y(a, 22 + 20))c = 0. (2.5)

Then we obtain the associativity (2.3). O

The proof of the following theorem was fa.ken from [L2].

Theorem 2.3. The Jacobi identity is equivalent to the commutativity together with
associativily.

Proof. We only need to prove that the Jacobi identity follows from commutativity
and associativity. Choosing a nonnegative integer k such that a,,c = 0 for all m > k, we

get

282k (26’15 (z1 — 22) Y(a,2)Y (b, 2)c — 2516 (ﬂ) Y (b, zz)Y(a,zl)c)

20 20

= 230 (zl — 22) 2¥ (2 — 23)¥Y (@, )Y (b, 23)c

20
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sy (“—Z?;:fﬁ) A — )Y (b, 22)Y (a, 21)c
= '15( - ) ( (21 — 22)*Y (b, )Y (a, 1) )
= (zl Z") (z(z0 + 20)Y (8, 22)Y (a, 22 + z0)e) - (2.6)

Since a,c = 0 for all m > k, (20 + 23)¥Y (a, 22 + 20)c involves only nonnegative powers of

(22 + 20), so that
25 (20 + 22)FY (b, 23)Y (4, 22 + 20)c = 28(20 + 22)FY (b, 22)Y (a, 20 + 22)c. (2.7)

Therefore

ze 2k (26‘15 (zl — z2> Y(a, zl)l‘/(b‘z2)c — 258 ( ) Y(b,22)Y (a,21) )

20 —Z20

28 (20 + 2)FY (b, 22)Y (a, 20 + zg)c)

k(zo + zg)kY(a, 20 + 22)Y (b, zz)c)

2820 + 22)¥Y (Y (a, 20)b, zz)c)

/\/\A/—\

28 28Y (Y (a, 20)b, Zz)C)
. z.;lcs( ) Y(Y (a, 20)b, z2)c. (2.8)
Then the Jacobi identity follows. O
Remark 2.4. Notice that the commutativity (2.1) is really a commutativity for “left
multiplications.” The exact analogue of the classical commutativity of product is the
skew-symmetry [FHL]: Y(a, 2)b = e*L(-DY (b, —2)a for any a,b € V. Let A be a classical
algebra with a right identity 1 and denofe by £, the left multiplication by an element a.
Suppose that £,£, = £,£, for any a,b € A. Then a(bc) = b(ac) for any a,b,c € A. Setting

c = 1, we obtain the commutativity ab = ba. Furthermore, we obtain the associativity:
a(cb) = a(bc) = b(ac) = (ac)b for any a,b,c € A. (2.9)

Therefore, A is a commutative associative algebra. This classical fact suggests that the

commutativity (2.1) together with the vacuum property implies the associativity (2.3).



30

Therefore, the commutativity implies the Jacobi identity. This has been proved at differ-
ent levels in many references such as [FLM], [FHL], [G], [DL] and [L2]. The proof of the
following Theorem was taken from [L2].

Theorem 2.5. In the definition of vertex operator algebra, the Jacobi identity can be
equivalently substituted by commutativity.

Proof. Our proof, which consists of three steps, is exactly an analogue of the argument
given in Remark 2.4.

(1) The skew-symmetry holds. Let k be a positive integer such that b,,a = 0 for all

m > k and that the commutativity (2.1) holds. Then

(21 — 23)*Y (a, 21)Y (b, 25)1
= (21— 2)*Y (b, 2)Y (a, )1
= (21— 22)*Y (b, ) (- Vg
= (21 — 2)*e VY (b, 25 — 2y)a. (2.10)

Since (z; — 23)¥Y (b, z; — z;)a involves only nonnegative powers of (22 — 2z1), we may set

29 = 0. Thus
2¥Y (a, )b = 2 LEVY (b, —21)a. (2.11)

Multiplying both sides of (2.11) by z;* we obtain Y (a, 2 )b = e LY (b, —2)a.
(2) The associativity (2.3) holds. For any a,c € V, let k be a positive‘ integer such

that the commutativity (2.1) for (a,c) holds. Then for any b € V, we have:

(20 + 22)*Y (a, zo + 22)Y (b, z3)c
= (20 + 22)FY (a, 20 + 22)e? VY (¢, —2,)b
= 2055 4+ 2,)¥Y (a, 20)Y (¢, —25)b
= €2l (25 4 2)*Y (¢, —22) Y (a, 20)b

= (20 + 2)¥Y (Y (a, 20)b, 23)c. (2.12)
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It follows from Theorem 2.43that the Jacobi identity holds. O
The following Proposition 2.6, Corollary 2.7 and Proposition 2.8 are taken from [L2].
Proposition 2.6. The Jacobi ident;ty in the definition of vertex operator algebra V
can be equivalently replaced by the skew symmetry and the associativity (2.3).
Proof. For any a,b,c € V, let k be a positive integer such that 2*Y (b, z)c involves

only positive powers of z and that the following associativities hold:
(20 + 22)*Y (a, 20 + 22)Y (b, 22)c = (20 + 22)*Y (Y (a, 20)b, 22)c,
(=20 + 20)FY (b, =20 + 21)Y (a,21)c = (=204 21)*Y (Y (b,—20)a, z1)e.  (2.13)

Then

-2+ 2

20

P (2516 (Zl — zz) Y(a,2)Y (b, 2)c— 258 ( ) Y (b,22)Y (a, zl)c)

20

= z'6 (zl — Z2> ((zo + 29)*2EY (Y (a, 20)b, Zg)C)

20

—55"8 () (h(—z0 + ) Y (Y (5, ~20)a, 2)c)

= 26 (z’ — 22) (20 + 22)* =Y (Y (g, 20)b, z2)c)
20

—2z5'6 (——22—-*;—21) (zf(-—zo 4 2)*Y (7LD Y (g, 20)b, zl)c)

20

= 254 (21 _ 22) ((zo + 22)f28Y (Y (a, 20)b, zz)c)

20

) (:_Z_z_j-ﬂ) (zf(—-zo + 21)*Y (Y (a, 20)b, 21 — zo)c) . | (2.14)

20
Since zE(z0 + 22)*Y (Y (a, 20)b, z3)c = (20 + 22)¥Y (a, 20 + 22)(25Y (b, 23)c) involves only

positive powers of z;, by (2.13) we have:

'8 (222 (0 + 2) Y (Y (3, )b, 2)c)
20

. (zl ;Zz) (521 — 20)*Y (Y (a, 20)b, 21 — 20)c) (2.15)

Thus

22k (zo‘lJ (Zl — Zz) Y (a, zl)Y(b, z)c— 258 (%Z—l) Y (b, Z2)Y(a,21)C)
0 T

20
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= 250 (ZI — 22) (2 (21 — 20)*Y (Y (a, 20)b, 21 — 20)c)
20

—z5'6 (:?2—-'-—?—1—) (zf(—-zo + 2.)¥Y (Y (a, 20)b, 21 — zo)c)

20
= 2;15 (2_152__2_9) (Zf(zl - Zo)kY(Y(a, 20)b, 21 — Zo)C)
. (Z‘—Z‘;ﬁ) Y(Y (a, 20)b, 25)c. (2.16)

Multiplying both sides by z7*z;*, we obtain the Jacobi identity. DO

In [B], Borcherds first defined the notion of vertex algebra with a set of axioms consist-
ing of the vacuum property, the skew-symmetry and the iterate formula (2.4). Without
assuming the existence of a Virasoro element in the notion of vertex algebra, one can
define the operator D is defined by Da = a_;1 for a € V. Therefore, we have:

Corollary 2.7. Borcherds’ definition [B] and FLM’s definition for a vertex algebra
are equivalent.

Proposition 2.8. Let V be a vertez algebra. Then the Jacobi identity of a V-module

can be equivalently substituted by the associativity (2.3).

2.2 Commutativity and associativity in terms of analytic func-
tions

In the last subsection, we consider a vertex operator Y (a, z) as a generating function of a
sequence of operators, where z is a formal variable. In this subsection we shall consider a
vertex operator Y (a, z) as an operator valued functional, where z will be considered as a
nonzero complex number.

Let V be a vertex operator algebra and define V' = EB.,,,EZV(’;) to be the restricted dual
of V [FHL]. For any a,b € V, by the definition of a vertex operator algebra, Y (a,2)b
involves only finitely many negative poWers of z. Then it follows from the definition of
V' that for any f € V', (f,Y(a,2)b) is a Laurent polynomial in z. Therefore, we may

consider z as a nonzero complex number so that (f,Y(a,z)b) is a rational function of 2.
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Next, we consider the following n-point functions:

(f,Y(a1,21)Y (az,2z2) - - - Y(an, 22)c), } (2.17)

The following Proposition 2.9 was taken from [FLM] and [FHL] with a slightly different
proof.

Proposition 2.9 Let V be a vertezx operator algebra and let a,b,c € V, f € V'. Then
(I) (Rationality)

<f7 Y(G,ZI)Y(b, 2’2)0), (218)

as a formal series converges in the domain of |z;| > |z| > 0 to a rational function
9(z1,23) = h(zy,29)228(2; — 23)*, where h(z1,2) is a polynomial in z; and z, and
- m,n,k are integers and k only depends on a and b.

(II) (Commutativity)

<f,Y(b, ZZ)Y(a7 ZI)C>, (219)

as a formal series converges in the domain of |z2| > |z1| > 0 to the same rational function
9(z1,22) as that in (I).
(III) (Associativity)

(f,Y (Y (a, 20)b, 22)c), (2.20)
as a formal series converges in the domain of |z2 + zo| > |22| > |20| > 0 to the rational
function g(zq + 20, 22), where g(z, 23) is the same as that in (I) and (1I).

Proof. For any a,b € V, it follows from the first version of commutativity that
there is a nonnegative integer k such that the commutativity (2.1) holds. It follows from
the definition of V'’ and the meromorphic condition on vertex operators that the matrix-
coefficient (f,(z1 — zz)kY(a, 21)Y (b, z2)c) involves only finitely many negative powers of

z, and finitely many positive powers of z;,. Similarly, (f,Y (b, 22)Y (a, 21 )c) involves only
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finitely many negative powers of z; and finitely many positive powers of z;. Therefore the

common formal series

(fs (21 — 2)* Y (a,21)Y (b, z2)c) = (f, (21 — 22)*Y (b, )Y (a, 2, )) (2.21)
involves only finitely many negative and positive powers of both z; and z,. Consequently,
it gives a rational function in the form of 2{*23h(z1, 23), where h(z1, z3) is a polynomial in
z; and 2. Then both (I) and (II) have been proved. Similarly one can prove (III). O

Proposition [DL] The two versions of commutativity and associativity are equivalent.

3 An analogue of the endomorphism ring for VOA

In this section, we shall introduce what we call “local systems of vertex operators” for any
vector space M and we prove that any local system has a natural vertex algebra structure
with M as a module. Furthermore, we prove that for a fixed vertex algebra V, giving a
V-module M is equivalent to giving a vertex algebra homomorphism from V to some local
system of vertex operators on M. This whole section was taken from [L2]. An analogue of
the homomorphism module for vertex operator algebras has been also developed in [L2]
and the notion of local systems of vertex operators and applications have been geﬁeralized
to the notion of local systems of twisted vertex operators in [L3].

Definition 3.1. Let M be any vector space. A weak vertex operator on M is a formal

series a(z) = Y ez anz"""! € (End M)[[z, 27Y]] such that
a(z)u € M((z)) for any u € M. (3.1)

That is, a,u = 0 for n sufficiently large. Let (M, d) be a pair consisting of a vector space
M and an endomorphism d of M. A weak vertex operator on (M,d) is a weak vertex

operator a(z) on M such that

(4, a(2)] = o'(2) (: dilz-a(z)) . (32)
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Denote by F(M) (resp. F(M,d)) the space of all weak vertex operators on M (resp.
(M,d)).

By definition, it is clear that if a(z) is a weak vertex operator on M (resp. (M, d)),
the formal derivative a'(z) is also a weak vertex operator on M (resp. (M, d)). Then we
have anber\ldomorphism D= % for both F(M) and F(M, d).

Definition 3.2. Let M be a restricted Vir-module of central charge £. A weak vertex
operator a(z) on (M, L(—1)) is said to be of weight h € C if it satisfies the following

condition:
[L(0),a(2)] = ha(z) + zd'(2). (3.3)

Denote by F(M, L(—1))() the space of weak vertex operators on (M, L(—1)) of weight A

and set
F°(M, L(—1)) = @recF (M, L(-1))(). (34)

Remark 3.3. For any vector space M, the identity operator I(z) = idy, is a weak
‘vertex operator on M. Let M be a restricted Vir-module. Then I(z) = idy is a weak
vertex operator on (M, L(—1)) of weight zero and L(z) = ¥,¢z L(n)2z7""? is a weak vertex
operator on (M, L(—1)) of weight two. If a(z) is a weak vertex operator on (M, L(-1))
of weight h, then a'(z) = g—g—a(z) is a weak vertex operator of weight A + 1.

Lemma 3.4. Let M be a vector space and let a(z) and b(z) be weak vertez operators

on M. For any integer n, set
a(2)nb(2) = Res,, ((21 — 2)"a(21)b(2) — (—2z + 21)"b(2)a(z,)) . (3.5)

Then a(z),b(2) is a weak vertez operator.

Proof. For any u € M, by definition we have

(a(2)nb(2))u
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= Res,, ((z1 — 2)"a(21)b(2)u — (—2 + 21)"b(2)a(z1)u)

k_o( ) Ve an-ib(z)u — (—2)""*b(z)aru) . (3.6)

It is easy to see that (a(2),b(z))u € M((z)). Therefore, a(z),b(z) is a weak vertex operator
on M. O
Definition 3.5. Let M be a vector space and let a(z) and b(z) be weak vertex

operators on M. Then we define

Y (a(z), 20)b(2)
= Y a(2)ab(2)zg"

neZ

= Res,, (z015( — Z) a(2)b(z) — 75 5(

) b(z)a(zl)) . (3.7)

—20

Extending the definition bilinearly, we obtain a linear map
Y(,2):  F(M)— (EndF(M))[lz0, 25" Il
a(z) = Y(a(z), z0). (3.8)
Lemma 3.6. For any a(z) € F(M), we have
Y(I(2), 20)a(z) = a(z); (3.9)
Y (a(2), 20)1(2) = €°%a(z) (= a(z + 2)). (3.10)

Proof. By definition, we have:

Y (I(z), 20)a(2)
= Res,, (20 15 (zl — z> a(z) — 2516 ( et 21) a(z))

20 20
= Res, z7'§ (ﬂ:——-z—o—) a(z)

z
= a(z)

and

Y(a(2),2)1(2)
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= Res,, (zo'l& <21z: z) a(z1)I(z) — 2516 (—ZZ—: z1> ’I(Z)a(zl))

= Res, 274 (Z ;ZO) a(z)
= Res, 2714 (z ks z0> a(z)

- ) a(z + z)

= Reszlzfld(

= a(z+ 2)
= ez"%a(z). o (3.11)

Lemma 3.7. Let M € obC and a(z),b(z) € F(M). Then we have

¥ (a(e), =)H(z) = Y(D(a(2), w)b(2) = [D, ¥(ale) a)ble).  (312)

Proof. By definition, we have

%10 (27)) tente) - 5 (575 () ot
— —Res, (a—z;zolcf( — )azl)b(z)
(=

)) (2)a(z1) (by Lemma 2.1)

= Res, (zo_l(f (zlzo Z)a(zl)b(z) 26’16< ZZ_: Zl) b(z)a (zl))
= Y(d (z),zo)b( z) ‘ (3.13)

and

[D, Y (a(2), 20)}b(2)
= D(Y(a(z),20)b(2)) — Y(a(z), z0) Db(2)
= 2 (¥(alz), b)) - Y(a(2), 2)¥(2)

= Res, ((aa 0-15( - )) a(z)b(z) — (-—zolé (Z_Z:I))b(z)a(zl))
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= Res,, (562:—0 (zglé (le'; z)) a(z1)b(z) — —a%; ( ~1§ (Z zjl)) b(Z)a(Zl))

_ a%Y(a(z),zo)b(z)
= Y(d(2),2)b(2)
= Y(D-a(2), %)b(z). O (3.14)
Lemma 3.8. Let (M,d) be an object of C° and let a(2),b(z) € F(M,d). Then
a(2).b(z) € F(M,d). Furthermore, if M is a restricted Vir-module with central charge
¢ and a(2),b(z) are weak vertez operators on (M, L(—1)) of weights a, B, respectively,
then for any integer n, a(2)ab(z) is @ weak verter operator of weight (a +f — n — 1) on
(M, L(-1)). |
Proof. It is equivalent to prove the following:
[L(~1),Y(a(2), 20)b(2)] = %(Y(G(Z), 20)b(2)); (3.15)
[L(0), Y (a(z), 20)b(2)]
= (a+B)Y(a(z),20)b(z) + zo%(l’(a(z), 20)b(2)) + z%(Y(a(z), 20)b())-(3.16)
By definition, we have: |
(¥ (a(2), 20)H(2)) |
- 2Res (z016 (z Z) a(2)b(z) — 7516 (z_z:‘) b(z)a(zl))
- (( ) - (%20-15 (Z_‘z:‘)) b(z)a(z1)>
+Res,, ( (z‘ 2) a(2)b(2) — 716 (Z_:) b'(z)a(zl))
(( ot ) a(2)b(z) — ( a‘; ) (le'; z)) b(z)a(z1)>
+Res,, (2016 (leo z) (zl)b (z) - 20'15( = Z)b'(z)a(zl)>
= Res,, <z0-15 (zl; "‘) a(2)b(2) — 2316 (z_‘z:l) ¥(2)a(z ))
Res,, (zgla (Z‘z; Z) a'(21)b(z) — 2516 ("" Zl) b(z)a!(z ))




= [L(=1),Y(a(2), 20)b(2)]

and

[L(0), Y (a(2), Zo)b(Z)]
= Res,, (zo_ o) (

zZ—z

2) (20}, a(a0)b(a)] - 778 (252 [£0), (e)a)

— Res, z515( %Y (a(z)[L(0), 5(=)] + [L(0), a(z)]b(2))
~Res,, 758 (S22 ) (L), ae1)] + [L(0), Mo)aa)
= Res, 256 ( (ﬂa 21)b(z) + za(21)b'(2) + aa(z1)b(z) + z14'(21)b(2))

_Res,, %16 ( —4 ) (ab(2)a(z1) + z1b(2)a'(z1) + Bb()a(z1) + 2b(2)a(z1))
= (a+p)Y(a(2), 20) b(2) |

+Res,, (zo 15( >za ()b (z) — 2326 (z = )zb'(z)a(zl)) |

_Res,, ((————zlzo (z‘ZO Z)) - (a—zlzo 1§ (Z_'z:l)) b(z)a(zl))
= (a+PB)Y(a(z),20)b(2) |

+Res,, (zgla (z‘; Z) ra(2)b(z) — 2516 (Z_‘zj?) zb'(z)a(zl))

—Res, (20 + 2) (izo-la (Z‘Z: z)) a(21)b(z)

+Res,, (20 + 2) (——a——zo"lé (z z?)) b(z)a(z)
= (a+pB)Y(a(2),20)b(2)
+Res;, (20_15 (21; Z) za(z)b'(2) — 258 (Z:Z:I) zb’(z)a(zl))

+Res,, 2 ((aioz—la( — Z)) a(z)b(z) — (—zo 1§ (z _:)> b(z)a(zl))
+Res,, 2 ((%zgla ( = z)) a(z)b(z) - (a%zo 2 (z_zzl))b(z)a(z1)>

= (a4 BY (a(2), 20(2) + 25 (V(ale), 2)b(2)) + 2 (¥ (al2), 20)8)) .

The following definition is motivated by physicists’ work for example [Go].
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Definition 3.9. Two weak vertex operators a(z;) and b(z2) are said to be mutually

local if there a positive integer n such that
(21 — 2z2)"a(21)b(22) = (21 — 22)"b(22)a(z1). (3.17)

A weak vertex operator is called a vertez operator if it is local with itself, a subspace A
of F(M) is said to be local if any two weak vertex operators in A are mutually local, and
a local system of vertex operators on M is a maximal local subspace of F(M).

Remark 3.10. Let V be a vertex algebra and let (M, Yar) be a V-module. Then the
image of V under the linear map Yy(+,2) is a local subspace of F'(M).

Remark 3.11. Let M be a vector space and let a(z) and b(z) be homogeneous
mutually local weak vertex operators on M. Let k be a positive integer satisfying (3.1).
Then a(z2),b(z) = 0 whenever n > k. Thus Y(a(z), z0)b(2) involves oniy finitely many
negative powers of zo. (This corresponds to the truncation condition (V1).)

Lemma 3.12. If a(z1) s local with b(z;), then a(z1) is local with b'(z,).

Proof. Let n be a positive integer such that (3.17) holds. Then

(21 — 22)"a(21)b(22) = (21 — 23)"'b(23)a(z1). (3.18)
Differentiating (3.18) with respect to z;, then using (3.17) we obtain
(21 — z3)"Ma(21)b (22) = (21 — 22)" TV (22)a(z). O (3.19)

Remark 3.13. For any vector space M, it follows from Zorn’s lemma that there always
exist local systems of vertex operators on M. Since the identity operator I(z) = idp, is
mutually local With any weak vertex operator on M, any local system contains I(z).
(From Remark 3.11 and Lemma 3.12, any local system is closed under the derivative
operator D = o

Lemma 3.14. Let M be a restricted Vir-module with central charge £. Then L(z) =

Ynez L(n)z7"2 is a (local) vertez operator on (M, L(—1)) of weight two.
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Proof. It follows from Remark 2.11 and Lemma 2.12 that
(21 — 22)F[L(z1), L(2)] =0 for k > 4. (3.20)

Then L(z) is a local vertex operator on M. O
The proof of the following proposition was given by Professor Chongying Dong.
Proposition 3.15. Let a(z), b(z) and c(z) be weak vertex operators on M. Suppose
both a(z) and b(z) are local with ¢(z). Then a(z),b(z) is local with c(z) for alln € Z.
Proof. Let r be a positive integer greater than —n such that the following identities

hold:

(21 — 22)"a(21)b(z2) = (21 — 22)"b(22)a(z1),
(21 — z2)"a(z1)c(22) = (21 — 22)"c(22)a(21),

(21 — 22)"b(z1)c(22) = (21 — 22)"¢(22)b(21).
By definition, we have
a(2).b(z) = Res,, ((z1 — 2)”a(z1)b(z) — (=24 z1)"b(z)a(z1)) . (3.21)
Since

(z — 23)* ((21 — 2)"a(21)b(2)c(2s) — (—2 + 21)"b(2)a(z1)c(23))
=¥ ( 3r ) (2= 21)> (21 — 23)°(2 — 23)" -

s=0 $

(21 = 2alz1)b(2)e(z5) — (=2 + 20)"b(2)a(z1)e(z3))
— Z ( 3r ) (z _ Zl)sr—s(zl i 23)8(2 _ Za)r .

s=r+1 $

(21 = 2)"a(z1)b(2)¢e(z3) — (=2 + 21)"b(2)a(21)c(23))

3r

= 3r 2 — 2%z — 23)%(z — z3)" -

= > (V) e
“((21 = 2)"c(23)a(21)b(z) — (=2 + 21)"¢(23)b(2)a(21))

= (2 —2)" ((z1 — 2)"c(23)a(21)b(2) — (=2 + 21)"c(23)b(2)a(z1)) ,

(3.22)
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we have

(2 = 25)" (a(2)nb(2))(23) = (2 = 25)""¢(25)(a(2)nb(2)). O (3.23)

Remark 3.16. Let M be any super vector space and let V be any local system of
vertex operators on M. Then it follows from Proposition 3.15, Remarks 3.11 and 3.12 and

Lemmas 3.13 and 3.14 that the quadruple (V,I(z), D,Y) satisfies (V1)-(V4) of Definition
2.1.

Proposition 3.17. Let V be any local system of vertex operators on M. Then for
any vertez operators a(z) and b(z) in V, Y(a(z),21) and Y (b(2), 22) are mutually local on
(V, D).

Proof. Let ¢(z) be any weak vertex operator on M. Then we have
Y(a(2), 23)Y (5(2), z0)<(22)
= Res,, 556 (222 a(a) (Y (b(2), z0)el(2))

—2515 (‘“z: 21) (Y (b(2), 20)e(22))a(z1)
= Res, Res, A

where

A = ( 2) 556 (2

) _16( zzZ:- z4) a(21)c(22)b(24)

1%
( 23 + 21) -15 (24 ; zz) b(24)c(22)a(z1)
=

2318 i + zl) - (:{2:2_;_*'_31) c(22)b(z4)a(2y)-

z2) a(2)b(z4)c(22)

Similarly, we have

Y (b(2), 20)Y (a(2), z3)c(22) = Res,, Res,, B (3.24)
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where

( ) z5 6 ( ” 22) b(z4)a(z1)c(z2)
(5 ( z2 + 21) (,'15 (z4 z2) b(z4)c(22)a(z1)
ey ( — ) ey (Z%) a(z1)c(22)b(z4)

+2316 (—_—ziiil-) Pa) (:—%*—ﬁ) c(2z2)a(z1)b(24).

23

Let k be any positive integer such that
(21 — z4)Fa(21)b(24) = (21 — 24)¥b(24)a(21).
Since

(23 _ Zo)k23_15 (21 Z—32’2) 20_15 (2'4;022) — (21 _ z4)k23—15 (21 Z—:; 22) 2615 (24;(')22) :

it is clear that locality of a(z) with b(z) implies the locality of Y'(a(2), 21) with Y (b(z2), 2,). O

Now, we are ready to present our main theorem:

Theorem 3.18. Let M be any vector space and let V be any local system of vertex
operators on M. Then V is a vertez algebra and M satisfies all the conditions for modple
except the existence of d in (M2). IfV is a local system on (M,d), then (M,d) is a
V-module.

Proof. It follows from Proposition 2.4, Remark 3.16 and Proposition 3.17 that V is
a vertex algebra. It follows from Proposition 2.3 and Remark 2.3 that M is a V-module
through the linear map Yar(a(z), 20) = a(z) fora(z) € V. O

Corollary 3.19. Let M be any vector space and let S be any set of mutually local
vertez operators on M. Let < S > be the subspace of F(M) generated by S U {I(2)}
under the vertex operator multiplication (3.7) (or (3.5) for components). Then (< S >
,1(2),D,Y) is a vertex algebra with M as a module.

Proof. It follows from Proposition 3.15 that < S > is a local subspace of F(M). Let

A be a local system containing < S > as a subspace. Then by Theorem 3.18, A is a
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vertex superalgebra with M as a module. Since < S > is closed under (3.7), < S > is a
vertex subalgebra. Since the “multiplication” (3.7) does not depend on the choice of the
local system A, (S) is canonical. O

Proposition 3.20. Let M be a restricted Vir-module with central charge £ and let
V be a local system of vertez operators on (M, L(—1)), containing L(z). Then the vertex
operator L(z) is a Virasoro element of the vertex algebra V.

Proof. First, by Theorem 3.18 V is a vertex algebra with M as a V-module. Set
w = L(z) € V. By Lemma 2.7, the components of vertex operator Y (w, z9) give rise to a
representation on V' of central charge £ for the Virasoro algebra Vir. For any a(z) € Vi),

by definition we have

L(=)oa(z) = [L(~1), a(2)] = a'(=); (3.25)

L(z)1a(z) = [L(0),a(2)] — z7'[L(-1),a(2)] = ha(z). (3.26)

Therefore V satisfies all conditions for a vertex operator superalgebra except the require-
ments on the homogeneous subspaces. O

Let V be a vertex (operator) algebra and let (M, d) be a V-module. Then the image
V of V inside F(M,d) is a local subspace. By Zorn’s lemma, there exists a local system

A containing V' as a subspace. From the vacuum property (M2) we have:
Yr(, 2)(1) = Yu(1,2) = idpyy = I(2). (3.27)
For any elements a,b € V, we have:
Yum(:, 2)(Y(a,20)b)

= Yu(Y(a,z20)b,2)

= Res, (zgla (zlz‘ Z) Yar(a, 20)Yar (b, 2) — 716 ( - ) Yar(b, 2)Yar(a, zl))
0 40

= Ya(Yum(a,z),20)Yr(b, 2). (3.28)

zZ—2z
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Thus Yas(+,2) is a vertex algebra homomorphism from V to A. Conversely, let ¢ be a
vertex algebra homomorphism from V to some local system A of vertex operators on
(M,d). Since ¢(u) € A € (EndM)|[[z,2z7"]] for any u € V, we use ¢, for ¢ to indicate the
dependence of ¢(u) on z. For any formal variable z;, set
¢,,(a) = ¢,(a)|,=z for any a € V. We define Yy (a,2)u = ¢,(a) for a € V. By
definition we have:
Yr(1,2) = ¢,(1) = I(z) = idpm. (3.29)
For any elements a,b € V, we have:
YM(Y(G, Zo)b, 22)
= ¢:(Y (@, 20)b)| 2=z,
= (YA(¢2(a)7 20)¢Z(b)) Iz=22
= Res,, (zgld (z1 — ) ¢zl(a)¢22(b) ) (

%)
20

= Res,, (zo_ld (21 —_ z2) Yum(a,21)Yar(b, 22) — 2515 (

20

zZ9 —

) $:(8)6:,(@))
z2 — Zl) Y1 (b, 22) Y (a, ZI)) '

(3.30)

21

It follows from Remark 2.4 that (M,d,Yy) is a V-module. Therefore, we have proved:
Proposition 3.21. Let V be a vertex (operator) algebra. Then giving a V-module
(M, d) is equivalent to giving a vertez algebra homomorphism from V to some local system

of vertex operators on (M, d).

4 Vertex operator algebras and modules associated
to some infinite-dimensional Lie algebras

In this section, we shall use the machinery we built in Section 3 to study vertex opera-
tor algebras and modules associated to the representations for some well-known infinite-
dimensional Lie algebras such as the Virasoro algebra and affine Lie algebras. Most of the

material presented in this section was taken from [L2]. (See [FZ] for a different approach.)
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Let us start with an abstract result which will be used in this section.
Proposition 4.1. Let (V,D,1,Y) be a vertex algebra and let (M,d,Yy) be a V-

module. Let w € M such that du = 0. Then the linear map
f:VoaMa—a_ju fora€V, (4.1)

is a V-homomorphism.

Proof. It follows from the proof of Proposition 3.4 [L1]. O

For any complex numbers ¢ and Ak, let M(c, h) be the Verma module for the Virasoro
algebra Vir with central charge ¢ and with lowest weight h. Let 1 be a lowest weight
vector of M(c,0). Then L(—1)1 is a singular vector, i.e., L(n)l = 0 for n > 1. Set
M(c,0) = M(c,0)/ < L(—1)1 >, where < L(—1)1 > denotes the submodule of M(c,0)
generated by L(—1)1. Denote by L(c,h) the (unique) irreducible quotient module of
M(c, h). By slightly abusing notations, we still use 1 for the image of 1 for both M(c,0)
and L(c, 0).

Proposition 4.2. For any complez number ¢, M(c,0) has a natural vertex operator
algebra structure and any restricted Vir-module M of central charge ¢ is a weak M(c,0)-
module. In particular, for any complex number h, M(c,h) is a M(c,0)-module.

Proof. Let M be any restricted Vir-module with central charge c. Then M(c,0) & M
is a restricted Vir-module. By Lemma 3.14, L(z) is a local vertex operator on (M(c,0) @
M, L(—1)). Then by Corollary 3.19, V =< L(z) > is a vertex algebra with M(c,0) ® M
as a module. Consequently, both M(c,0) and M are V-modules. By Lemma 2.5, the
cofnponents of Y(L(z),2) on V satisfy the Virasoro relation. Since L(z),I(2) = 0 for
n > 0,V is a lowest weight Vir-module with lowest weight 0, so that V is a quotient
module of M(c,0). Let 1 be a lowest weight vector of M(c,0). Since L(—1)1 = 0, by
Proposition 4.1, we have a V-homomorphism from V to M(c,0) mapping I(z) to 1. Then
it follows that V is isomorphic to M(c,0). Therefore M(c,0) is a vertex operator algebra

and any restricted Vir-module M is a weak module. O
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Remark 4.3. It follows that L(c,0) is a quotient vertex operator algebra of M(c,0).
Let (g, B) be a pair consisting of a finite-dimensional Lie algebra g and a nondegen-

erate symmetric invariant bilinear form B on g. Set
g=C[t,t"'|®g® Ce. (4.2)
Then we define
[@m, ba] = [@, blmtn + MOmino(a,b)e, [c,zm] =0 (4.3)

for any a,b,r € g and m,n € Z, where z,, stands for t™ @ z. For any z € g, we set

z(z) = ) zuz ™ : (4.4)

nez

Then the defining relations (4.3) of § are equivalent to the following equations:

[a(z1), b(z2)] = 276 (z—j) [, B)(2) + 2726 (z) (a,b)c, (4.5)

[z(2),¢] =0 for any a,b,z € g,m,n € Z. ‘ (4.6)
Set
N, =tClt]®g, N =t"'C[t""]®g, No=g Cec. | a.7)

Then we obtain a triangular decomposition § = N, @ No @ N_. Let P = N + Ny be
the parabolic subalgebra. For any g-module U and any complex number £, denote by
Mg .B)(£,U) the generalized Verma module [Lep] or Weyl module with c acting as scalar
¢. Namely, Mg p)(£,U) = U(g) Quep) U. For any g-module M, we may consider z(z)
for £ € g as an element of (EndM)[[z,27"]]. Recall that a §-module M is said to be
restricted if for any u € M, (t*C[t] ® g)u = 0 for k sufficiently large. Then a g-module
M is restricted if and only if z(z) for all z € g are weak vertex operators on M.
Theorem 4.4. For any complez number £, Mg p)({,C) has a natural veftea: algebra

structure and any restricted g-module M of level £ is a Mg g)(£, C)-module.
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Proof. Let M be any restricted g-module of level £. Then W = Mg 5)(¢,C) & M
is also a restricted g-module of level £. It follows from Lemma 2.3 and (4.5)-(4.6) that
g = {a(2)|a € g} is a local subspace of F(W). Let V be the subspace of F(W) generated
by all g Then by Corollary 3.19, V is a vertex superalgebra and W is a V-module.
Consequently, both M and Mg g)(¢,C) are V-modules. It follows from Lemma 2.5 and
(4.5)-(4.6) that V is a g-module (of level £) with a vector I(z) satisfying P - I(z) = 0, so
that V is a quotient g-module of Mg g)(¢, C).

To finish the proof, we only need to prove that V' is isomorphic to Mg (£, C) as a
V-module. Let d be the endomorphism of Mg 5)(£,C) such that

d-1=0, [d,a,]=-man_, foracg. (4.8)

Then [d,a(z)] = a'(z) for any a € g. Then (M(g,p)({,C),d) is a V-module. It follows
from Proposition 4.1 and the universal property of M(g p)(¢, C) that V and Mg (¢, C)
are isomorphic V-modules. O

Remark 4.6. It is clear that M(g,B)(f, C) = M(g,.B)(e "¢, C) for any nonzero complex

number o (see for example [Lian]).
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