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Abstract. An outerplanar graph is a graph which can be embedded in the plane so that
all vertices lie on the boundary of the exterior face. In this paper, we propose a simple
near optimal parallel algorithm for recognizing whether a given graph G is outerplanar
in O(logn) time using O(na(l,n)/logn) processors on an arbitrary-CRCW PRAM
where n is the number of vertices in G, a(l,n) is the inverse Ackermann function,
which grows extremely slowly with respect to [ and n[9] and I = O(n). Although a
_ near optimal parallel algorithm for general graphs can also be obtained by combining
the algorithm in [3] with the algorithm for finding biconnected components[4][9], our
algorithm uses methods completely different from the algorithm in [3]’s and is much

simpler than [3]’s.

1 Introduction

An outerplanar graph is an undirected graph
which can be embedded in the plane in such a
way that all vertices lie on the exterior face(, see
Fig. 1). A graph always denotes an undirected
graph throughout this paper, except when it
is specified to be directed. For outerplanar
graphs, several efficient algorithms for solving
important problems e.g., vertex-coloring, edge-
Fur-

thermore, it is well-known that a given graph

coloring, longest path, are known [9][5].

is outerplanar if and only if a given graph has
page number one, where graph G has page num-
ber one if there exists a linear arrangement of
vertices so that no pair of edges is crossing when
they are drawn on the same side of the lin-

ear arrangement of the vertices [13][11]. The

problem of deciding whether a given graph has
page number one is the special case of the book
embedding, whose application to fault-tolerant
VLSI design is described e.g., in the introduc-
tion of [13]. Thus, it is useful to develop effi-
cient algorithms for recognizing whether a given
graph is outerplanar or not.

Mitchell [10] proposed an O(n) sequential
algorithm for recognizing outerplanar graphs
where n is the number of vertices in G. The
sequential algorithm removes a vertex v sat-
isfying some properties from a given graph G
step by step, and cannot straightforwardly be
applied to develop an efficient parallel algo-
rithm. Diks, Hagerup and Rytter [3] devel-
oped a parallel algorithm for recognizing out-
erplanar graphs. When an input graph is bi-
connected, the algorithm [3] runs in O(logn)



time using O(n/logn) processors on a CRCW
PRAM (, see e.g., [8]), where n is the num-
ber of vertices in G. However, when an input

graph is a general graph, we need to find bi-

connected components before applying the algo-

rithm [3] to each biconnected component. The
best known parallel algorithm for finding bicon-
nected components runs in O(logn) time us-
ing O((n + m)a(m,n)/logn) processors on the
arbitrary-CRCW PRAM [4] [9] where m is the
number of edges and a(m, n) is the inverse Ack-
ermann function, which grows extremely slowly
with respect to m and n [9]. t The arbitrary-
CRCW PRAM is defined by the property that
when several processors try to write to the same
memory cell in the same step, then exactly one
of them succeeds [8]. As outerplanar graphs
have at most 2n — 3 edges [10], by checking this
fact first, we can find biconnected components
in O(log n) time using O(ne(l,n)/log n) proces-
sors on the arbitrary-CRCW PRAM where [ =
O(n). Thus, the algorithm [3] combined with
the algorithm for finding biconnected compo-
nents [4] [9] takes, in total, O(logn) time using
O(na(l,n)/logn) processors on the arbitrary-
CRCW PRAM, when applied to general graphs.
Similarly, on a CREW PRAM(, see e.g., [8]),
the complexity of parallel algorithm [3] is domi-
nated by finding biconnected components, when
applied to general graphs.

In this paper, we present a simple near
recognizing

optimal parallel algorithm for

outerplanar graphs in O(logn) time using

tIf the class of input graphs is linearly contractible
graph class [7] such as the class of planar graphs, an
optimal parallel algorithm for finding biconnected com-
ponents that runs in O(log n) time using O(n/ log n) pro-
cessors on the arbitrary-CRCW PRAM exists [7]. How-
ever, this algorithm does not work for general graphs.

O(na(l,n)/logn) processors on the arbitrary-
CRCW PRAM, in the sense that O(logn) X
O(na(l,n)/logn) = O(na(l,n)) is almost lin-
ear with respect to n. Although a near optimal
parallel algorithm for general graphs can also be
obtained by combining the algorithm in [3] with
the algorithm in [4] [9], our algorithm uses meth-
ods completely different from the algorithm in
[3]’s, e.g., the well known st-numbering, and is

much simpler than [3]’s.

2 Definitions

Given an undirected connected graph G =
A path P

from vy to v, in G is a finite non-null se-

(V, E) having no multiple edges.

quence vg,€1,v1,€2,V2,"**, €k, Vg, V; € V, i =
0,1,---,k, e € E, j =1,2,---,k, such that,
for 1 < 7 < k, the end vertices of e; are v;_;
and v;, respectively. If vg = v, then path P is
a circuit.

A biconnected graph G is a connected graph
which has no vertex v such that G—v (the graph
obtained by removing v from G) has at least two
connected components. A.biconnected outer-
planar graph has a planar embedding consisting
of a circuit bounding the exterior face, where
(possibly) a number of non-crossing edges are
embedded within the interior region of this cir-
cuit [5]. Edges on the boundary of the exterior
face are called sides, while the other edges are
called diagonals [5].

Next, we describe the st-numbering used in

our parallel algorithm.

Definition 1 [12] An st-numbering is a one-
to-one function f from V to {1,---,n} satisfying

the following two conditions :

(i) £(s) = 1 and £(t) = n,



(i) for each v € V — {s,t}, there exist adja-
cent vertices vy and v such that f(v1) < f(v) <
f (02)-

The st-

numbering is used as an indispensable compo-

Fig. 2 illustrates st-numbering.

nent in several algorithms [12]. We have the

following theorem.

Theorem 1 [12] A graph G is biconnected
if and only if it has an st-numbering by letting

s=u and t = v for each edge (u,v).

(Note 2.1) If graph G is biconnected, its st-
numbering can be obtained in O(logn) time
using O((n + m)a(m,n)/logn) processors [4]
where n (resp., m) is the number of vertices
(resp., edges) in G and a(m,n) is the inverse

Ackermann function.

3 The Parallel Algorithm

We first assume that the given graph G is bicon-
nected. We shall describe how to treat general
graphs at the end of this section. The following

theorems characterize outerplanar graphs.

Theorem 2 [6] Given graph G = (V,E), G
is outerplanar if and only if G has no subgraph
homeomorphic to either K4 or Ky 3, where K4
is the complete graph on four vertices and K3

is the graph illustrated in Fig. 3. O

Theorem 3 [10]
with n(> 3) vertices has

An outerplanar graph G

(i) at most 2n — 3 edges,

(1) at least two vertices of degree 2. O

Our parallel algorithm first checks, based on
Theorem 3, if G has at most 2n — 3 edges and

at least two vertices of degree 2. Then, this al-
gorithm chooses a vertex v of degree 2 and a
vertex v’ incident to v; regards v (resp., v') as
s (resp., t) and finds st-numbering of G. Note
that, by Note 2.1 just after Theorem 1, we can
find st-numbering of G because G is assumed
to be biconnected. When G is outerplanar, ex-
actly one Hamiltonian circuit always exists in
G, and the edges constructing the Hamiltonian
circuit can be regarded as sides of the outerpla-
nar graph [2][5]. Consequently, the above pro-
cess finds the sides by the following lemma. In
the following, suppose that the vertices in G are
numbered from 1 to n by st-numbering where s
is a vertex of degree 2 and t is a vertex incident
to s and each vertex in G is identified with its

vertex number.

Lemma 1
(4,i+1), i=1,---,n—1, arein G.

If G is outerplanar, then all edges

(proof) We shall show that, if G does not have
some edge among (z,¢ + 1), ¢ = 1,---,n — 1,
then G is not outerplanar. Assume that ver-
By the

definition of st-numbering, each vertex z, z =

tex ¢ is not incident to vertex i+1.

2,---,n— 1, must be incident to a vertex whose
number is less than z and to a vertex whose
number is more than z, respectively. By this
fact and the connectivity of G, G has simple
path Py = %,j1,72,*,J1,8, (I > 1) where
i> 1> 42> 0 > 51 > (= s). Vertex 1
(=s) is adjacent to exactly two vertices n (=t)
and 2 by definition, so j; of P;, must be 2(,
see Fig. 4). Similarly, for i+1, simple path
Piis =1+ 1,310,952 318, (I' > 1) where
i+1>41 >35> > 2(=j) > 1(= ) exists.

Moreover, by the fact that each vertex z, = =

2,---,n — 1, must be incident to the vertex



whose number is more than z, G has simple
paths P,y =1,ky,ko,---,t,wherei < ky < kg <
«- < t(=n), and Pp1p = ¢+ 1,k}, kb, - ¢,
where i +1 < ki < k) < --- < t(= n).

> ka>k >t> 5 > 50 >
<+ > Ji > 1(=s), P;; and P, share no vertex

Since t > -

except i. Similarly, P,; and P41, Piy1+ and
F;s, P11+ and Py s share no vertex except i,
i1+ 1. G*, constructed by P; s, Py1,s, Pt and
Pit1t, has a subgraph homeomorphic to Ka3
(, see Fig 4). Hence, G is not outerplanar by
Theorem 2, which however contradicts the as-
sumption that G is outerplanar. Thus we have
shown that if G is outerplanar, then G has all
edges (4, +1), ¢=1,---,n—1. 0

By Lemma 1, if at least one edge among
(44 1), ¢ = 1,---,n — 1, does not exist in
G, then the algorithm stops since G is not out-
erplanar, otherwise the edges (3,i + 1), ¢ =
1,---,m—1, and (n, 1) construct a Hamiltonian
circuit C'. We regard the edges constructing C
as sides of the outerplanar graph. (Note that
if G is outerplanar, Hamiltonian circuit C is
unique [5]. )

We assume that C' is embedded in the plane
so that each edge of C' bound the exterior face
and the edges of G — C' (G — C denotes the
graph obtained by removing edges of C' from
G) are embedded within the interior region of
C. The edges of G — C are called diagonals of
G. If the diagonals do not intersect each other
on such embedded edges, then G is outerplanar,
otherwise G is not outerplanar.

To see this, we execute the following process.
Hereafter, we identify each vertex with its ver-

tex number assigned by st-numbering.

Let M(¢),i=1, ---, n, be an array such that
M (i) contains vertex jo where jo = min{ j | j
is the endpoint of diagonals adjacent to i }.
If there is no diagonal incident to ¢, M (i) has
a value +o0o where +oo is a sufficiently large
number satisfying +0o > n. For each diagonal
(z,y) such that # < y, we execute val(z,y)
min{ M(i) | z < ¢ < y } and regard val(z,y)
as the value of diagonal (z,y). On the value
val(z, y) for each diagonal (z,y), we obtain the

following lemma.

Lemma 2  Assume that Hamiltonian circuit
C is embedded in the plane so that each edge
of C' bounds the exterior face and diagonals are
embedded within the interior region of C.

The diagonals intersect each other if and only
if there is a diagonal (z,y), where z < y, such
that the value val(z,y) is less than vertex num-

ber z.

(proof) (=) Assume that there is a pair of
diagonals which intersect each other. Let (z,y),
(¢',y'), where z < y, 2’ < y’ and 2’ < z, be
a pair of intersecting diagonals. As these two
diagonals intersect each other, vertex gy’ satis-
files ¢ < ¥ < y and is adjacent to diagonal
(z',y') where ' < z (See Fig. 6(a)). Hence,
val(z,y) = min{ M(1) [z <i<y} <z

(<) Assume that no diagonals intersect each
other. Since no diagonals intersect each other,
each vertex j adjacent to vertex i, where z <
1 < y, satisfies + < j < y for each diagonal
(z,y) where z < y (See Flg 6(b)). Hence,
val(z,y) =min{ M%) [z <i<y} >=z. O

In the following, we introduce Procedure
Recognition for recognizing whether a given

graph is outerplanar.



Procedure Recognition
begin
(Step 1) if m > 2n — 3,
then print “G is not outerplanar” and
stop.
(Step 2) if G does not have at least two vertices
of degree 2,
then print “G is not outerplanar” and
stop.
(Step 3) Choose a vertex v of degree 2 and a
vertex v’ incident to v; regard v and
v’ as s and t, respectively, and find an
st-numbering of G [12][4].
(Step4) if G does not have at least one edge
among (i,7+1) for all ¢, 1 < ¢ <
n — 1, where 4,7+ 1 are the vertex
numbers assigned by Step 3,
then print “G is not outerplanar” and
stop. v
(Step 5) For each vertex i, =1, ---, n,

M (i) < min{ j | j is the endpoint of

diagonals adjacent to ¢ }.
(Step 6) For each diagonal e; = (z,y) where

<y,
val(z,y) « min{ M%) |t <i<y}
(Step 7) if there is a diagonal (z,y), where

r < y, such that val(z,y) < z,
then print “G is not outerplanar”,

else print “G is outerplanar”.
end. O

The correctness of Procedure Recognition is
obvious by Theorem 3 and Lemmas 1 and 2.
We then analyze the computation time and the
number of processors required.

The complexity analysis is done under the as-
sumption that each vertex of the input graph G
has a pointer to its predefined adjacency list,
that is, for each vertex v € V, the vertices ad-
jacent to vertex v are given in a liked list, say,
L[v] = (uy, ug, *--, ug), in some order, where
d is the degree of v (Fig. 5(a)). Recall that the
arbitrary-CRCW PRAM is used as a parallel

computation model in this paper.
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The list ranking algorithm [8] can handle
steps 1, 2 in O(log n) time using O(n/ log n) pro-
Cessors.

Note that m = O(n) in the following analysis,
as steps 3-7 are executed only when m < 2n—3
by step 1.

The parallel algorithm for finding st-numbering
runs in O{log n) time using O((n+m)a(m, n)/log n)
processors [4] where n (resp., m) is the num-
ber of vertices (resp., edges) in input graphs
and a(m,n) is the inverse Ackermann func-
tion. Thus, in step 3, finding st-numbering of G
requires O(logn) time using O(na(l,n)/logn)
processors where | = O(n).

After finding the st-numbering, each of the
initial vertex numbers in the adjacency lists
L[i]’s is replaced by its number assigned by the
st-numbering. For this process, we first trans-
form the adjacency lists L[z]’s into a linked list
L’ as follows. Let a vertex u}, be the last element
in the adjacency list L[¢] of vertex 7 and a vertex
ui*? the first element in L[i + 1]. Each vertex
ufi has a pointer to u’f’l, fori=1, -+, n—1,
(See Fig. 5(b)). We then convert the linked list
L' into an array A by applying the list rank-
ing algorithm [8] which runs in O(logn) time
using O(n/logn) processors. And we replace
each of the initial vertex numbers by its num-
ber assigned by st-numbering using a standard
technique used to implement Brent’s schedul-
ing principle[5][8] as follows. Partition elements
of A into equal-sized blocks E;, ¢ = 1, ---,
|A|/log n, where each size is O(logn). Treat
each block E; separately, and sequentially re-
place each of the initial vertex numbers belong-
ing to block E; by its number assigned by st-
numbering. This process runs in O(logn) time

using O(n/logn) processors.



Step 4 runs in O(log n) time using O(n/ log n)
processors by applying Brent’s scheduling
principle[5][8] stated in step 3.

Let Alk, k'], 1 < k < k' < |A|(= O(n)) be
an interval between k£ and k¥’ in A. Note that
the elements in A are numbers assigned by st-
numbering. As the degree of each vertex is
found in step 2, we can recognize the vertices
adjacent to vertex v as the element in inter-
val A[k,k'] where 1 < k < k' < |A|. For ex-
ample, assume that d; is the degree of vertex
1, the vertices adjacent to vertex 1 are the ele-
ments in A[1,d;], the vertices adjacent to ver-
tex 2 are the elements in A[d; + 1, d; + d3], and
so on. (Note: Given the degree of each ver-
tex, the intervals in A corresponding to vertex
tfori=1, .-+, n, are found in O(logn) time
using O(n/ log n) processors by applying prefix-
sums algorithm [8]. ) Hence, in step 5, finding
each minimum vertex number adjacent to ver-
tex ¢ for 2 =1, .-+, n, can be done by comput-
ing the minimum of interval in A corresponding
to vertex 7. As described in [8](pp. 131-136),
after executing a preprocessing algorithm (AL-
GORITHM 3.8 in [8]) which runs in O(logn)
time using O(n/logn) processors, we can com-
pute the minimum Ap,;,[k;, kI] of A[k;, k], that
is, min{A(k;), A(k; + 1), ---, A(k!)}, where
1 < k < K < |A], in O(1) time using
O(1) processors. We need to compute the
minimum A,,;,[k;, k!]’s corresponding to vertex
i, ¢ = 1, .-+, n. Hence, by Brent’s schedul-
ing principle[5][8], we can compute the mini-
mum Ak, k/’sfori=1, ---, n,in O(logn)
The total

complexity in step 5 is O(logn) time using

time using O(n/logn) processors.

O(n/logn) processors.
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In step 6, we compute min{ M) | z <
t < y }, where z < y, for each diagonal
e; = (z,y), j=1, ---, k(= O(n)). Since this
process is equivalent to the process described in
step 5, this can be done in O(logn) time using
O(n/logn) processors.

Step 7 takes O(log n) time using O(n/logn)

Processors.

Having assumed that the input graph G is a
biconnected graph so far, we shall describe, be-
fore closing this section, how to decide whether
G is outerplanar when G is a general graph.
We first check if G has at most 2n — 3 edges.
We next find biconnected components, that
is, blocks By, By,:-+, B of G by applying the
algorithm of finding biconnected components
in [4] [9], which runs in O(logn) time using
O(na(l,n)/logn) processors. If G is outerpla-
nar, then each of blocks By, By, -+, B} is also
outerplanar [2]. Thus, we independently exe-
cute Procedure Recognition for each of these
blocks By, By, - -, Bg. If a block B; is an edge,
then Procedure Recognition tells that B; is out-
erplanar. When each block B;, ¢ = 1,---,k,
is outerplanar, we print “G is outerplanar” and
stop. By the above-mentioned statements, we

have the following theorem.

Theorem 4 Given a graph G with n ver-
tices and m edges, whether G is outerplanar
or not can be decided in O(logn) time using
O(na(l,n)/logn) processors on the arbitrary-
CRCW PRAM where o(l,n) is the inverse Ack-
ermann function, which grows extremely slowly

with respect to l and n [9] and | = O(n). O
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