
A Simple Near Optimal Parallel Algorithm for Recognizing
Outerplanar Graphs

Shin-ichi Nakayama (中山慎–) Shigeru Masuyama (増山繁)

Department of Knowledge-Based Information Engineering,
Toyohashi University of Technology

Toyohashi-shi, Aichi 441, Japan
E–mail: shin@toki.tutkie.tut.ac.jp, masuyama@tutkie.tut.ac.jp

Abstract. An outerplanar graph is a graph which can be embedded in the plane so that
all vertices lie on the boundary of the exterior face. In this paper, we propose a simple
near optimal parallel algorithm for recognizing whether a given graph G is outerplanar
in $O(\log n)$ time using $O(n\alpha(l, n)/\log n)$ processors on an arbitrary-CRCW PRAM
where n is the number of vertices in $G,$ $\alpha(l, n)$ is the inverse Ackermann function,
which grows extremely slowly with respect to l and $n[9]$ and $l=O(n)$. Although a
near optimal parallel algorithm for general graphs can also be obtained by combining
the algorithm in [3] with the algorithm for finding biconnected $\mathrm{c}\mathrm{o}\mathrm{m}_{\mathrm{P}}\mathrm{o}\mathrm{n}\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{s}[4][9]$, our
algorithm uses methods completely different from the algorithm in $[3]’ \mathrm{s}$ and is much
simpler than $[3])\mathrm{s}$.

1 Introduction

An outerplanar graph is an undirected graph
which can be embedded in the plane in such a
way that all vertices lie on the exterior face (, see

Fig. 1). A graph always denotes an undirected
graph throughout this paper, except when it
is specified to be directed. For outerplanar

graphs, several efficient algorithms for solving
important problems e.g., vertex-coloring, edge-

coloring, longest path, are known $[9][5]$. Fur-
thermore, it is well-known that a given graph
is outerplanar if and only if a given graph has
page number one, where graph G has page num-
ber one if there exists a linear arrangement of

vertices so that no pair of edges is crossing when

they are drawn on the same side of the lin-

ear arrangement of the vertices $[13][11]$. The

problem of deciding whether a given graph has

page number one is the special case of the book

embedding, whose application to fault-tolerant
VLSI design is described e.g., in the introduc-
tion of [13]. Thus, it is useful to develop effi-

cient algorithms for recognizing whether a given

graph is outerplanar or not.
Mitchell [10] proposed an $O(n)$ sequential

algorithm for recognizing outerplanar graphs
where n is the number of vertices in G . The
sequential algorithm removes a vertex v sat-

isfying some properties from a given graph G

step by step, and cannot straightforwardly be

applied to develop an efficient parallel algo-

rithm. Diks, Hagerup and Rytter [3] devel-

oped a parallel algorithm for recognizing out-

erplanar graphs. When an input graph is bi-

connected, the algorithm [3] runs in $O(\log n)$

数理解析研究所講究録
906巻 1995年 6-13 6

time using $O(n/\log n)$ processors on a CRCW
PRAM (, see e.g., [8]), where n is the num-
ber of vertices in G . However, when an input
graph is a general graph, we need to find bi-
connected components before applying the algo-
rithm [3] to each biconnected component. The
best known parallel algorithm for finding bicon-
nected components runs in $O(\log n)$ time us-
ing $O((n+m)\alpha(m, n)/\log n)$ processors on the
arbitrary-CRCW PRAM [4] [9] where m is the
number of edges and $\alpha(m, n)$ is the inverse Ack-
ermann function, which grows extremely slowly
with respect to m and $n[9]$. \dagger The arbitrary-
CRCW PRAM is defined by the property that
when several processors try to write to the same
memory cell in the same step, then exactly one
of them succeeds [8]. As outerplanar graphs
have at most $2n-3$ edges [10], by checking this
fact first, we can find biconnected components
in $O(\log n)$ time using $O(n\alpha(l, n)/\log n)$ proces-
sors on the arbitrary-CRCW PRAM where $l=$

$O(n)$. Thus, the algorithm [3] combined with
the algorithm for finding biconnected compo-
nents [4] [9] takes, in total, $O(\log n)$ time using
$O(n\alpha(l, n)/\log n)$ processors on the arbitrary-
CRCW PRAM, when applied to general graphs.
Similarly, on a CREW PRAM(, see e.g., [8]),
the complexity of parallel algorithm [3] is domi-
nated by fin.ding $\mathrm{b}\mathrm{i}_{\mathrm{C}\mathrm{O}}\mathrm{n}.\mathrm{n}$ected components, when
applied to general graphs.

In this paper, we present a simple near
optimal parallel algorithm for recognizing
outerplanar graphs in $O(\log n)$ time using

\dagger If the class of input graphs is linearly contractible
graph class [7] such as the class of planar graphs, an
optimal parallel algorithm for finding biconnected com-
ponents that runs in $O(\log n)$ time using $O(n/\log n)$ pro-
cessors on the arbitrary-CRCW PRAM exists [7]. How-
ever, this algorithm does not work for general graphs.

$O(n\alpha(l, n)/\log n)$ processors on the arbitrary-
CRCW PRAM, in the sense that $O(\log n)\cross$

$O(n\alpha(l, n)/\log n)=O(n\alpha(l, n))$ is almost lin-
ear with respect to n . Although a near optimal
parallel algorithm for general graphs can also be
obtained by combining the algorithm in [3] with
the algorithm in [4] [9], our algorithm uses meth-
ods completely different from the algorithm in
$[3]’ \mathrm{s}$, e.g., the well known st-numbering, and is
much simpler than $[3]’ \mathrm{s}$.

2 Definitions

Given an undirected connected graph $G=$

(V, E) having no multiple edges. A path P

from v_{0} to v_{k} in G is a finite non-null se-
quence $v_{0},$ $e_{1},$ $v_{1},$ $e2,$ $v2,$ $\cdots,$ $e_{k},$ $v_{k},$ $v_{i}\in V,$ $i=$

$0,1,$ $\cdots,$ $k,$ $e_{j}\in E,$ $j=1,2,$ $\cdots,$
k , such that,

for $1\leq i\leq k$, the end vertices of e_{i} are v_{i-1}

and v_{i} , respectively. If $v_{0}=v_{k}$, then path P is
a circuit.

A biconnected graph G is a connected graph
which has no vertex v such that $G-v$ (the graph
obtained by removing v from G) has at least two
connected components. A biconnected outer-
planar graph has a planar embedding consisting
of a circuit bounding the exterior face, where
(possibly) a number of non-crossing edges are
embedded within the interior region of this cir-
cuit [5]. Edges on the boundary of the exterior
face are called sides, while the other edges are
called diagonals [5].

Next, we describe the st-numbering used in
our parallel algorithm.

Definition 1 [12] An st-numbering is a one-
to-one function f from V to $\{1, \cdots, n\}$ satisfying
the following two conditions :

(i) $f(s)=1$ and $f(t)=n$,

7

(ii) for each $v\in V-\{s,t\}$, there exist adja-
cent vertices v_{1} and v_{2} such that $f(v_{1})<f(v)<$

$f(v_{2})$.

Fig. 2 illustrates st-numbering. The st-

numbering is used as an indispensable compo-
nent in several algorithms [12]. We have the

following theorem.

Theorem 1 [$\mathit{1}\mathit{2}f$ A graph G is biconnected

if and only if it has an st -numbering by letting

$s=u$ and $t=v$ for each edge (u, v) .

(Note 2.1) If graph G is biconnected, its st-

numbering can be obtained in $O(\log n)$ time
using $O((n+m)\alpha(m, n)/\log n)$ processors [4]

where n (resp., m) is the number of vertices
(resp., edges) in G and $\alpha(m, n)$ is the inverse
Ackermann function.

3 The Parallel Algorithm

We first assume that the given graph G is bicon-

nected. We shall describe how to treat general
graphs at the end of this section. The following

theorems characterize outerplanar graphs.

Theorem 2 $f\theta$] Given graph $G=(V, E),$ G

is outerplanar if and only if G has no subgmph

homeomorphic to either K_{4} or $K_{2,3}$, where K_{4}

is the complete graph on four vertices and $K_{2,3}$

is the graph illustrated in Fig. 3. \square

Theorem 3 $f\mathit{1}\mathit{0}f$ An outerplanar graph G

with $n(\geq 3)$ vertices has
(i) at most $2n-3$ edges,
(ii) at least two vertices of degree 2. \square

Our parallel algorithm first checks, based on
Theorem 3, if G has at most $2n-3$ edges and

at least two vertices of degree 2. Then, this al-

gorithm chooses a vertex v of degree 2 and a
vertex $v’$ incident to v ; regards v (resp., $v’$) as
s (resp., t) and finds st-numbering of G . Note

that, by Note 2.1 just after Theorem 1, we can

find st-numbering of G because G is assumed
to be biconnected. When G is outerplanar, ex-
actly one Hamiltonian circuit always exists in
G , and the edges constructing the Hamiltonian
circuit can be regarded as sides of the outerpla-

nar graph $[2][5]$. Consequently, the above $\mathrm{p}\mathrm{r}\mathrm{c}\succ$

cess finds the sides by the following lemma. In

the following, suppose that the vertices in G are
numbered from 1 to n by st-numbering where s

is a vertex of degree 2 and t is a vertex incident
to s and each vertex in G is identified with its
vertex number.

Lemma 1 If G is outerplanar; then all edges
$(i, i+1),$ $i=1,$ $\cdots,$ $n-1$, are in G .

(proof) We shall show that, if G does not have
some edge among $(\dot{i}, i+1),$ $i=1,$ $\cdots,$ $n-1$,

then G is not outerplanar. Assume that ver-
tex i is not incident to vertex $\mathrm{i}+1$. By the

definition of st-numbering, each vertex $x,$ $x=$

$2,$ $\cdots,$ $n-1$, must be incident to a vertex whose

number is less than x and to a vertex whose
number is more than x , respectively. By this

fact and the connectivity of $G,$ G has simple

path $P_{i,s}$ $=i,j_{1},j_{2},$ $\cdots,j\iota,$ s , $(l\geq 1)$ where
$i>j_{1}>j_{2}>\cdots>j_{l}>1(=s)$. Vertex 1
$(=s)$ is adjacent to exactly two vertices $n(=t)$

and 2 by definition, so j_{l} of $P_{i,s}$ must be 2 $($,

see Fig. 4). Similarly, for $\mathrm{i}+1$, simple path
$P_{i+1,s}$ $=i+1,j_{1}’,j_{2}’,$ $\cdot\cdot,$ $,j’\iota$

” $s,$ $(l’\geq 1)$ where
$i+1>j_{1}’>j_{2}’>\cdots>2(=j_{\iota’},)>1(=s)$ exists.

Moreover, by the fact that each vertex $x,$ $x=$

$2,$ $\cdots,$ $n-1$, must be incident to the vertex

8

whose number is more than $x,$ G has simple
paths $P_{i,t}=i,$ $k_{1},$ $k_{2},$ \cdots,t , where $i<k_{1}<k_{2}<$

$<t(=n)$, and $P_{i+1,t}=i+1,$ $k_{1’ 2}’k’,$
$\cdots,$

t ,
where $i+1<k_{1}’<k_{2}’<\cdots<t(=n)$.

Since $t>\cdots>k_{2}>k_{1}>i>j_{1}>j_{2}>$

$>j_{l}>1(=s),$ $P_{i,t}$ and $P_{i,s}$ share no vertex
except i . Similarly, $P_{i,t}$ and $P_{i+1,s},$ $P_{i+1,t}$ and
$P_{i,s},$ $P_{i+1,t}$ and $P_{i+1,s}$ share no vertex except i ,
$\dot{i}+1$. G^{*} , constructed by $P_{i},,$${}_{s}P_{i+1},S’ Pi,t$ and
$P_{i+1,t}$, has a subgraph homeomorphic to $K_{2,3}$

(, see Fig 4). Hence, G is not outerplanar by
Theorem 2, which however contradicts the as-
sumption that G is outerplanar. Thus we have
shown that if G is outerplanar, then G has all
edges $(i,\dot{i}+1),$ $i=1,$ \cdots , $n-1$. \square

By Lemma 1, if at least one edge among
$(i, i+1),$ $i=1,$ $\cdots,$ $n-1$, does not exist in
G , then the algorithm stops since G is not out-
erplanar, otherwise the edges $(i, i+1),$ $i=$

$1,$ $\cdots,$ $n-1$, and $(n, 1)$ construct a Hamiltonian
circuit C . We regard the edges constructing C

as sides of the outerplanar graph. (Note that
if G is outerplanar, Hamiltonian circuit C is
unique [5].)

We assume that C is embedded in the plane
so that each edge of C bound the exterior face
and the edges of $G-C(G-C$ denotes the
graph obtained by removing edges of C from
$G)$ are embedded within the interior region of
C. The edges of $G-C$ are called di,agonals of
G . If the diagonals do not intersect each other
on such embedded edges, then G is outerplanar,
otherwise G is not outerplanar.

To see this, we execute the following process.
Hereafter, we identify each vertex with its ver-
tex number assigned by st-numbering.

Let $M(i),$ $i=1,$ $\cdots,$ n , be an array such that
$M(i)$ contains vertex j_{0} where $j_{0} \equiv\min\{j|j$

is the endpoint of diagonals adjacent to i }.
If there is no diagonal incident to $i,$ $M(i)$ has
a value $+\infty$ where $+\infty$ is a sufficiently large
number $\mathrm{s}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{s}\mathrm{f}\mathrm{y}\mathrm{i}\mathrm{n}\mathrm{g}+\infty>n$. For each diagonal
(x, y) such that $x<y$, we execute $val(x, y)arrow$

$\min\{M(i)|x\leq i\leq y\}$ and regard $val(x, y)$

as the value of diagonal (x,y) . On the value
$val(x, y)$ for each diagonal (x, y) , we obtain the
following lemma.

Lemma 2 Assume that Hamiltonian circuit
C is embedded in the plane so that each edge

of C bounds the exterior face and diagonals are
embedded within the interior region of C .

The diagonals intersect each other if and only

if there is a diagonal (x, y) , where $x<y$, such
that the value $val(x, y)$ is less than vertex num-
$berx$.

(proof) (\Rightarrow) Assume that there is a pair of
diagonals which intersect each other. Let (x, y) ,
$(x’, y’)$, where $x<y,$ $x’<y’$ and $x’<x$, be
a pair of intersecting diagonals. As these two
diagonals intersect each other, vertex $y’\mathrm{s}\mathrm{a}\mathrm{t}\mathrm{i}_{\mathrm{S}}-$

fies $x<y’<y$ and is adjacent to diagonal
$(x’, y)’$ where $x’<x$ (See Fig. $6(\mathrm{a})$). Hence,
$val(x, y)= \min\{M(i)|x\leq i\leq y\}<x$.

(\Leftarrow) Assume that no diagonals intersect each
other. Since no diagonals intersect each other,
each vertex j adjacent to vertex \dot{i} , where $x\leq$

$i\leq y$, satisfies $x\leq j\leq y$ for each diagonal
(x, y) where $x<y$ (See Fig. $6(\mathrm{b})$). Hence,
$val(x, y)= \min\{M(i)|x\leq i\leq y\}\geq x$. \square

In the following, we introduce Procedure
Recognition for recognizing whether a given
graph is outerplanar.

9

Proced u re Recognition
begin

The list ranking algorithm [8] can handle

steps 1, 2 in $O(\log n)$ time using $O(n/\log n)$ pro-

(Step 1) if $m>2n-3$,
then print “G is not outerplanar” and
stop.

(Step 2) if G does not have at least two vertices
of degree 2,
then print “G is not outerplanar” and
stop.

(Step 3) Choose a vertex v of degree 2 and a
vertex $v’$ incident to v ; regard v and
$v’$ as s and t , respectively, and find an
st-numbering of $G[12][4]$.

(Step4) if G does not have at least one edge
among $(i, i+1)$ for all $i,$ $1\leq i\leq$

$n-1$, where $i,$ $i+1$ are the vertex
numbers assigned by Step 3,

then print “G is not outerplanar” and
stop.

(Step 5) For each vertex $i,$ $i=1,$ $\cdots,$ n ,
$M(\dot{i})\vdash\min\{j|j$ is the endpoint of
diagonals adjacent to i }.

(Step 6) For each diagonal $e_{j}=(x, y)$ where
$x<y$,

$val(x, y) arrow\min\{M(i)|x\leq i\leq y\}$

(Step 7) if there is a diagonal (x, y) , where
$x<y$, such that $val(x, y)<x$,
then print “G is not outerplanar”,
else print “G is outerplanar”.

end. \square

The correctness of Procedure Recognition is

obvious by Theorem 3 and Lemmas 1 and 2.

We then analyze the computation time and the

number of processors required.
The $\mathrm{c}.0$mplexity analysis is done under the as-

sumption that each vertex of the input graph G

has a pointer to its predefined adjacency list,

that is, for each vertex $v\in V$, the vertices ad-

jacent to vertex v are given in a liked list, say,
$L[v]=\langle u_{1}, u_{2}, \cdots, u_{d}\rangle$, in some order, where
d is the degree of v (Fig. $5(\mathrm{a})$). Recall that the

arbitrary-CRCW PRAM is used as a parallel

computation model in this paper.

cessors.
Note that $m=O(n)$ in the following analysis,

as steps 3-7 are executed only when $m\leq 2n-3$

by step 1.
The parallel algorithm for finding st-numbering

runs in $O(\log n)$ time using $O((n+m)\alpha(m, n)/\log n)$

processors [4] where n (resp., m) is the num-
ber of vertices (resp., edges) in input graphs
and $\alpha(m, n)$ is the inverse Ackermann func-

tion. Thus, in step 3, finding st-numbering of G

requires $O(\log n)$ time using $O(n\alpha(l, n)/\log n)$

processors where $l=O(n)$.
After finding the st-numbering, each of the

initial vertex numbers in the adjacency lists
$L[\iota]’ \mathrm{s}$ is replaced by its number assigned by the
st-numbering. For this process, we first trans-

form the adjacency lists $L[i]’ \mathrm{s}$ into a linked list
$L’$ as follows. Let a vertex u_{d}^{i} be the last element

in the adjacency list $L[i]$ of vertex i and a vertex
u_{1}^{i+1} the first element in $L[i+1]$. Each vertex
u_{d}^{i} has a pointer to u_{1}^{i+1} , for $i=1,$ $\cdots,$ $n-1$,

(See Fig. $5(\mathrm{b})$). We then convert the linked list
$L’$ into an array A by applying the list rank-

ing algorithm [8] which runs in $O(\log n)$ time

using $O(n/\log n)$ processors. And we replace

each of the initial vertex numbers by its num-
ber assigned by st-numbering using a standard
technique used to implement Brent’s schedul-

ing $\mathrm{p}\mathrm{r}\mathrm{i}\mathrm{n}\mathrm{C}\mathrm{i}_{\mathrm{P}}1\mathrm{e}[5][8]$ as follows. Partition elements

of A into equal-sized blocks $E_{i},$ $i=1$, ,
$|A|/\log n$, where each size is $O(\log n)$. Treat

each block E_{i} separately, and sequentially re-

place each of the initial vertex numbers belong-

ing to block E_{i} by its number assigned by st-

numbering. This process runs in $O(\log n)$ time

using $O(n/\log n)$ processors.

10

Step 4 runs in $O(\log n)$ time using $O(n/\log n)$

processors by applying Brent’s scheduling
$\mathrm{p}\mathrm{r}\mathrm{i}\mathrm{n}\mathrm{c}\mathrm{i}\mathrm{p}\mathrm{l}\mathrm{e}[5][8]$ stated in step 3.

Let $A[k, k’],$ $1\leq k<k’\leq|A|(=O(n))$ be
an interval between k and $k’$ in A . Note that
the elements in A are numbers assigned by st-
numbering. As the degree of each vertex is
found in step 2, we can recognize the vertices
adjacent to vertex v as the element in inter-
val $A[k, k’]$ where $1\leq k<k’\leq|A|$. For ex-
ample, assume that d_{i} is the degree of vertex
i , the vertices adjacent to vertex 1 are the ele-
ments in $A[1, d_{1}]$, the vertices adjacent to ver-
tex 2 are the elements in $A[d_{1}+1, d_{1}+d_{2}]$, and
so on. (Note: Given the degree of each ver-
tex, the intervals in A corresponding to vertex
i for $i=1,$ $\cdots,$ n , are found in $O(\log n)$ time
using $O(n/\log n)$ processors by applying prefix-
sums algorithm [8].) Hence, in step 5, finding
each minimum vertex number adjacent to ver-
tex i for $i=1,$ $\cdots,$ n , can be done by comput-
ing the minimum of interval in A corresponding
to vertex i . As described in [8] $(\mathrm{p}\mathrm{p}$. 131-136$)$,
after executing a preprocessing algorithm (AL-
GORITHM 3.8 in [8] $)$ which runs in $O(\log n)$

time using $O(n/\log n)$ processors, we can com-
pute the minimum $A_{\min}[k_{i}, k_{i}’]$ of $A[k_{i}, k_{i}’]$, that
is, $\min\{A(k_{i}), A(k_{i}+1), \cdots, A(k_{i}’)\}$, where
1 \leq k_{i} $<$ $k_{i}’$ \leq $|A|$, in $O(1)$ time using
$O(1)$ processors. We need to compute the
minimum $A_{\min}[k_{i}, k’]_{\mathrm{S}}i$

’ corresponding to vertex
$i,$ $i=1,$ $\cdots,$ n . Hence, by Brent’s schedul-
ing $\mathrm{p}\mathrm{r}\mathrm{i}\mathrm{n}\mathrm{c}\mathrm{i}\mathrm{p}\mathrm{l}\mathrm{e}[5][8]$, we can compute the mini-
mum $A_{\min}[k_{i}, k’]_{\mathrm{S}}i$

’ for $i=1,$ $\cdots,$ n , in $O(\log n)$

time using $O(n/\log n)$ processors. The total
complexity in step 5 is $O(\log n)$ time using
$O(n/\log n)$ processors.

In step 6, we compute $\min\{M(i)|x\leq$

$i\leq y$ $\}$, where $x<y$, for each diagonal
$e_{j}=(x, y),$ $j=1,$ $\cdots,$ $k(=O(n))$. Since this
process is equivalent to the process described in
step 5, this can be done in $O(\log n)$ time using
$O(n/\log n)$ processors.

Step 7 takes $O(\log n)$ time using $O(n/\log n)$

processors.

Having assumed that the input graph G is a
biconnected graph so far, we shall describe, be-
fore closing this section, how to decide whether
G is outerplanar when G is a general graph.
We first check if G has at most $2n-3$ edges.
We next find biconnected components, that
is, blocks $B_{1},$ $B_{2},$ $\cdots,$ B_{k} of G by applying the
algorithm of finding biconnected components
in [4] [9], which runs in $O(\log n)$ time using
$O(n\alpha(l, n)/\log n)$ processors. If G is outerpla-
nar, then each of blocks $B_{1},$ $B_{2},$ \cdots , B_{k} is also
outerplanar [2]. Thus, we independently exe-
cute Procedure Recognition for each of these
blocks $B_{1},$ $B_{2},$

$\cdots,$
B_{k} . If a block B_{i} is an edge,

then Procedure Recognition tells that B_{i} is out-
erplanar. When each block $B_{i},$ $i=1,$ $\cdots,$

k ,
is outerplanar, we print “G is outerplanar” and
stop. By the above-mentioned statements, we
have the following theorem.

Theorem 4 Given a graph G with n ver-
tices and m edges, whether G is outerplanar
or not can be decided in $O(\log n)$ time using
$O(n\alpha(l, n)/\log n)$ processors on the arbitrary-
CRCW PRAM where $\alpha(l, n)$ is the inverse Ack-
ermann function, which grows extremely slowly
with respect to l and $nf\mathit{9}f$ and $l=O(n)$. \square

11

References

[1] R. Cole, U. Vishkin: “Approximate par-

allel scheduling, II: Ap.plications to opti-

mal parallel graph algorithms in logarith-
mic time”, Inform. Comput., 91, PP.1-47,

1991.

[2] K. Diks: “A fast parallel algorithm for

six-coloring of planar graphs”, LNCS 233,

Springer Verlag, pp.273-282, 1985.

[3] K. Diks, T. Hagerup, and W. Rytter: “Op-

timal parallel algorithms for the recog-
nition and coloring outerplanar graphs”,
LNCS 379, Springer Verlag, pp.207-217,

1989.

[4] D. Fussell, V. Ramachandran and R.

Thurimalla: “Finding triconnected com-

[10] S. L. Mitchell: “Linear algorithms to recog-
nize outerplanar and maximal outerplanar

graphs”, Information Processing Letters, 9,

pp.229-232, 1979.

[11] S. Masuyama, S. Naito: “Deciding whether

graph G has page number one is in

NC”, Information Processing Letters, 32,

pp.199-204, 1992.

[12] Y. Maon, B. Schieber and U. Vishkin:
“Parallel ear decomposition search (EDS)

and $\mathrm{s}\mathrm{t}$-numbering in graphs”, Theoretical
Computer Science, 47, pp.277-298, 1986.

[13] M. Yannakakis: “Embedding planar

graphs in four pages”, J. Comput. System

Sci., 38, pp.36-67, 1989.

ponents by local replacement”, SIAM J.
Comput., 22, 3 , pp.587-616, 1993.

[5] A. Gibbons and W. Rytter: Efficient Par-

allel Algorithms, Cambridge University

Press, 1988.

[6] F. Harary: Graph Theory, Addison-
Wesley, 1969.

[7] T. Hagerup: “Optimal parallel algorithms
of planar graphs”, Inform. Comput., 84,

pp.71-96, 1990.

Figure 1: An example of an outerplanar graph.

[8] Joseph J\’aJ\’a: An Introduction to paral-

lel algorithms, Addison-Wesley Publishing

Company, 1992.

[9] J. van Leeuwen: Graph Algorithms, in: J.

van Leeuwen, eds. Handbook of Theoretical
Computer Science, Elsevier Science Pub-

lishers B.V., 1990.
Figure 2: An example of st-numbering.

12

.q-. $K_{00_{-}}$

(a) L (b) L

5: Adiarpnrv liqt. $.\mathrm{q}T,/i$) i $=1,$ \cdots , n, and linked list $L’$.

{0’

6: Illustration of the proof of Lemma 2.

13

