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On a curve in E? and S? which is close to a circle
or a straight line

Kazuyuki Enomoto (84 —2)
(Science University of Tokyo (RIRHEFIKF))

Let v be a closed C? curve of ‘length L in the 2-dimensional Euclidean space
E?. Let s be an arclength parameter of v and k be the signed curvature of v. If

n denotes the rotational number of v, we have
/ kds = 2mn. (1)
.

By Cauchy-Schwarz inequality, we have

. 1 2
/ kids > /kds)
% v

ol

'2\7m) 2
L

~~

When n # 0, the equality holds if and only if v is the n—time covering of a circle of
radius L/27n. Looking at this, we would like to consider the following question:
How close is v to a circle when f7 k*ds — (2mn)?/L is close to zero 7 Our first

theorem gives an answer to this question.

Theorem 1. Let ¢ be any positive constant. Let v be a closed curve of length L

in E? with rotational number n # 0. If

'27rn)2 2men2e?
k’2 Cl ) (
/7 ST T

then v lies between two concentric circles of radii » and R with |R —r| <.

A similar problem can be considered for a simple closed curve in the 2-dimensional
unit sphere S2. If v is an oriented simple closed C? curve in S? which has length

L < 27 and bounds the region of area A, we have

/kds:‘?.ﬂ'—A. (2)
v
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By Cauchy-Schwarz inequality and the isoperimetric inequality

L? —47A + A2 >0, (3)
we have
1 2
/Ic2ds > = (/Lds)
- ’Y . . L ’Y Py
_ (27 — A)Z‘
- L
472 — [2
> —
- L

When L < 27, the equality holds if and only if ¥ is a small circle. When f7 k2 ds
is “almost” equal to (472 — L?)/L, we have the following theorem.

Theorem2. Let ¢ be any positive constant less than 7/2. Let 4 be a simple
closed curve of length L < 27 in S%. If '

: 472 — 2 1
/k2d3<—z——————+—s2,
v L 87

then v lies between two concentric small circles of radii » and R with |R — 7| < ¢.

Now we would like to look at a curve of infinite length in E2. Let v : z(s)
be a curve in E? which is parameterized by arclength s for —co < s < oo. If
k(s) = 0 for all s, v is, of course, a straight line. If k(s) decays to zero in a certain
order as s — Zoco, v has an asymptotic line on each end. In [1] it was shown
that if v is properly immersed and there exist positive constants Cy and ¢ such
that |k(s)||z(s)[** < Cy holds for all s, then each end of C has an asymptotic
line. Here an asymptotic line means a straight line £ : y(¢) which has a property

that the function h(s) := iItlf |(s) — y(t)| tends to zero as s — +co or s — —oo. If
o0
|&(s)[|z(s)]** is bounded, we have / {k(s)||z(s)]ds < co. In our third theorem,

(o)
we will show that this condition is sufficient for v to have an asymptotic line on

each end.

Theorem 3. Let v : z(s) be a curve in E? which is parameterized by arclength
oo

s for —oco < s < oo. If |k(s)]|z(s)|ds < oo , then 7 is properly immersed and
—0o0
has an asymptotic line on each end.
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§1. Proof of Theorem 1

We have |

2 2
/iﬂds—(?”") = /Ichs-——1—</kds)
Y L Y L Y

L L
_ '217;/0 /0 (k(s) — k(2))? dsdt
1 L L

2
Bl </0 (k(s) — k(t))dt) ds
1 L L 2
= o /0 (L k(s) —/0 0 dt) ds
= %/OL (k(s) - 2’%)) ds. (4)
We set kg = 2nm/L. Since n # 0, kg # 0. Suppose that
/kzds——@i<6. (5)
; L
Then (4) and (5) give
/OL(/c(s) — ko)*ds < 26. (6)

(6) means that k(s) is close to ko except for a set of a small measure. But, in

general, this does not imply that v is close to a circle.
2

Let e(s) be the unit normal vector of y with —l——g- = —ke. We may assume that
ds

1O = (0, FO=0.1, <0 =G50,

/s dy 1de)
o \ds kods) ™
S k(s)\ dy

/0<1— k0>d3ds‘
= [ 1ks) ~ kol

—_ LS} — K £3
kol Jo °

1 L

— [ |k(s) = ko] ds

For all s € [0, L] we have

() = o)

INA

IN



Sy I i 1/2
< WLU? (/O (k(s)—ko)~ds>

< V261
= kol

V26L3

27|n|

(7) implies that

() < |,%(> +'7(8)—-,5156(8)
L \26L3

(8)

2x|n]  27|n|
and
1 1
ly(s)l > |—e(s)| = |=e(s) = 7(s)
ko ko
L V2813 )
27|n|  2mn|

L V26L3

Hence 7 lies between two concentric circles of radii

2nln|  27|n]
L V26L3 . :
and + . This proves Theorem 1 by setting
27|n| = 27|n|
5 — 2m2n2e?
JE

Remark. When 7 is a simple closed convex plane curve with bounding area

A, Theorem 1 is obtained from Gage’s inequality ([2])

and the isoperimetric inequality of Bonnesen type
L? —47A > 7*(R—r)>.

Note that Gage’s inequality does not hold for nonconvex curves.
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§2. Proof of Theorem 2

Suppose that
2 _ 12
/ Rds< L s
.

L
Since »
R T N
/lczds > —(/kds)
Jv : L \J,
(2= A)?
= —F
we have

(27— A)?  4r? - L?

T <—f T

or equivalently,
L? —4m A+ A < L6.

The isoperimetric inequality given by Osserman ([3]) states

L? —4rA+ A% > (L — cot %A)Z,
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(10)

(11)

(12)

where 7 is the radius of the inscribed circle of . It follows from (11) and (12) that

(L — cot ;’ZJA)2 < L.
Hence '
L—+Lé L++Lé
A A
Another inequality obtained from (11) and (12) is

< cot = <
cotl —
2

0< L?—4rA+ A2 < L6

(14) implies that either

2 —\/4n2 — L2+ L6 < A < 2 — \/4n? — L?

or

2+ VA2 — L2 < A< 2r + \/Ar? — L2+ L6

(15)

(16)

holds. By reversing the orientation of v if necessary, we may assume that (15)

holds.
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Now we assume that § < L. Then, combining (13) and (15), we obtain

L—ILé ceot! < L++VLé
o —/Ar2 — 2 2 " or—Ar2 — L2+ L6’

or equivalently,

— T2 AT = ]2
2 arctan 2m — Vit - LT+ LS < r < 2arctan 2m dr” — L . (1)
L++VI6§ - o L-VLé

Let v_ be the curve which is identical to vy except for the orintation. Since (16)

holds for y_, the radius r_ of the inscribed circle of y_ satisfies

2m + V4n? — L2 2 +4n? — L2+ L6
2 arctan < r_ < 2arctan . (18)
L++Lé L—+Lé

Let R be the radius of the circumscribed circle of y.. Since R = 7 — r_, we have

2 2 L2
7—2arctan< + VAT L +L§) < R

L—~Lé
2 4m2 — L2
< 77—2&1‘ctan< TtV L ) (19)

L++Lé

It follows from (17) and (19) that

R—7r < m—2arctan il =
L++Lé

2m — 2 — L2 )
—2arctan - Van? - L7+ LS . (20)
L++Lé
Set,
a_2w+v@ﬁ?77 B_Qw—vmﬂ—L2+L5
- L+4+VI§ L+Lé '
Then we see that
3 ‘ﬁ 2 - |
o ot o+ B R
ta.n(7r—2a-2ﬂ)_2<1__aﬂ> ((1—aﬁ> 1> . (21)
Now we assume that & < {—JG-. Since
2 —V/Ar2 — L2 —+/L§ (22)

> : ,
bz L++Lé ,
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we have

atf (47 — VI8)(L + VI3)
l—af = (2L 427+ 4r? — L? +/L8)VLE
(47 - B)L
>
T @@L+ 2r+ VAT - LT+ L)L
64m — 4L

9L + 87 + 4/4nw2 — L2 )
> 1. o (23)

v oy _
Since f(y) = 7 Y ] is decreasing for y > 1, it follows from (23) that

(125) (1=25) )
2(47 — VL8)(L + V'L8)
S @Lt2rt VA - L2 4 VIOV

(( (47 — VI)(L + VI?) >2 1)

(2L + 27 + V472 — L2+ /L6)VLS

_ 2(4m — VL8)(L + VL) (2L + 27 +VAr? — L2+ VLE)VLE

(47 —VI8)(L 4+ VL8)? — (2L + 27 + V4x? — L2 + VL6)2L6
2-4r(L+ L)L + 27 + V4x2 — L7 + £)VL§

= (47(-—%)217 (2L+2/‘+\/4¢—2’E‘“’+ Ly:Lo

_ 10m($L + 27 + /472 — L?) Vi
S (4r—-L - L L+2u+\/47r~ L2)2+/L

V6

< Cy—,

1\/f

where
o 107(@7—{—27’)
1 = =
(dr = 52— 5 (r + 20)?
~ 748---.

Thus, for any positive constant ¢ < «/2, if

- Le?
0 < 7 (24)
i

then R —r < tan(R — r) < . Note that the requirement that § < —1‘% 1s automat-

ically satisfied since ¢ < Z. This proves Theorem 2 except for curves of length
2 g



close to zero. For curves with 0 < L < m, we use

—_ 2 _ ]2 _ L$
R e

> , 25
= L+VIs (25)
instead of (22). Again we assume that 6§ < . Then we have
at+f (47 — 5= )(L + VL)
L—af = (2032 + 3LV6 + oZm VBV
L2
N el v v
(2L3/2 + %Lg/z + ‘/4,T2L_L2 '\ZZ'E)\/S
S AT — A
(VT + 3V + e VO
(1283 —1)/7
C (T6V3+8)V6
(128v3 — 1) /7
(7673 +8)%"
> 1. (26)
Hence
a+ 8 a+pB\ -
) / / -
<l—ap’> ((1—@,[3) 1)
) -1
- 2(128v3 — 1)v/7 [ [ (1283 — 1)\/7 _
(76v/3 + 8)V/6 (T6v/3 + 8)V/6
9 -1
C2(128V3 - 1)y [ [ (1283 -1)y7\ s\ Vs
76v/3+8 76v/3 +8
< Cg\/g,
where
5 -1
2(128v3 — 1)@ [ [ (128V3 — 1)\/7 7
Cy = - - —
76v/3 + 8 76V/3 + 8 16
~ 0.73---
Thus, for any positive constant ¢ < 7/2, if we have
2
L
O<L<m 6 S s< = (27)

< ,
c3’ 16’
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then R—r < tan(R—-r) < €.
The remaining case is when 0 < L < 7 and § > %. In this case, we take

2

6= 3 v (28)

Then we have )

L§166<g§r—<e.

Hence R—r < ¢. o ’
Now the proof of Theorem 2 is complete from'(24), (27), (28) and

min T L Ll _1
C? C? 8x) 87’

§3. Proof of Theorem 3
. .
First we show that v is properly immersed. Since |k(s)||z(s)| > 0, [k(s)||z(s)| ds
0
converges to some positive constant A. Set r(s) = |z(s)|. We have
dr? dr? S d?r?

—(s) - —(0) = —d

(5) = —=(0) T s

ClS 0

N dz dz CZQ;L‘
20 = 2 /
/0 ( <d$’ds>+ <l’ds?>)cs

> / (2~ 2la(s)l| 52

{l

> 25— 24.
2
This shows that — — 0o as s — oco. Hence [z(s)] — oo as s — co. A similar
argument shows that |z(s)| — oo as s — —oco. Thus 7 is properly immersed.
As the second step, we show that lim {L'L(S) and lim ILL(S) exist, where
§—+ 00 §— - 00
n dz ., dz "0
v (s) = a(s) — (x(s), _5>E; It follows from |k(s)||z(s)] ds = A that, for any
: Jo
€ > 0, there exists sp > 0 such that / |k(s)l|z(s)|ds < ¢ for any s1,s0 > sq.
Since o
det de  dz dz dz d*z dzx dz d%z |
R R R T A i e Ol

= (@(s), T3+ (a(5), SIS

KOO
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we have

et (s2) =2 (s1)| =

< /
S

=/ " 1k(s) ()] ds

1 .

dzt
ds

ds

< €.

This shows that lim z*(s) exists. Similarly, lim z*(s) exists.
§—00 S —r—00

Set 21 = Sl_lglo 2+ (s) . Now we show that \IE{}O(mT(S):li'J =0, where z' (s) =
(z(s), %)% Let 6(s) be the angle between z*(s) and zz . Then we have |
5| = ko)

and
[(@T(s), )l < le(s)llez]lsind(s)]
< ROl
As above, let sy be a positive constant such that /OO [k(s)||z(s)lds < <. For any
So

s> 5o we have
o < = [ |G|

= Je(l [ )l

< [l

< €.

This gives

lim |2(s)/19(s)| = 0.

Hence we have
lim (z " (s),z%) =0,

§—00

which implies that
lim (z(s) — 2%, 2%) = 0.
§— 00
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This shows that the straight line £ := {y : (y—zL1,zL) = 0} is an asymptotic line

of 7.
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