On a curve in E^2 and S^2 which is close to a circle or a straight line

Kazuyuki Enomoto (榎本 一之)

(Science University of Tokyo (東京理科大学))

Let γ be a closed C^2 curve of length L in the 2-dimensional Euclidean space E^2 . Let s be an arclength parameter of γ and k be the signed curvature of γ . If n denotes the rotational number of γ , we have

$$\int_{\gamma} k \, ds = 2\pi n. \tag{1}$$

By Cauchy-Schwarz inequality, we have

$$\int_{\gamma} k^2 ds \geq \frac{1}{L} \left(\int_{\gamma} k ds \right)^2$$
$$= \frac{(2\pi n)^2}{L}.$$

When $n \neq 0$, the equality holds if and only if γ is the n-time covering of a circle of radius $L/2\pi n$. Looking at this, we would like to consider the following question: How close is γ to a circle when $\int_{\gamma} k^2 ds - (2\pi n)^2/L$ is close to zero? Our first theorem gives an answer to this question.

Theorem 1. Let ε be any positive constant. Let γ be a closed curve of length L in E^2 with rotational number $n \neq 0$. If

$$\int_{\gamma} k^2 \, ds < \frac{(2\pi n)^2}{L} + \frac{2\pi^2 n^2 \varepsilon^2}{L^3},$$

then γ lies between two concentric circles of radii r and R with $|R-r|<\varepsilon$.

A similar problem can be considered for a simple closed curve in the 2-dimensional unit sphere S^2 . If γ is an oriented simple closed C^2 curve in S^2 which has length $L \leq 2\pi$ and bounds the region of area A, we have

$$\int_{\gamma} k \, ds = 2\pi - A. \tag{2}$$

By Cauchy-Schwarz inequality and the isoperimetric inequality

$$L^2 - 4\pi A + A^2 \ge 0, (3)$$

we have

$$\int_{\gamma} k^2 ds \geq \frac{1}{L} \left(\int_{\gamma} k ds \right)^2$$

$$= \frac{(2\pi - A)^2}{L}$$

$$\geq \frac{4\pi^2 - L^2}{L}.$$

When $L \leq 2\pi$, the equality holds if and only if γ is a small circle. When $\int_{\gamma} k^2 ds$ is "almost" equal to $(4\pi^2 - L^2)/L$, we have the following theorem.

Theorem 2. Let ε be any positive constant less than $\pi/2$. Let γ be a simple closed curve of length $L \leq 2\pi$ in S^2 . If

$$\int_{\gamma} k^2 \, ds < \frac{4\pi^2 - L^2}{L} + \frac{1}{8\pi} \varepsilon^2,$$

then γ lies between two concentric small circles of radii r and R with $|R-r|<\varepsilon$.

Now we would like to look at a curve of infinite length in E^2 . Let $\gamma: x(s)$ be a curve in E^2 which is parameterized by arclength s for $-\infty < s < \infty$. If k(s) = 0 for all s, γ is, of course, a straight line. If k(s) decays to zero in a certain order as $s \to \pm \infty$, γ has an asymptotic line on each end. In [1] it was shown that if γ is properly immersed and there exist positive constants C_0 and ε such that $|k(s)||x(s)|^{2+\varepsilon} \le C_0$ holds for all s, then each end of s has an asymptotic line. Here an asymptotic line means a straight line s: s high s has a property that the function s: s hours s has s have s have s have s have s have s have an asymptotic line on each end.

Theorem 3. Let $\gamma: x(s)$ be a curve in E^2 which is parameterized by arclength s for $-\infty < s < \infty$. If $\int_{-\infty}^{\infty} |k(s)| |x(s)| \, ds < \infty$, then γ is properly immersed and has an asymptotic line on each end.

§1. Proof of Theorem 1

We have

$$\int_{\gamma} k^{2} ds - \frac{(2\pi n)^{2}}{L} = \int_{\gamma} k^{2} ds - \frac{1}{L} \left(\int_{\gamma} k \, ds \right)^{2} \\
= \frac{1}{2L} \int_{0}^{L} \int_{0}^{L} (k(s) - k(t))^{2} \, ds dt \\
\geq \frac{1}{2L^{2}} \int_{0}^{L} \left(\int_{0}^{L} (k(s) - k(t)) \, dt \right)^{2} \, ds \\
= \frac{1}{2L^{2}} \int_{0}^{L} \left(L \, k(s) - \int_{0}^{L} k(t) \, dt \right)^{2} \, ds \\
= \frac{1}{2} \int_{0}^{L} \left(k(s) - \frac{2n\pi}{L} \right)^{2} \, ds. \tag{4}$$

We set $k_0 = 2n\pi/L$. Since $n \neq 0$, $k_0 \neq 0$. Suppose that

$$\int_{\gamma} k^2 ds - \frac{(2\pi n)^2}{L} < \delta. \tag{5}$$

Then (4) and (5) give

$$\int_0^L (k(s) - k_0)^2 \, ds < 2\delta. \tag{6}$$

(6) means that k(s) is close to k_0 except for a set of a small measure. But, in general, this does not imply that γ is close to a circle.

Let e(s) be the unit normal vector of γ with $\frac{d^2\gamma}{ds^2} = -ke$. We may assume that

$$\gamma(0) = (\frac{1}{k_0}, 0), \quad \frac{d\gamma}{ds}(0) = (0, 1), \quad e(0) = (\frac{k_0}{|k_0|}, 0).$$

For all $s \in [0, L]$ we have

$$\left| \gamma(s) - \frac{1}{k_0} e(s) \right| = \left| \int_0^s \left(\frac{d\gamma}{ds} - \frac{1}{k_0} \frac{de}{ds} \right) ds \right|$$

$$= \left| \int_0^s \left(1 - \frac{k(s)}{k_0} \right) \frac{d\gamma}{ds} ds \right|$$

$$\leq \frac{1}{|k_0|} \int_0^s |k(s) - k_0| ds$$

$$\leq \frac{1}{|k_0|} \int_0^L |k(s) - k_0| ds$$

$$\leq \frac{1}{|k_0|} L^{1/2} \left(\int_0^L (k(s) - k_0)^2 ds \right)^{1/2}$$

$$\leq \frac{\sqrt{2\delta L}}{|k_0|}$$

$$= \frac{\sqrt{2\delta L^3}}{2\pi |n|}.$$

(7) implies that

$$|\gamma(s)| \leq \left| \frac{1}{k_0} e(s) \right| + \left| \gamma(s) - \frac{1}{k_0} e(s) \right|$$

$$\leq \frac{L}{2\pi |n|} + \frac{\sqrt{2\delta L^3}}{2\pi |n|}$$
(8)

and

$$|\gamma(s)| \geq \left| \frac{1}{k_0} e(s) \right| - \left| \frac{1}{k_0} e(s) - \gamma(s) \right|$$

$$\geq \frac{L}{2\pi |n|} - \frac{\sqrt{2\delta L^3}}{2\pi |n|}.$$
(9)

Hence γ lies between two concentric circles of radii $\frac{L}{2\pi|n|} - \frac{\sqrt{2\delta L^3}}{2\pi|n|}$ and $\frac{L}{2\pi|n|} + \frac{\sqrt{2\delta L^3}}{2\pi|n|}$. This proves Theorem 1 by setting

$$\delta = \frac{2\pi^2 n^2 \varepsilon^2}{L^3}.$$

Remark. When γ is a simple closed convex plane curve with bounding area A, Theorem 1 is obtained from Gage's inequality ([2])

$$\pi \frac{L}{A} \le \int_{\gamma} k^2 \, ds$$

and the isoperimetric inequality of Bonnesen type

$$L^2 - 4\pi A > \pi^2 (R - r)^2$$
.

Note that Gage's inequality does not hold for nonconvex curves.

§2. Proof of Theorem 2

Suppose that

$$\int_{\gamma} k^2 ds < \frac{4\pi^2 - L^2}{L} + \delta. \tag{10}$$

Since

$$\int_{\gamma} k^2 ds \geq \frac{1}{L} \left(\int_{\gamma} k ds \right)^2$$
$$= \frac{(2\pi - A)^2}{L},$$

we have

$$\frac{(2\pi - A)^2}{L} < \frac{4\pi^2 - L^2}{L} + \delta,$$

or equivalently,

$$L^2 - 4\pi A + A^2 < L\delta. \tag{11}$$

The isoperimetric inequality given by Osserman ([3]) states

$$L^{2} - 4\pi A + A^{2} \ge (L - \cot\frac{r}{2}A)^{2}, \tag{12}$$

where r is the radius of the inscribed circle of γ . It follows from (11) and (12) that

$$(L - \cot \frac{r}{2}A)^2 < L\delta.$$

Hence

$$\frac{L - \sqrt{L\delta}}{A} < \cot \frac{r}{2} < \frac{L + \sqrt{L\delta}}{A}.$$
 (13)

Another inequality obtained from (11) and (12) is

$$0 \le L^2 - 4\pi A + A^2 < L\delta. (14)$$

(14) implies that either

$$2\pi - \sqrt{4\pi^2 - L^2 + L\delta} < A \le 2\pi - \sqrt{4\pi^2 - L^2} \tag{15}$$

or

$$2\pi + \sqrt{4\pi^2 - L^2} \le A < 2\pi + \sqrt{4\pi^2 - L^2 + L\delta} \tag{16}$$

holds. By reversing the orientation of γ if necessary, we may assume that (15) holds.

Now we assume that $\delta < L$. Then, combining (13) and (15), we obtain

$$\frac{L-\sqrt{L\delta}}{2\pi-\sqrt{4\pi^2-L^2}}<\cot\frac{r}{2}<\frac{L+\sqrt{L\delta}}{2\pi-\sqrt{4\pi^2-L^2+L\delta}},$$

or equivalently,

$$2\arctan\left(\frac{2\pi-\sqrt{4\pi^2-L^2+L\delta}}{L+\sqrt{L\delta}}\right) < r < 2\arctan\left(\frac{2\pi-\sqrt{4\pi^2-L^2}}{L-\sqrt{L\delta}}\right). \quad (17)$$

Let γ_{-} be the curve which is identical to γ except for the orintation. Since (16) holds for γ_{-} , the radius r_{-} of the inscribed circle of γ_{-} satisfies

$$2\arctan\left(\frac{2\pi+\sqrt{4\pi^2-L^2}}{L+\sqrt{L\delta}}\right) < r_{-} < 2\arctan\left(\frac{2\pi+\sqrt{4\pi^2-L^2+L\delta}}{L-\sqrt{L\delta}}\right). \quad (18)$$

Let R be the radius of the circumscribed circle of γ . Since $R = \pi - r_{-}$, we have

$$\pi - 2 \arctan\left(\frac{2\pi + \sqrt{4\pi^2 - L^2 + L\delta}}{L - \sqrt{L\delta}}\right) < R$$

$$< \pi - 2 \arctan\left(\frac{2\pi + \sqrt{4\pi^2 - L^2}}{L + \sqrt{L\delta}}\right). \quad (19)$$

It follows from (17) and (19) that

$$R - r < \pi - 2 \arctan\left(\frac{2\pi + \sqrt{4\pi^2 - L^2}}{L + \sqrt{L\delta}}\right)$$
$$-2 \arctan\left(\frac{2\pi - \sqrt{4\pi^2 - L^2 + L\delta}}{L + \sqrt{L\delta}}\right). \tag{20}$$

Set

$$\alpha = \frac{2\pi + \sqrt{4\pi^2 - L^2}}{L + \sqrt{L\delta}}, \quad \beta = \frac{2\pi - \sqrt{4\pi^2 - L^2 + L\delta}}{L + \sqrt{L\delta}}.$$

Then we see that

$$\tan(\pi - 2\alpha - 2\beta) = 2\left(\frac{\alpha + \beta}{1 - \alpha\beta}\right) \left(\left(\frac{\alpha + \beta}{1 - \alpha\beta}\right)^2 - 1\right)^{-1}.$$
 (21)

Now we assume that $\delta < \frac{L}{16}$. Since

$$\beta \ge \frac{2\pi - \sqrt{4\pi^2 - L^2} - \sqrt{L\delta}}{L + \sqrt{L\delta}},\tag{22}$$

we have

$$\frac{\alpha + \beta}{1 - \alpha \beta} \geq \frac{(4\pi - \sqrt{L\delta})(L + \sqrt{L\delta})}{(2L + 2\pi + \sqrt{4\pi^2 - L^2} + \sqrt{L\delta})\sqrt{L\delta}}$$

$$\geq \frac{(4\pi - \frac{L}{4})L}{(2L + 2\pi + \sqrt{4\pi^2 - L^2} + \frac{L}{4})\frac{L}{4}}$$

$$= \frac{64\pi - 4L}{9L + 8\pi + 4\sqrt{4\pi^2 - L^2}}$$
> 1. (23)

Since $f(y) = \frac{2y}{y^2 - 1}$ is decreasing for y > 1, it follows from (23) that

$$2\left(\frac{\alpha+\beta}{1-\alpha\beta}\right)\left(\left(\frac{\alpha+\beta}{1-\alpha\beta}\right)^{2}-1\right)^{-1}$$

$$<\frac{2(4\pi-\sqrt{L\delta})(L+\sqrt{L\delta})}{(2L+2\pi+\sqrt{4\pi^{2}-L^{2}}+\sqrt{L\delta})\sqrt{L\delta}}$$

$$\times\left(\left(\frac{(4\pi-\sqrt{L\delta})(L+\sqrt{L\delta})}{(2L+2\pi+\sqrt{4\pi^{2}-L^{2}}+\sqrt{L\delta})\sqrt{L\delta}}\right)^{2}-1\right)^{-1}$$

$$=\frac{2(4\pi-\sqrt{L\delta})(L+\sqrt{L\delta})(2L+2\pi+\sqrt{4\pi^{2}-L^{2}}+\sqrt{L\delta})\sqrt{L\delta}}{(4\pi-\sqrt{L\delta})^{2}(L+\sqrt{L\delta})^{2}-(2L+2\pi+\sqrt{4\pi^{2}-L^{2}}+\sqrt{L\delta})^{2}L\delta}$$

$$<\frac{2\cdot4\pi(L+\frac{L}{4})(2L+2\pi+\sqrt{4\pi^{2}-L^{2}}+\frac{L}{4})\sqrt{L\delta}}{(4\pi-\frac{L}{4})^{2}L^{2}-(2L+2\pi+\sqrt{4\pi^{2}-L^{2}}+\frac{L}{4})^{2}\frac{L^{2}}{16}}$$

$$=\frac{10\pi(\frac{9}{4}L+2\pi+\sqrt{4\pi^{2}-L^{2}})}{(4\pi-\frac{L}{4})^{2}-\frac{1}{16}(\frac{9}{4}L+2\pi+\sqrt{4\pi^{2}-L^{2}})^{2}}\frac{\sqrt{\delta}}{\sqrt{L}}$$

$$$$

where

$$C_1 = \frac{10\pi(\frac{\sqrt{97}}{2}\pi + 2\pi)}{(4\pi - \frac{2\pi}{4})^2 - \frac{1}{16}(\frac{\sqrt{97}}{2}\pi + 2\pi)^2}$$

$$\approx 7.48 \cdots$$

Thus, for any positive constant $\varepsilon < \pi/2$, if

$$\delta \le \frac{L\varepsilon^2}{C_1^2},\tag{24}$$

then $R-r \leq \tan(R-r) < \varepsilon$. Note that the requirement that $\delta < \frac{L}{16}$ is automatically satisfied since $\varepsilon < \frac{\pi}{2}$. This proves Theorem 2 except for curves of length

close to zero. For curves with $0 < L < \pi$, we use

$$\beta \ge \frac{2\pi - \sqrt{4\pi^2 - L^2} - \frac{L\delta}{2\sqrt{4\pi^2 - L^2}}}{L + \sqrt{L\delta}},\tag{25}$$

instead of (22). Again we assume that $\delta < \frac{L}{16}$. Then we have

$$\frac{\alpha + \beta}{1 - \alpha \beta} \geq \frac{(4\pi - \frac{L\delta}{2\sqrt{4\pi^2 - L^2}})(L + \sqrt{L\delta})}{(2L^{3/2} + \frac{3}{2}L\sqrt{\delta} + \frac{\pi L}{\sqrt{4\pi^2 - L^2}}\sqrt{\delta})\sqrt{\delta}}$$

$$> \frac{(4\pi - \frac{L^2}{32\sqrt{4\pi^2 - L^2}})L}{(2L^{3/2} + \frac{3}{8}L^{3/2} + \frac{\pi L}{\sqrt{4\pi^2 - L^2}}\frac{\sqrt{L}}{4})\sqrt{\delta}}$$

$$> \frac{4\pi - \frac{\pi^2}{32\sqrt{4\pi^2 - \pi^2}}}{(2\sqrt{\pi} + \frac{3}{8}\sqrt{\pi} + \frac{\pi}{\sqrt{4\pi^2 - \pi^2}}\frac{\sqrt{\pi}}{4})\sqrt{\delta}}$$

$$= \frac{(128\sqrt{3} - 1)\sqrt{\pi}}{(76\sqrt{3} + 8)\sqrt{\delta}}$$

$$> \frac{(128\sqrt{3} - 1)\sqrt{\pi}}{(76\sqrt{3} + 8)\frac{\sqrt{\pi}}{4}}$$

$$> 1. \tag{26}$$

Hence

$$2\left(\frac{\alpha+\beta}{1-\alpha\beta}\right) \left(\left(\frac{\alpha+\beta}{1-\alpha\beta}\right)^{2}-1\right)^{-1}$$

$$< \frac{2(128\sqrt{3}-1)\sqrt{\pi}}{(76\sqrt{3}+8)\sqrt{\delta}} \left(\left(\frac{(128\sqrt{3}-1)\sqrt{\pi}}{(76\sqrt{3}+8)\sqrt{\delta}}\right)^{2}-1\right)^{-1}$$

$$= \frac{2(128\sqrt{3}-1)\sqrt{\pi}}{76\sqrt{3}+8} \left(\left(\frac{(128\sqrt{3}-1)\sqrt{\pi}}{76\sqrt{3}+8}\right)^{2}-\delta\right)^{-1}\sqrt{\delta}$$

$$< C_{2}\sqrt{\delta},$$

where

$$C_2 = \frac{2(128\sqrt{3} - 1)\sqrt{\pi}}{76\sqrt{3} + 8} \left(\left(\frac{(128\sqrt{3} - 1)\sqrt{\pi}}{76\sqrt{3} + 8} \right)^2 - \frac{\pi}{16} \right)^{-1}$$

$$\approx 0.73 \cdots$$

Thus, for any positive constant $\varepsilon < \pi/2$, if we have

$$0 < L < \pi, \quad \delta < \frac{\varepsilon^2}{C_2^2}, \quad \delta < \frac{L}{16},$$
 (27)

then $R - r \leq \tan(R - r) < \varepsilon$.

The remaining case is when $0 < L < \pi$ and $\delta \ge \frac{L}{16}$. In this case, we take

$$\delta = \frac{\varepsilon^2}{8\pi}.\tag{28}$$

Then we have

$$L \le 16\delta < \frac{2\varepsilon^2}{\pi} < \varepsilon.$$

Hence $R-r<\varepsilon$.

Now the proof of Theorem 2 is complete from (24), (27), (28) and

$$\min\left\{\frac{\pi}{C_1^2}, \ \frac{1}{C_2^2}, \ \frac{1}{8\pi}\right\} = \frac{1}{8\pi}.$$

§3. Proof of Theorem 3

First we show that γ is properly immersed. Since $|k(s)||x(s)| \ge 0$, $\int_0^\infty |k(s)||x(s)| ds$ converges to some positive constant A. Set r(s) = |x(s)|. We have

$$\frac{dr^2}{ds}(s) - \frac{dr^2}{ds}(0) = \int_0^s \frac{d^2r^2}{ds^2} ds$$

$$= \int_0^s \left(2\langle \frac{dx}{ds}, \frac{dx}{ds} \rangle + 2\langle x, \frac{d^2x}{ds^2} \rangle \right) ds$$

$$\geq \int_0^s (2 - 2|x(s)| \left| \frac{d^2x}{ds^2} \right|) ds$$

$$\geq 2s - 2A.$$

This shows that $\frac{dr^2}{ds} \to \infty$ as $s \to \infty$. Hence $|x(s)| \to \infty$ as $s \to \infty$. A similar argument shows that $|x(s)| \to \infty$ as $s \to -\infty$. Thus γ is properly immersed.

As the second step, we show that $\lim_{s\to\infty} x^{\perp}(s)$ and $\lim_{s\to-\infty} x^{\perp}(s)$ exist, where $x^{\perp}(s) = x(s) - \langle x(s), \frac{dx}{ds} \rangle \frac{dx}{ds}$. It follows from $\int_0^{\infty} |k(s)||x(s)| ds = A$ that, for any $\varepsilon > 0$, there exists $s_0 > 0$ such that $\int_{s_1}^{s_2} |k(s)||x(s)| ds < \varepsilon$ for any $s_1, s_2 \geq s_0$. Since

$$\left| \frac{dx^{\perp}}{ds} \right|^{2} = \left| \frac{dx}{ds} - \langle \frac{dx}{ds}, \frac{dx}{ds} \rangle \frac{dx}{ds} - \langle x(s), \frac{d^{2}x}{ds^{2}} \rangle \frac{dx}{ds} - \langle x(s), \frac{dx}{ds} \rangle \frac{d^{2}x}{ds^{2}} \right|^{2}$$

$$= \langle x(s), \frac{d^{2}x}{ds^{2}} \rangle^{2} + \langle x(s), \frac{dx}{ds} \rangle^{2} |k(s)|^{2}$$

$$= |k(s)|^{2} |x(s)|^{2},$$

we have

$$|x^{\perp}(s_2) - x^{\perp}(s_1)| = \left| \int_{s_1}^{s_2} \frac{dx^{\perp}}{ds} \, ds \right|$$

$$\leq \int_{s_1}^{s_2} \left| \frac{dx^{\perp}}{ds} \right| \, ds$$

$$= \int_{s_1}^{s_2} |k(s)| |x(s)| \, ds$$

$$< \varepsilon.$$

This shows that $\lim_{s\to\infty} x^{\perp}(s)$ exists. Similarly, $\lim_{s\to-\infty} x^{\perp}(s)$ exists. Set $x_{\infty}^{\perp} = \lim_{s\to\infty} x^{\perp}(s)$. Now we show that $\lim_{s\to\infty} \langle x^{\top}(s), x_{\infty}^{\perp} \rangle = 0$, where $x^{\top}(s) = \langle x(s), \frac{dx}{ds} \rangle \frac{dx}{ds}$. Let $\theta(s)$ be the angle between $x^{\perp}(s)$ and x_{∞}^{\perp} . Then we have

$$\left| \frac{d\theta}{ds} \right| = |k(s)|$$

and

$$|\langle x^{\mathsf{T}}(s), x_{\infty}^{\perp} \rangle| \leq |x(s)||x_{\infty}^{\perp}||\sin \theta(s)|$$
$$\leq |x(s)||x_{\infty}^{\perp}||\theta(s)|.$$

As above, let s_0 be a positive constant such that $\int_{s_0}^{\infty} |k(s)||x(s)| ds < \varepsilon$. For any $s \geq s_0$ we have

$$|x(s)||\theta(s)| \leq |x(s)| \int_{s}^{\infty} \left| \frac{d\theta}{dt} \right| dt$$

$$= |x(s)| \int_{s}^{\infty} |k(t)| dt$$

$$\leq \int_{s}^{\infty} |k(t)| |x(t)| dt$$

$$< \varepsilon.$$

This gives

$$\lim_{s \to \infty} |x(s)| |\theta(s)| = 0.$$

Hence we have

$$\lim_{s \to \infty} \langle x^{\mathsf{T}}(s), x_{\infty}^{\perp} \rangle = 0,$$

which implies that

$$\lim_{s \to \infty} \langle x(s) - x_{\infty}^{\perp}, x_{\infty}^{\perp} \rangle = 0.$$

This shows that the straight line $\ell := \{y : \langle y - x_{\infty}^{\perp}, x_{\infty}^{\perp} \rangle = 0\}$ is an asymptotic line of γ .

References

- 1. K.Enomoto, Compactification of submanifolds in Euclidean space by the inversion, Advanced Studies in Pure Mathematics, Vol.22 (K.Shiohama, eds.), Kinokuniya Company, 1993, p.1-11.
- 2. M. Gage, An isoperimetric inequality with applications to curve shortning, Duke Math. J. 50 (1983), 1225-1229.
- 3. R. Osserman, Bonnesen-style isoperimetric inequalities, Amer. Math. Monthly 86 (1979), 1-29.

Faculty of Industrial Science and Technology, Science University of Tokyo, Oshmanbe, Hokkaido, 049–35 Japan