On Subwords of Languages¹

Pál DÖMÖSI Institute of Mathematics and Informatics L. Kossuth University Egyetem tér 1 4032 Debrecen Hungary domosi@math.klte.hu

and

Masami ITO Faculty of Science Kyoto Sangyo University Kyoto 603 Japan ito@ksuvx0.kyoto-su.ac.jp

Abstract: For any (formal) language L, we consider the language Sub(L)of all subwords of elements in L and define the function $f_L: N \to N$ having the possibly minimal complexity such that $p \in Sub(L)$ implies $qpr \in L$ for some pair q, r of words with $|qr| \leq f_L(|p|)$ (where |p| denotes the length of p). We show that, for any regular language L, there exists a constant f_L of this type. Moreover, if L is context-free, then it can be found a linear f_L . Using well-known results, we give an example for a context-sensitive language L having only non-recursive f_L .

¹This work was supported by grants of the Soros Foundation, the Hungarian National Foundation for Scientific Research (OTKA T4295,T7608), Kyoto Sangyo University, and Grant-in-Aid for Scientific Research (No. 06640092), Ministry of Education, Science and Culture of Japan.

1. Introduction

For all notions and notations not defined here, see [1 - 3]. An alphabet is a finite nonempty set. The elements of an alphabet are called *letters*. A word over an alphabet X is a finite string consisting of letters of X. For any alphabet X, let X^* denote the free monoid generated by X, i.e. the set of all words over X including the empty word λ and $X^+ = X^* \setminus \{\lambda\}$. The length of a word w, in symbols |w|, means the number of letters in w when each letter is counted as many times as it occurs. By definition, $|\lambda| = 0$. If u and v are words over an alphabet X, then their catenation uv is also a word over X. Especially, for any word uvw, we say that v is a subword of uvw. A language over X is a set $L \subseteq X^*$. We extend the concept of catenation for the class of languages as usual. Therefore, if L_1 and L_2 are languages, then $L_1L_2 = \{p_1p_2 \mid p_1p_2 \mid p_1p_2 \mid p_1p_2 \mid p_1p_2 \mid p_2p_2 \mid p_1p_2 \mid p_2p_2 \mid$ $| p_1 \in L_1, p_2 \in L_2$. Let p be a word. We put $p^0 = \lambda$ and $p^n = p^{n-1}p(n > 0)$. Thus $p^k (k \ge 0)$ is the k-th power of p. If there is no danger of confusion, then sometimes we identify p with the singleton set $\{p\}$. Thus we will write p^* and p^+ instead of $\{p\}^*$ and $\{p\}^+$, respectively. The set of all subwords of any word p is denoted by Sub(p). For any language L, we put $Sub(L) = \bigcup \{Sub(p) \mid p \in L\}$. L is dense if $Sub(L) = X^*$. A generative grammar is an ordered quadruple $G = (V_N, V_T, S, P)$ where V_N and V_T are disjoint alphabets, $S \in V_N$, and P is a finite set of ordered pairs (W, Z) such that Z is a word over the alphabet $V = V_N \cup V_T$ and W is a word over V containing at least one letter of V_N . The elements of V_N are called *nonterminals* and those of V_T terminals. S is called the start symbol. Elements (W, Z) of P are called productions and are written $W \to Z$. A word Q over V derives directly a word R, in symbols, $Q \Rightarrow R$, if and only if there are words Q_1, Q_2, Q_3, R_1 such that $Q = Q_2 Q_1 Q_3, R = Q_2 R_1 Q_3$ and $Q_1 \rightarrow R_1$ belongs to P. Q derives R, or in symbols, $Q \Rightarrow *R$ if and only if there is a finite sequence of words $W_0, \ldots, W_k (k \ge 0)$ over V where $W_0 = Q, W_k = R$ and $W_i \Rightarrow W_{i+1}$ for $0 \le i \le k-1$. Thus for every $W \in (V_N \cup V_T)^*$ we have $W \Rightarrow *W$. The language L(G) generated by G is defined by $L(G) = \{w \mid w \in V_T^*, S \Rightarrow *w\}$.

2. Results

Suppose that G is regular. Then each production is one of the forms $W \to wZ$ or $W \to w$ where $W, Z \in V_N$ and $w \in V_T^*$. It is obvious that for any $p \in Sub(L(G))$, there exists a derivation $W_1 \Rightarrow q_1 W_2 \Rightarrow \ldots \Rightarrow q_1 \ldots q_i W_{i+1} \Rightarrow q_1 \ldots q_i p_1 W_{i+2} \Rightarrow \ldots \Rightarrow q_1 \ldots q_i p_1 \ldots p_m W_{i+m+1}$ with $W_1, \ldots, W_{i+m} \in V_N, W_1 = S, W_{i+m+1} \in V_N \cup \{\lambda\}$, and $p = p_1 \ldots p_m$, such that the word $W_1 \ldots W_{i+1}$ has no letters with double occurrences. Clearly, then $i < |V_N|$. On the other hand, we may suppose without loss of generality that there exists a positive integer t such that every nonterminal W has a derivation $W \Rightarrow *p_W$ with $p_W \in V_T^*$ and $|p_W| \leq t$. We get the following result.

Theorem 2.1. For any regular language L there exists a positive integer k having the property that $p \in Sub(L)$ implies $qpr \in L$ for some pair q, r of words with $|qr| \leq k$. \Box

Now we assume that G is context-free. Then every production has the form $W \to Z$, where $W \in V_N$ and $Z \in (V_N \cup V_T)^*$. We may assume without loss of generality

that for a suitable positive integer t every nonterminal W has a derivation $W \Rightarrow *p_W$ with $p_W \in V_T^*$ and $|p_W| \leq t$.

Denote s the maximal length of the right side of the productions. First we show that for any derivation $A \Rightarrow *q'ar', A \in V_N, a \in V_T$ there exists a pair $q, r \in V_T^*$ such that $A \Rightarrow *qar$, $|qar| \leq (|V_N| s - 1)t + 1$, moreover, $q = \lambda$ provided $q' = \lambda$ and $r = \lambda$ provided $r' = \lambda$. If $A \Rightarrow *q'ar'$ holds for some pair $q', r' \in (V_N \cup V_T)^*$, then there exist productions $W_i \rightarrow Q_i W_{i+1} R_i, i = 1, \ldots, j, j \geq 1$, $W_1 = A, W_{j+1} = a$ with $W_1(=A), \ldots, W_j \in V_N$ such that the word $W_1 \ldots W_j$ has only distinct letters. Then $j \leq |V_N|$. Thus the length of $Q_1 \ldots Q_j a R_j \ldots R_1$ is not greater than $|V_N| s$ and it has not more than $|V_N| s - 1$ nonterminals. Therefore, we can obtain a derivation $A \Rightarrow *qar$ where $qar \in V_T^*$ and $|qar| \leq (|V_N| s - 1)t + 1$. Especially, if $q' = \lambda$ then for any derivation $A \Rightarrow *Q_1 \ldots Q_j a R_j \ldots R_1 \Rightarrow *ar'$ we obtain $Q_1 \ldots Q_j \Rightarrow *\lambda$. Hence we may assume $q = \lambda$ whenever $q' = \lambda$. Similarly, if $r' = \lambda$, then for any derivation $A \Rightarrow *Q_1 \ldots Q_j a R_j \ldots R_1 \Rightarrow *q'a$ we obtain $R_j \ldots R_1 \Rightarrow *\lambda$. Consequently, we may assume $r = \lambda$ whenever $r' = \lambda$.

Let us consider a positive integer n > 1. Now we suppose that for any derivation $A \Rightarrow *q'pr', A \in V_N, p \in V_T^+, |p| < n$ there exists a pair $q, r \in V_T^*$ such that $A \Rightarrow *qpr, |qpr| \leq ((|V_N|s-1)t+1)(2|p|-1)$, moreover, $q = \lambda$ provided $q' = \lambda$ and $r = \lambda$ provided $r' = \lambda$. Prove that the *n*-length words preserve these properties. Take an *n*-length word $p' \in V_T^*$ such that $A \Rightarrow *q'p'r'$ holds for some pair $q', r' \in (V_N \cup V_T)^*$. Then there exist productions $W_i \to Q_i W_{i+1} R_i, i = 1, \ldots, j$,

 $j \geq 1$ with $W_1(=A), \ldots, W_j \in V_N$ such that the word $W_1 \ldots W_j$ has only distinct letters. Furthermore, $W_{j+1} = Z_1 \ldots Z_m$ where $Z_1, \ldots, Z_m \in V_N \cup V_T, m \geq 2$, $|Q_1 \ldots Q_j R_j \ldots R_1| \leq |V_N| s - 2$. Moreover, $Z_1 \Rightarrow *w_1 p_1, Z_m \Rightarrow *p_m w_2$,

 $\begin{array}{l|c|c|c|c|c|c|c|c|} &|p_{1} &| > 0, Z_{\ell} \Rightarrow *p_{\ell}, \ \ell = 2, \dots, m-1, p' = p_{1} \dots p_{m}, \ \text{and} \ w_{1}, w_{2} \in V_{T}^{*}. \ \text{Of} \\ \text{course, using our inductive assumptions,} &|w_{1}p_{1} &| \leq ((|V_{N} &| s-1)t+1)(2 &| p_{1} &| -1) \\ \text{and} &|p_{m}w_{2} &| \leq ((|V_{N} &| s-1)t+1)(2 &| p_{m} &| -1). \ \text{Then for an appropriate derivation} \\ A \Rightarrow qp'r \ (q, r \in V_{T}^{*}) \ \text{we have that} \ qp'r \ \text{has not more letters} \ \text{than} \ (|V_{N} &| s-2)t+ \\ &+ &|p_{2} &| + \dots + &|p_{m-1} &| + ((|V_{N} &| s-1)t+1)(2 &| p_{1} &| +2 &| p_{m} &| -2) &(m \geq 2). \end{array}$

Therefore, $|qp'r| < ((|V_N|s-1)t+1)(2n-1)$. On the other hand, for any derivation $A \Rightarrow *Q_1 \dots Q_j w_1 p' w_2 R_j \dots R_1 \Rightarrow *p'r'$ we obtain $Q_1 \dots Q_j w_1 \Rightarrow *\lambda$. Hence we may assume $q = \lambda$ whenever $q' = \lambda$. Similarly, if $r' = \lambda$, then for any derivation $A \Rightarrow *Q_1 \dots Q_j w_1 p' w_2 R_j \dots R_1 \Rightarrow q'p'$ we obtain $w_2 R_j \dots R_1 \Rightarrow *\lambda$. Consequently, we may assume $r = \lambda$ whenever $r' = \lambda$. Therefore, the word p' preserves the properties of our inductive assumptions. Especially, if A = S and $A \Rightarrow *q'p'r'$ with $q'p'r' \in V_T^*$, then by definition $p' \in sub(L(G))$. Thus, if k is a positive integer with $k > 2(|V_N|s-1)t+1$, then we receive the following result.

Theorem 2.2. For any context-free language L there exists a positive integer k having the property that $p \in Sub(L)$ implies $qpr \in L$ for some pair q, r of words with $|qr| \leq k |p|$. \Box

Finally, it is well-known [2] that, for each recursively enumerable language $L' \subseteq \subseteq X^*$, there is a context-sensitive language $L \subseteq \{a^i b \mid i \ge 0\}X^*$ with $a, b \notin X$ such that for each $p \in L'$ there is a word $a^i b p \in L$, and for each $a^i b p \in L$ we have $p \in L'$.

We may assume, for example, that $L = \{c^n d \mid n \in M\} (c \neq d)$ where M is an arbitrary recursively enumerable but non-recursive subset of positive integers. Let $f_L : N \to N$ be a mapping of the set of all positive integers into itself such that for any $p \in Sub(L)$ there exists a pair q, r with $qpr \in L$ and $|qr| \leq f_L(|p|)$. If f_L is recursive, then for any positive integer k, we can costruct the language $L_k = \{a^m bc^k d \mid m \leq f_L(k+2)\}$ such that $k \in M$ implies $bc^k d \in Sub(L)$, which leads to $bc^k d \in Sub(L_k)$ and $L \cap L_k \neq \emptyset$. (Observe that $bc^k d \in Sub(a^i bc^j d), i, j \geq 0$ if and only if k = j. Hence $m \leq f_L(k+2)$ for some $a^m bc^k d \in L$ provided $bc^k d \in Sub(L)$.) Conversely, if $L \cap L_k \neq \emptyset$ then $bc^k d \in Sub(L)$, which results $k \in M$. But L is context-sensitive, thus it is recursive [2]. Then it can be decidable whether $L \cap L_k$ is empty. Therefore, M is recursive, a contradiction. This means that f_L is non-recursive. Thus we have the following statement.

Theorem 2.3. Let L be a language and $f_L : N \to N$ be a function such that for any $p \in Sub(L)$ there exists a pair q, r with $qpr \in L$ and $|qr| \leq f_L(|p|)$. There exists a context-sensitive language which has no recursive function f_L having this property. \Box

We close our paper with some examples which show that we can not extend our results in general.

Example 2.1. Consider the language $L = \{a^n b^n \mid n \ge 1\} \cup bX^*(X = \{a, b\})$. It satisfies the conditions of Theorem 2.1 with k = 1 but it is inherently context-free. Therefore, the converse of Theorem 2.1 does not hold.

Example 2.2. $L = \{a^n b^n c^n \mid n \ge 1\}$ satisfies the conditions of Theorem 2.2 with k = 2. And it is well-known that L is inherently context-sensitive. (More precisely, it is inherently indexed.) Thus the converse of Theorem 2.2 is invalid.

Example 2.3. For any positive integer k define the language $L = \{a^{k|p|}p \mid p \in X^*\}$ $(X = \{a, b\})$. It is clear that for any positive integer n, $a^{kn}b^n$ is the shortest word in L(G) which contains b^n as subword. Thus, for any positive integer n, there exists an n-length word $p \in Sub(L)$ such that $qpr \in L$ implies $|qr| \ge k |p|$. It is easy to prove that L is context-free. (Actually L is a linear dense language.) Consequently, we can not extend our Theorem 2.1 for the class of context-free languages.

References

1. A.V.Aho, Indexed Grammars - An Extension of Context-Free Grammars, *Journ. of ACM*, **15** (1968), pp.647-671.

 A. Salomaa, Formal Languages, Academic Press, New York, London, 1973.
H.J. Shyr, Free Monoids and Languages, National Chung-Hsing University, Taichung, Taiwan, R.O.C., Ho Min Book Company, 1991.