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ON SOME ILL-POSED ESTIMATE FOR
DEGENERATE ELLIPTIC EQUATIONS OF
MONGE-AMPERE TYPE WITH TWO

| VARIABLES

Takaaki Yamashiro
e EE

Abstract

We shall prove an estimate similar to the Hadamard’s three circles theorem for
solutions of the Cauchy problem for degenerate elliptic equations of Monge-Ampére
type with two variables.

1 Introduct ion

This paper concerns Cauchy problem for degenerate nonlinear elliptic equations of the form
(1.1) u-du — (8:0,u)’ + g(z,y,u) = f

where f > 0. The degeneracy arises through the vanishing of the function f. In NN-
dimensional space, the more general form of (1.1) is as follows:

(1.2) det[(@,ﬁyju)f}ﬂ] + g(z1,-, TN, u, Vu) 2 0.

The existence and the regularity of Solutions of the boundary value problem for (1.2) was
studied by several authors(see e.g., [3],(6]).When N = 2 and the equation is not degenerate,
there is the famous book [3] of Pogorelov, where the boundary value problem is mainly
discussed. -

We explain briefly the Cauchy problem of elliptic equations. Let L be a linear elliptic
operator of second order, and § be a domain in N-dimensional space. Let ' be an initial
surface on 8, and n be the outer normal of Q. The Cauchy problem is to find a solution
u such that Lu = 0 in Q and v = ¢, Gqu = ¥ on T, where ¢ and 9 are any two given
function. It is well-known that such a problem is ill-posed. But the uniquness holds, that is,
u vanishes identically, if » = 9 = 0 on I'. The uniquness for more general linear equations is
precisely discussed in [2], where the method is either Holmgren’s or Carleman’s one. Let '
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be a bounded subdomain of  such that ' ¢ Q UT. Then it holds too that there are two
constants C and a with 0 < a < 1 such that

(1.3) , lulla < C(llull)*(llulls)* ==

where || ||; (i = 1,2, 3) are some norms on I', €’ and €, respectively. This inequality is of type
with Hadamard’s three circles theorem. The quantity ||u||; is that of ¢ and ¥. Hadamard’s
three circles theorem for linear elliptic epuations was proved previously by several authors
(see e.g., [4]).

Naturally the following question arises : Does (1.3) hold too for solutions of nonlinear
elliptic equations of second order? For example, Vyborny [7] proved Hadamard’s three circles
theorem for nonlinear uniformly elliptic operators. His method is to prepare a kind of the
maximum principle.

In this paper we consider the Cauchy problem for (1.1) and we prove an inequality similar
to (1.3) for solutions of (1.1). Our method is due to Carleman’s inequality, which was often
used up to now in order to prove the unique continuation property for solutions of elliptic
equations with linear principal parts. Recently, Hayasida [1] has proved an inequality as
in (1.3) for solutions of a degenerate quasilinear elliptic equation with Carleman’s method.
Our research is motivated by [1], but the tool in this paper is different from [1] in several
points.

2 Results

Let D be a bounded domain in the (z,y)-plane with its boundary dD. Let I' be a connected
open subset of D. We assume that D C {y > 0}, I' 3 O(the origin) and T is of class C*.

We writefor p >0, D, =DnN{y<p}, T, =TN{y <p}, , =D0N{y=p} (see Figure
1). We define the following definitions :

(H.1) There is a real number a with 0 < a < 1 such that each I, is an open segment and
11, < |ly] < 1/2 for any p, p’ with 0 < p < p' < a.

If (H.1) is satisfied, let us say often that (H.1) holds for D,.

(H.2) Under the hypothesis of (H.1), there is a number ¢ > 0 and a function p(z) €
C?*({|z| < c}) such that p(£c) > a, {(z,¢(z));|z| < ¢} C T and ¢"(z) > 0 in {|z| < c}.

In (1.1) we assume that the lower order term g has the form
g(z,y,2) < K2*
for some positive constant K. So the equation (1.1) becomes
(2.1) (0:0,u)* — B2ud?u < Ku®.

We denote the norms of L*(D,), L*(T,) and L>(l,) by || |l,, ( ), and { )%, respec-
tively.
Our aim is to prove
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Theorem 1 Suppose that (H.1) is satisfied. Suppose that u belongs to C*D,) and it is a
solution of (2.1) in D,. Let

e = ()} + (Bou)y, + (Byul, + (0:0,u); + (Fyude,
M = (u)q + (Dsu)q + (Byu)a)

And let
emax(e?, ‘/_“) <M.

Then it holds that .,
lulls + l0.ulls < Ca=2e303,

where C is a positive constant independent of a, K, ¢, M, T and D.

Remark The inequality (2.1) is invariant under the orthognal transformation of coordinates.
So we can generalize the domain by the rotation of D arround the origin.

Next we assume (H.2). Let zo be a real number such that 0 < |zo| < ¢/2 and |¢'(z0)| <
1/2. Around the point (2o, ¢(o)) we take the orthognal transformation

£\ cosf sind T — o

n ) \ —sind cosd y—@(z0) |’
where sind = ¢'(20)/1/1 + ¢’(z0)?. That is, £(n)-axis is the tangent(normal) line of T' at
(20, ¢(20)), respectively (see Figure 2) We deﬁne for p>0,E,=Dn{(n);0<n < p} We
look at D as a domain in the new plane with (¢,7)- coordmates Under the assumption (H.2),
the following is easily verified: There are o, a, & such that 0 < |zo| < ¢/2, |¢'(z0)| < 1/2,

0<é&<a/2, Dz C DsN Eg,and (H.1) holds for both D, and E, (see Figure 3). We denote
B = siné.

(Figure 1) (Figure 2)

Let { )r be the norm in L*(T). Let F' be the intersection of D and the minimum convex
set containing I'. We denote by || || the norm in L*(F). Under these assumptions we
have
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Theorem 2 Let u be the function in Theorem 1. Let
€ = (u)r + (Fzu)r + (Oyu)r + (0:0,u)r + (8:11){\,

M = ||ullr + |9sullr + [|8yul -

And let ’ )
émax(e®,evV2Ke) < M.

Then it holds that
llulls + 10zulls + 18119y ulla < Ca™(& + |8|(0%u)r) M5,

where C' is a positive constant independent of a, a, K, e, M, T, D, xo and 5.

3 Lemmas

We prepare two lemmas. We assume (H.1) and a is the real number in (H.1).

Lemma 1 Let f belong to C*(D,) and f > 0 in D,. Then it holds that

__//Daayfdxdyg/rafda.
Proof. Let 0 < p < a and I, = (z1(p), z2(p)). Obviously

0| f(w.p)dz) = [ 6,f(z, p)da + f((z2(o), P)a(p) = F(ar(p), )4 (o)
Noting that do = (1 + z}(p)?)2dp (: = 1,2), we have

[ 1 @ao), (o) = Far(o) pat(o)ldp < | fo

Hence

_L“[papfdwdy < _‘/oa(‘30(/Ipfdo)dp-i-/Fzz fdo = —/l.. fda+_/1“a fdo.

This completes the proof. ]

The following lemma is known to all (see e.g., Lemma 3 in [1]). But we give again its
proof. :

Lemma 2 Let p > 1 and f belong to C1(D,). Then it holds that for p with0 < p < a

//D,, |fIPdzdy < 27 /r, |fIPdo + (2]L,]) //Dp 1, f|Pdzdy.
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Proof. Let z5(y) be the function in the proof of Lemma 1. Let (z,y) be in D,. Then from
the trivial equality

fle) = flaah) + [ dSt)dt

we have
z2(y)

P n)P <27 [ f el )P + ([ 108 w)lde)?)

T

From Holder’s inequality
([ et ldey < - [ 105 0Pt
Hence integrating the both sides of the above inequality, we obtain
[ e rds <21, + P [ 10:fPde)

The required inequality follows form this inequality by integration with respect to y. ]

4 Proof of Theorem 1

We give the proof of Theorem 1 in this section. Let 0 < p < a and u be the function in
Theorem 1. We denote by ( , ), the inner product of L*(D,).
Let us set v(z,y) = e™u(z,y) for A < —1. It is easily verified from (2.1) that

(8:0,0)? — Bv-0%v — 200,v-0,0,v + A*(0pv)* + 220, v-0%v — Nvdv < Kv?,
From this it follows that for £ > 0
(1) (00,0 0u0]"), — (20dRv, [B.0]"), — 2X(3,00,0,v, 0:0),
FA2((850)%,|8,0]%), 4+ 2X(8,v-0%0, |9,v]F), — A} (vO2v, 18,v]%), < K (v?,10,v]%),.

After here let n be the outer normal of 8D,. And let (z,n) ((y,n)) be the angle between
z-axis (y-axis) and n, respectively. By integration by parts we see that

1
—~(8208}v,10:0]"), = ~ 7 (8:(10:01"0zv), B}0),
- .____1__ k a2 1 i )
" 14k Jep, laf”vl 0,v-0,v cos(z, n)do + 1Tk k(iaxvl 0y, 0,0,v),,

and

(10zv]*0pv, axazv)p = /aD,, |0,v|*8,0-8,0,v cos(y, n)do — (1 + k)(|0:v[*, (8:0,v)*),-

Here the third derivatives of v appear. But it is not necessary to assume three times differ-
entiability of v, if we take an approximating sequence of v. Thus we have

—(H2,,.92 ky _ __'L kg .92
(07v-0)v, |0:v[%), = T F Jio, |0,v|*0,v-0;v cos(z,n)do
[ 10u0]f0,08,8,0 cos(y, n)do — (18:0[*, (8:0,0)2),-

1+ k& Jap,
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Further we have the following equalities:

1
2+k(

= m \/aDp Iaz-v|2+k COS(y, n)dO',

(0pv-0,0,v, |0,v|F), = 1,0,(10;v]***)),

(3,000, 18.0]%), = Hk(«?v@(lavl’“a ),

= — kg .. ‘ 1 X
N 1 + k /;Dp Iaxvl 81,’0 ayv COS(.’L‘,n)da 1 + k(al‘ayva la:cvl a:cv)/’

———1 k
- 1+k /3Dp ‘aﬂiv, azv'ay'v COS(.’,‘C’n)da'

_ 1 24k
T+02+h /ap,, 10:0]™"" cosly, m)doy
1
(vazvalarvlk)ﬂ = 1+k(va6x(lavakazv))p
I _ 1 24k
= T5% bp [8 v[*d,vv cos(z,n)do 1+k(1 |0:v]*%F),.

Combining the above equalities with (4.1), we obtain -

2+ k

(4.2) 1+k

2 o[2HE) < k 2
AL, ]00[F%), < l+k[/ |0v|" 0pv-0}v cos(z, n)do
—/ |0, v|*8,v-8,0,v cos(y, n)do]
3D, .

2
+ 5 k)‘/ |0,0*** cos(y, n)do

2 k
- 1T k/\ oD, |05 % 0pv-0yv cos(z,n)do
2 24k (
+ (1+k)(2+k)/\/aDp |0;v|**" cos(y,n)do
2 kg o
+ = k)‘ / |0zv|" 0, v-v cos(z,n)do
+ K(v*,|00]" ),,.

From now on let k be sufficiently large and let us take A with 2K < 2. Obviously we
have the following inequalities

ko 52 1+k| 52
/aD,, |0zv|" 0z v, v cos(z,n)do < /F,, |0z0]""|0;v|do,

1
_ ks ) < 14k _ 24k
/aDp |05 0| 0,v-0,0,v cos(y,n)do < ./1“,, |0,v|'+*|0,0,v|do ik /l,, 0y(|0zv|***)do



By Cauchy-Young’s inequality

1+k
1+k| 52 < 2+k ] 2, 12+k
~/1“p |0,v| |0 v]do < Tk /1‘,, |0,0* *do + — [ |9,v|"""do,

2+k
1
1+k| 24k 2+k
/F,, |0, t*10,0,v|do < 2 n k/ |0,v|* " do + 1 E /1“,, |0:0,v|*"*do,

1+k

. 24k 24k
./an,, |0,v|* Bpv-0yv cos(z,n)do < Sk |3 v|** do + — Tk layv| da,
1+k 1
k9. o <= 2+k 24k g
/aDP |0,v|*0,v-v cos(z, n)do < S+ F Jon |8 v|***do + — 5 F Joms [v]*T*do,

k 24k 2 24k
(0%, 18.0), < 5= (L1 H4), + g (L)

Combining these inequalities with (4.2), we obtain

24k, k - 5 2
< — +k

e

- 2+k
| (1+k(2+k/a (19:07)do

2+k
+ 2+k1|/ 0.0/ do
__?___
a+RE+D

[ i
+ 2+k aDpl v] 7

: 1 2 2+k
S, d
DN /aD,, o™ do

2K 24k
+ L),

Since \2/2 < (24 k)A?/(1 + k) — kK /(2 + k) and k is large, this becomes
k k
@3) (L, < [ (onfde + [ (3o

2
2k g 2+k
+ /r 0.0,01 o ~ 3 TR /I 8, (|00|***)do

+ / layv|2+kda+/ lv|***do
oD, oD,

4K 2+k
A2(2 + k)(l’ [o]*7) -

+

1
EToEl / |620[2+do + / 10,0, 0| do]

47

NI, 100l do + [, 1001+#do]
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From Lemma 2
(44) (1, o), < 22 [ [of**do + (1, [o.0]**),.
P

Hence we have from (4.3) .

45)  (1,1007*F), < 2 /6 , 18]+ do + /F p 820 [* do
(1 + kl)(2 k) /1 0,(10=0[***)dor
+ /3 180 *do + /a , oP+do

2K 24k 2+k
i /Fplvl do].

24k g
+ /F 10.0,0[**do

+

Now we integrate the both sides of (4.5) with respect to p. In general it holds that for
any f € C°(D,), f >0in D,

AGADP fdodp = /Oa(/pp fdo + /t,, fdo) < /Fa fdo + /za fdo < /wa fdo,

[ hdo= [0 Dodp = all, = [ 00,1, Ddo = (a = v, £le 2 51, N

From lemma 1

_ [ 24k 2+k
/O/Ipay([am )dadpﬁ/rawxvl do.

From the above (4.5) becomes

3(1, 90" < 3 /aD (10:0** + 19,0[*** + |v]***)do

vlg

+ /F (1020[2+* 4 8,8,0[*+F)dor + 22+ /F lo|?+*do].
Hence
(46) ([ 10:0P*dady)™F < (6/0)FF(([ (0,0 odo) + ([ 16,0 do)7i
.2- a a
" (/apa [P do) 7 +(/ o[ do)

2+k Lk 2+k o
(. 10:0,0**do)ain +2( [ [of***do) 5],

+

1
where we have used the inequality (Z ai)% < Za;’ for p > 1 and a; > 0. Letting k¥ — oo

in (4.5), we obtain

(0zv), + (9yv), + 3(v), + (v}, + (0:0,v),
v
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And from (4.4)
lolls < 200 + 1320115

Combining these two inequalities, we conclude that

(4.7) [olls + 18s0lls < Clv)s + (Bzv)s + (v + (B:0,0)0 + (Oyv)a

+ () + (Bev)g + (Byv)al,
where C is independent of a, K, &, M, A, T and D.
Here we use the following inequalities:

(0)y < (w)ey  {(Oev)y < (o)
(9yv)s < (Oyudy + [A{(uq,
(0:0,v), < (3 dyu)y + [A(Oeu)s,
(020), < (Bfu)s + 2AHByu) + A (u)es
(v)” < eAa( )a, (a ’U)” < eAa(a u)/l
(Byv)s < e ((Oyu)q + [M(u)a)-

Then (4.7) becomes

e (lulls + 10zullg) < CA[(u), + (eu)a + + (Oyu), + (0:0yu),
+ (0%u), + M ((w)y + (Oou)y + (Oyu)a)]
From the definitions of e and M we can write
||u|| + |05 u||_ < C)\Ze 3 (6 + e’\“M)

We set ) M
A=—— 1og(~).

Then A < -1 and 2K < \? from our assumption on € and M. Since ; La|A|/6)* < e e , we
have A\? < Ca~?es". Therefore

2|Ale Aa M
lulls + loauls < Ca2(e™5%e + ¥ M) = Ca~e()F + M(3p)%)

This completes the proof of Theorem 1.

5 Proof of Theorem 2

For simplicity we may assume that zo > 0. Thus 0 < ¢’ (o). We write a = cosd. Then

(8% ) .

()= 2)(8)

Since
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we have the following relations :

Ocu = alyu + Bo,u,

Opu = alyu — Bo,u,

OOy = —af0u + (o? — 2)0:0,u + afOu,
O2u = B*02u — 2a0,0,u + o2d2u.

(5.1)

We define
&' = (u)r + (Ggu)r + (Fu)r + (0:0pu)r + (O2u)r,

M’ = ||ullF + ||Ogullr + ||Oyul|F.
From Theorem 1 it holds that

12
llullz + ||Ocul|lz < Ca™2e’s M'?

and

Il + 10zulla < Ca~*e3 M,
where € and M are the quantities in Theorem 1. From (5.1)
lulls + |0zulla + Blldyulla < llulls + 2[10:ulla + [|O¢ulla.

Thus we have ) ,
lulla + 110zula + Blldyulla < Ca™(e +€')s (M + M')s.
It is immediately seen from (5.1) that |

/

e < 2f{u)r + (Gou)r + (Oyu)r
+ (0;0,u)r + (83u)p] + B(O%u)r,
M <

2(llullz + 10:ullr + 110yullF)-

From these inequlities we finish the proof of Theorem 2.
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