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Existence of Selfsimilar Shrinking Curves

for Anisotropic Curvature Flow Equations

Noriko Mizoguchi BORT REFEREAH)

1 Introduction

This is a joint work with Prof. C. Dohmen and Prof. Y. Giga.

We consider a simple looking ordinary differential equation of the form
um+u—@: in R (1)
u

with a given positive function a. This equation arises in describing a selfsimilar solution
of anisotropic curvature flow equations. Since z is the argument of the normal of the
curve it is natural to impose 27-periodicity for « in (1) and to é,sk for existence of 27
periodic solutions. To simplicity the notation we notice that a 2m-periodic functionkcan
be regarded as a function on the flat torus T = R/27Z. For example the space Cm(T)
is the space of all 2r-periodic C™-functions on R. Let C?7(T) denote the set of all

positive functions in C™(T). In particular
C3(T)={ue C*R):u(z+2r)=u(x) for vecRu> 0}. - (2)

Using this notations, we want to investigate the existence of solutions of (1) in C%(T).

As to this, we have the following

Theorem 1. Assume that a is a positive, continuous function on T. Then there is

a function u € C3(T) solving (1).
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The key step to prove this result is to derive a priori bounds for solutions of (1) :

Theorem 2. Let 0 < A; < A, be two constants. Then there are two positive
constants m and M, depending only on A; and Aj, such that if u € C2(T) solves (1)
on T with

Al S a S A2 (3)
then

m<u<M onT. (4)

The proof of this a priori estimate actually shows that the continuity of @ is not

needed.

Corollary 1. Let a € L>(T) and satisty (3). Then there is a function u € C}'(T)
solving (1).

Here C}'(T) denotes the space of all positive, 27-periodic functions whose derivative
is Lipschitz continuous. The differential equation is solved in the sense of distributions
and almost everywhere.

To prove this corollary, we approximate @ by continuous functions a;, keeping the
bounds (3) and «¢; — a in L], -sense for .p > 1 as 7 — oo. Let u; be the solution of (1)
taking a; instead of a. By the a priori bounds (4) and the equation (1) the sequence u;
is bounded in L* along with u;, and uj,,. Thus a subsequence of the u; converges to
some function u in C1(T) ; it is not difficult to show u € C}'(T) and that u solves (1).

To get a better understanding of the mechanisms we will carry out the proof of the

a priori bounds considering the slightly more general equation
Upy +u—a(z)g(u) =0 InICR (5)

instead of (1). Here again a satisfies (3) on the interval I and ¢ is assumed to be a

positive, continuous, nonincreasing function on (0, co). Defining

Gip) = [ g(s)ds, (6)



we consider impose the following conditions on g :

lim G(p) = —oc0, lim G(p)p~* =0, : (7)

p—0 p—r00
. G(p)p

lim — = (), 8

r—0.9=cc g(q)g? ®

lim g(p) = 0. (9)

P
Note that the second condition in (7) is automatically satisfied by (6) and the non-
increasing property of g. Examples for functions satisfying these conditions are given
by

glp)=p~", 1<o<2. (10)

Our main existence theorem has an application for evolution equations for embedded
colsed curves {I';};5¢ in R? derived in [10].

Let V be the inward velocity of I'y in the direction of its unit inward normal vector
n(0) = (cos0,sinb).

Let k be the inward curvature of I'; and let f and /3 be positive functions on R, which

are 2m-periodic. we consider an equation for I'y of the form

V = a0k, a(f) = -’i—(-/)j—(i{;)f—()

Here "+ f is assumed to be positive so that the equation is parabolic. Such an equation
arises in a model describing the motion of phase boundaries in an anisotropic medium
(see [10]). The function f is called the surface energy density and j is called the cinetic
coefficient.

If a(f) is constant, the equation becomes the curvature flow equation and the evo-
lution of T, is well studied. No matter what initial curve is given, the solution stays

smooth and embedded and eventually becomes convex ([10}). It then stays convex and
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shrinks to a point in finite time ([8]). The type of shrinking is asymptotically similar to

that of a shrinking circle {C,} ([6], [7], [8]), which is self-similar in the sense that
C, = (t, — t)Y2C,

where C' denotes the unit circle centered at the origin, the time ¢, is the extinction time
and AC denotes the dilatation of C' with multiplier A . Selfsimilar solutions are classified
even for immersed curves ([2]) and the asymptotic shape of singularities of this type is

classified ([1]). We are interested in finding such selfsimilar solutions
Iy, =(t. — )T

1

for géneral a(f). Such solutions exist in the case that 3(0)~' equals a constant multiple

of f(#). Then I' is the boundary of the so-called Wulff-shape W of f, i.e.,
W ={zeR2: 2 n(0) < f(f) foraldeR).

This is explicitely stated in [12], including the multidimensional case where 8 and the
second differential f” are assumed continuous, so also a is continuous. It is not difficult
to see that such results extend to f € C™', provided that f” 4 f is still bounded away
from zero and if the definition of a solution is given in some appropriate sense.

Our main existence theorem yields the existence of selfsimilar solutions for arbitrary

bounded a. Indeed every equation V = a(8)k can be rewritten as
V= u(u" 4+ u)k,

where u is a solution of (1) with 6 replacing z.

2 A priori extimates

To simplify the terminology let us difine the following terms. A solution u € C3(T)
of (1) or (5) is called a singlepeak-solution if the set of points not being local extrema

consists of two connedted components in T. Otherwise u is called a multipeak-solution.



To prove the a priori bounds these two types of solutions need essentially different

techniques. Thus let us state the results separately.

Lemma 1. Let u € C}(I) be a solutions of (5) on some open interval I and let (3)
be satisfied. If u attains local minima in o, € I,a < B and n, changes its sign only
once in (o, (), then there is a positive constant M, depending only on A;, A; and ¢ ksuch
that

u< M, in (a,ﬁ) B " (11)

provided that g — o < 7.

Lemma 2. Let u € C3(T) be a singlepeak-solutions of (5) and let (3) be satisfied.

Then there is a positive constant M; depending only on A;, A; and ¢ such that
wu< M, inT. (12)

Proposition 1. Let u € C2(T) be a solution of (5) and let (3) be satisfied.

1) If there is a constant M depending only on A;, A; and ¢ such that one local
maximum u(y) is estimated by u(y) < M, then there are two other constants

0 <m < M, also depending only on A;, A; and ¢ such that

m<u<M onT.

ii) The conclusion in i) also holds if there is a constant m > 0 depending only on

A1, Ay and g such that one local minimum u(«) is estimated by u(a) > m .

See the proofs of Lemmas 1, 2 and Proposition 1 in [4]. Theorem 2 is an immediate
consequence of Lemma 1, 2 and Proposition 1 as can be seen as follows. If u is a
multipeak solution, there exists at least one pair of local mjnimé, with a d’istance less
or equal 7. On these intervals Lemma 1 can be applied and due to Proposition 1 all

extrema are estimated in terms of one extremum. The situation needed to apply Lemma
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1 fails to exist only if u has exactly one local minimum, i.e., is a singlepeak solution.
But in this case Lemma 2 yields the upper bound and due to Proposition 1 we again
have a lower bound; thus the theorem is proved.

The results above also show that the set of all 27-periodic solutios of (1) or (5) is

bounded uniformly in the set of all a that satiafy (3).

3 Existence of solutions

In this chapter, we will prove the existence of a solution of (1) using the Leray-Schauder
degree. Herein we make use of the uniform boundedness of solutions of (1) with respect
to functions a satisfying (3) stated in Theorem 2. We define

m

E={veCyT): 3

<v<2M in T} (13)

Let F' be a continuous mapping from E x [0, 1] into C9(T) defined by

Ta(z) + (1 — 7)ay

F(u,7) =2u—

(14)

with a constant ag satisfying the bounds imposed on « in (3).
Let T denote a linear compact operator from C(T) into itself given by w = T'(f),

where w is the unique solution of
—Wep +w=f inT.

Setting S, = S(-,7) =T o F(-,7), we have a continuous, compact mapping from F into
CY(T). Clearly u is a fixed point of S, if and only if u € E solves

Ta(z) + (1 = 7)ag

Upy — U + 2u — =0 in T,

which is (1) in case of 7 = 1. The a priori bounds in Theorem 2 now imply that S, has

no fixed point on the boundary of F, in other words

(I-S;)u#0 ondE, 0<7<1.



Thus the homotopy invarianve of the Leray-Schauder degree yields
Proposition 2.
deg (I — Sy, E,0) = deg (I — 5o, F,0).

To show the existence of a solution of (5) it now suffices to prove that this degree is

not equal zero.

Lemma 3. The number

deg (I — So, E,0) (15)

is not zero ; in fact, it equals —1.

Proof. As proved by Gage and Hamilton in [8] (see also [2], [5]), there is a unique
solution u € E of
a

0 .
Upg +u— — =0 in T,
u

which is given by the constant at*. (Actually in [8] the setting is ap = 1/2, but our
problem here reduces to theirs by changing from u to (2a0)"/*u. )

So ug = a(l)/2 is the only zero of I — Sp in E ; thus
deg (I — Sy, E,0) = deg (I — So, Bs(uo),0)

for some sufficiently small §. At uy the mapping I — Sy is nondegenerate in the sense

that the derivative I — Si(up) is injective. Indeed, suppose that
(I — S§(uo))v = 0.

Since SH(ug) = T o F'(up,0), this implies

‘ 4o
—Vge + V= 2v 4 5 U

w2
or, using the definition of ug

Vge + 20 = 0.
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But this problem has no nontrivial 27-peiodic solution. This nondegeneracy enables us
to apply a standard degree theory result (see [11], Theorem 2.8.1, p.66 or 3], Example
2.8.3, p.65), which states

deg (I — 5o, Bs(uo),0) = (‘Uﬁv

where /3 is the number of eigenvalue of S (counting algebraic multiplicity) greater than
one.
We show the elementary computation of 3. A number X is an eigenvalue of S{(uo)

if and only if there is a nontrivial solution v € C%(T) of
M = Sy(ug)v
or equivalently

3=
rr T A

V.

- A
A
for some integer n > 0. As these A are given by A = 3 and A = 3/2 with multiplicity 1

2

3
Thus S equals the number of A > 1 (counted with multiplicity) that solve =n

and 2, respectively, we have
deg (I — ASO’ BS(UU),O) = (—1)3 o -—]__ 0O

Remark 1. Concerning the uniqueness of solutions of (1) in C%#(T), the implicit
function theorem implies that the zero of I — S is unique provided 7 is small since no

bifurcation from (ug, 0) occurs due to the nondegeneracy of the unique zero ug of I —.Sg.
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