Existence of Selfsimilar Shrinking Curves for Anisotropic Curvature Flow Equations

Noriko Mizoguchi

溝口紀子(東京学芸大·教育)

1 Introduction

This is a joint work with Prof. C. Dohmen and Prof. Y. Giga.

We consider a simple looking ordinary differential equation of the form

$$u_{xx} + u - \frac{a(x)}{u} = 0 \quad \text{in } \mathbf{R} \tag{1}$$

with a given positive function a. This equation arises in describing a selfsimilar solution of anisotropic curvature flow equations. Since x is the argument of the normal of the curve it is natural to impose 2π -periodicity for a in (1) and to ask for existence of 2π -periodic solutions. To simplicity the notation we notice that a 2π -periodic function can be regarded as a function on the flat torus $\mathbf{T} = \mathbf{R}/2\pi\mathbf{Z}$. For example the space $C^m(\mathbf{T})$ is the space of all 2π -periodic C^m -functions on \mathbf{R} . Let $C^m_+(\mathbf{T})$ denote the set of all positive functions in $C^m(\mathbf{T})$. In particular

$$C_{+}^{2}(\mathbf{T}) = \{ u \in C^{2}(\mathbf{R}) : u(x + 2\pi) = u(x) \text{ for } x \in \mathbf{R}, u > 0 \}.$$
 (2)

Using this notations, we want to investigate the existence of solutions of (1) in $C^2_+(\mathbf{T})$. As to this, we have the following

Theorem 1. Assume that a is a positive, continuous function on \mathbf{T} . Then there is a function $u \in C^2_+(\mathbf{T})$ solving (1).

The key step to prove this result is to derive a priori bounds for solutions of (1):

Theorem 2. Let $0 < A_1 < A_2$ be two constants. Then there are two positive constants m and M, depending only on A_1 and A_2 , such that if $u \in C^2_+(\mathbf{T})$ solves (1) on \mathbf{T} with

$$A_1 \le a \le A_2 \tag{3}$$

then

$$m \le u \le M$$
 on **T**. (4)

The proof of this a priori estimate actually shows that the continuity of a is not needed.

Corollary 1. Let $a \in L^{\infty}(\mathbf{T})$ and satisfy (3). Then there is a function $u \in C^{1,1}_+(\mathbf{T})$ solving (1).

Here $C_{+}^{1,1}(\mathbf{T})$ denotes the space of all positive, 2π -periodic functions whose derivative is Lipschitz continuous. The differential equation is solved in the sense of distributions and almost everywhere.

To prove this corollary, we approximate a by continuous functions a_j , keeping the bounds (3) and $a_j \to a$ in L^p_{loc} -sense for p > 1 as $j \to \infty$. Let u_j be the solution of (1) taking a_j instead of a. By the a priori bounds (4) and the equation (1) the sequence u_j is bounded in L^{∞} along with u_{jx} and u_{jxx} . Thus a subsequence of the u_j converges to some function u in $C^1_+(\mathbf{T})$; it is not difficult to show $u \in C^{1,1}_+(\mathbf{T})$ and that u solves (1).

To get a better understanding of the mechanisms we will carry out the proof of the a priori bounds considering the slightly more general equation

$$u_{xx} + u - a(x)g(u) = 0 \quad \text{in } I \subset \mathbf{R}$$
 (5)

instead of (1). Here again a satisfies (3) on the interval I and g is assumed to be a positive, continuous, nonincreasing function on $(0, \infty)$. Defining

$$G(p) = \int_{1}^{p} g(s)ds,\tag{6}$$

we consider impose the following conditions on g:

$$\lim_{p \to 0} G(p) = -\infty, \quad \lim_{p \to \infty} G(p) p^{-2} = 0, \tag{7}$$

$$\lim_{p \to 0, q \to \infty} \frac{G(p)p}{g(q)q^2} = 0,$$
(8)

$$\lim_{n \to \infty} g(p) = 0. \tag{9}$$

Note that the second condition in (7) is automatically satisfied by (6) and the non-increasing property of g. Examples for functions satisfying these conditions are given by

$$g(p) = p^{-\sigma}, \quad 1 \le \sigma < 2. \tag{10}$$

Our main existence theorem has an application for evolution equations for embedded colsed curves $\{\Gamma_t\}_{t>0}$ in \mathbf{R}^2 derived in [10].

Let V be the inward velocity of Γ_t in the direction of its unit inward normal vector

$$n(\theta) = (\cos \theta, \sin \theta).$$

Let k be the inward curvature of Γ_t and let f and β be positive functions on \mathbf{R} , which are 2π -periodic. we consider an equation for Γ_t of the form

$$V = a(\theta)k, \quad a(\theta) = \frac{f''(\theta) + f(\theta)}{\beta(\theta)}.$$

Here f'' + f is assumed to be positive so that the equation is parabolic. Such an equation arises in a model describing the motion of phase boundaries in an anisotropic medium (see [10]). The function f is called the surface energy density and β is called the cinetic coefficient.

If $a(\theta)$ is constant, the equation becomes the curvature flow equation and the evolution of Γ_t is well studied. No matter what initial curve is given, the solution stays smooth and embedded and eventually becomes convex ([10]). It then stays convex and

shrinks to a point in finite time ([8]). The type of shrinking is asymptotically similar to that of a shrinking circle $\{C_t\}$ ([6], [7], [8]), which is self-similar in the sense that

$$C_t = (t_* - t)^{1/2} C,$$

where C denotes the unit circle centered at the origin, the time t_* is the extinction time and λC denotes the dilatation of C with multiplier λ . Selfsimilar solutions are classified even for immersed curves ([2]) and the asymptotic shape of singularities of this type is classified ([1]). We are interested in finding such selfsimilar solutions

$$\Gamma_t = (t_* - t)^{1/2} \Gamma$$

for general $a(\theta)$. Such solutions exist in the case that $\beta(\theta)^{-1}$ equals a constant multiple of $f(\theta)$. Then Γ is the boundary of the so-called Wulff-shape W of f, i.e.,

$$W = \{ x \in \mathbf{R}^2 : x \cdot n(\theta) \le f(\theta) \text{ for all } \theta \in \mathbf{R} \}.$$

This is explicitly stated in [12], including the multidimensional case where β and the second differential f'' are assumed continuous, so also a is continuous. It is not difficult to see that such results extend to $f \in C^{1,1}$, provided that f'' + f is still bounded away from zero and if the definition of a solution is given in some appropriate sense.

Our main existence theorem yields the existence of selfsimilar solutions for arbitrary bounded a. Indeed every equation $V = a(\theta)k$ can be rewritten as

$$V = u(u'' + u)k,$$

where u is a solution of (1) with θ replacing x.

2 A priori extimates

To simplify the terminology let us difine the following terms. A solution $u \in C^2_+(\mathbf{T})$ of (1) or (5) is called a single-peak-solution if the set of points not being local extrema consists of two connected components in \mathbf{T} . Otherwise u is called a multipeak-solution.

To prove the a priori bounds these two types of solutions need essentially different techniques. Thus let us state the results separately.

Lemma 1. Let $u \in C^2_+(I)$ be a solutions of (5) on some open interval I and let (3) be satisfied. If u attains local minima in $\alpha, \beta \in I, \alpha < \beta$ and n_x changes its sign only once in (α, β) , then there is a positive constant M_0 depending only on A_1, A_2 and g such that

$$u \le M_0 \quad \text{in } (\alpha, \beta)$$
 (11)

provided that $\beta - \alpha \leq \pi$.

Lemma 2. Let $u \in C^2_+(\mathbf{T})$ be a singlepeak-solutions of (5) and let (3) be satisfied. Then there is a positive constant M_1 depending only on A_1, A_2 and g such that

$$u \le M_1 \quad \text{in } \mathbf{T}.$$
 (12)

Proposition 1. Let $u \in C^2_+(\mathbf{T})$ be a solution of (5) and let (3) be satisfied.

i) If there is a constant \tilde{M} depending only on A_1, A_2 and g such that one local maximum $u(\gamma)$ is estimated by $u(\gamma) \leq \tilde{M}$, then there are two other constants 0 < m < M, also depending only on A_1, A_2 and g such that

$$m \le u \le M$$
 on **T**.

ii) The conclusion in i) also holds if there is a constant $\tilde{m} > 0$ depending only on A_1, A_2 and g such that one local minimum $u(\alpha)$ is estimated by $u(\alpha) \geq \tilde{m}$.

See the proofs of Lemmas 1, 2 and Proposition 1 in [4]. Theorem 2 is an immediate consequence of Lemma 1, 2 and Proposition 1 as can be seen as follows. If u is a multipeak solution, there exists at least one pair of local minima with a distance less or equal π . On these intervals Lemma 1 can be applied and due to Proposition 1 all extrema are estimated in terms of one extremum. The situation needed to apply Lemma

1 fails to exist only if u has exactly one local minimum, i.e., is a singlepeak solution. But in this case Lemma 2 yields the upper bound and due to Proposition 1 we again have a lower bound; thus the theorem is proved.

The results above also show that the set of all 2π -periodic solution of (1) or (5) is bounded uniformly in the set of all a that satisfy (3).

3 Existence of solutions

In this chapter, we will prove the existence of a solution of (1) using the Leray-Schauder degree. Herein we make use of the uniform boundedness of solutions of (1) with respect to functions a satisfying (3) stated in Theorem 2. We define

$$E = \{ v \in C_+^0(\mathbf{T}) : \frac{m}{2} \le v \le 2M \quad \text{in } \mathbf{T} \}.$$
 (13)

Let F be a continuous mapping from $E \times [0,1]$ into $C^0_+(\mathbf{T})$ defined by

$$F(u,\tau) = 2u - \frac{\tau a(x) + (1-\tau)a_0}{u} \tag{14}$$

with a constant a_0 satisfying the bounds imposed on a in (3).

Let T denote a linear compact operator from $C^0_+(\mathbf{T})$ into itself given by w = T(f), where w is the unique solution of

$$-w_{rr} + w = f$$
 in **T**.

Setting $S_{\tau} = S(\cdot, \tau) = T \circ F(\cdot, \tau)$, we have a continuous, compact mapping from E into $C^0_+(\mathbf{T})$. Clearly u is a fixed point of S_{τ} if and only if $u \in E$ solves

$$u_{xx} - u + 2u - \frac{\tau a(x) + (1 - \tau)a_0}{u} = 0$$
 in **T**,

which is (1) in case of $\tau = 1$. The a priori bounds in Theorem 2 now imply that S_{τ} has no fixed point on the boundary of E, in other words

$$(I - S_{\tau})u \neq 0$$
 on ∂E , $0 \leq \tau \leq 1$.

Thus the homotopy invarianve of the Leray-Schauder degree yields

Proposition 2.

$$\deg (I - S_1, E, 0) = \deg (I - S_0, E, 0).$$

To show the existence of a solution of (5) it now suffices to prove that this degree is not equal zero.

Lemma 3. The number

$$\deg (I - S_0, E, 0) \tag{15}$$

is not zero; in fact, it equals -1.

Proof. As proved by Gage and Hamilton in [8] (see also [2], [5]), there is a unique solution $u \in E$ of

$$u_{xx} + u - \frac{a_0}{u} = 0 \quad \text{in } \mathbf{T},$$

which is given by the constant $a_0^{1/2}$. (Actually in [8] the setting is $a_0 = 1/2$, but our problem here reduces to theirs by changing from u to $(2a_0)^{1/2}u$.)

So $u_0 = a_0^{1/2}$ is the only zero of $I - S_0$ in E; thus

$$\deg (I - S_0, E, 0) = \deg (I - S_0, B_{\delta}(u_0), 0)$$

for some sufficiently small δ . At u_0 the mapping $I - S_0$ is nondegenerate in the sense that the derivative $I - S'_0(u_0)$ is injective. Indeed, suppose that

$$(I - S_0'(u_0))v = 0.$$

Since $S'_0(u_0) = T \circ F'(u_0, 0)$, this implies

$$-v_{xx} + v = 2v + \frac{a_0}{u_0^2}v$$

or, using the definition of u_0

$$v_{xx} + 2v = 0.$$

But this problem has no nontrivial 2π -periodic solution. This nondegeneracy enables us to apply a standard degree theory result (see [11], Theorem 2.8.1, p.66 or [3], Example 2.8.3, p.65), which states

$$\deg (I - S_0, B_{\delta}(u_0), 0) = (-1)^{\beta},$$

where β is the number of eigenvalue of S_0' (counting algebraic multiplicity) greater than one.

We show the elementary computation of β . A number λ is an eigenvalue of $S'_0(u_0)$ if and only if there is a nontrivial solution $v \in C^0_+(\mathbf{T})$ of

$$\lambda v = S_0'(u_0)v$$

or equivalently

$$-v_{xx} = \frac{3-\lambda}{\lambda}v.$$

Thus β equals the number of $\lambda > 1$ (counted with multiplicity) that solve $\frac{3-\lambda}{\lambda} = n^2$ for some integer $n \geq 0$. As these λ are given by $\lambda = 3$ and $\lambda = 3/2$ with multiplicity 1 and 2, respectively, we have

$$\deg (I - S_0, B_{\delta}(u_0), 0) = (-1)^3 = -1. \quad \Box$$

Remark 1. Concerning the uniqueness of solutions of (1) in $C^2_+(\mathbf{T})$, the implicit function theorem implies that the zero of $I - S_{\tau}$ is unique provided τ is small since no bifurcation from $(u_0, 0)$ occurs due to the nondegeneracy of the unique zero u_0 of $I - S_0$.

References

[1] S. Angenent, On the formation of singularities in the cruve shortening flow, J. Diff. Geometry 33 (1991), 601-633.

- [2] U. Abresch and J. Langer, The normalized curve shortening flow and homothetic solutions, J. Diff. Geometry 23 (1986), 175-196.
- [3] K. Deinling, Nonlinear Functional Analysis, Springer, Heidelberg, Berlin, New York (1985).
- [4] C. Dohmen, Y. Giga and N. Mizoguchi, Existence of selfsimilar shrinking curves for anisotropic curvature flow equations, preprint.
- [5] C. Epstein and M. Weinstein, A stable manifold theorem for the curve shortening equation, Comm. Pure Appl. Math. 40 (1987), 119-139.
- [6] M. Gage, An isoperimetric inequality with application to curve shortening, DukeM. J. 50 (1983), 1225-1229.
- [7] M. Gage, Curve shortening makes convex curves circular, Inv. Math. 76 (1984), 357-364.
- [8] M. Gage and R. S. Hamilton, The heat equation shrinking convex plane curves, J. Diff. Geometry 23 (1986), 69-96.
- [9] The heat equation shrinks embedded plane curves to points, J. Diff. Geometry 26 (1987), 285-314.
- [10] M. E. Gurtin, Thermodynamics of evolving phase boundaries in the plane, Clarendon Press, Oxford (1993).
- [11] L. Nirenberg, Topics in nonlinear functional analysis, Lecture Notes 1973/74, Courant Inst. of Math. Sciences.
- [12] H. M. Soner, Motion of a set by the curvature of its boundary, J. Diff. Eq. 101 (1993), 313-392.