0000000000
9120 19950 22-32 : 22

On the Difficulty of Writing Out Formal Proofs in PRA

LR SRI MRS BRAY HHEEMAER S 5T (Ryo Kashima)

In this paper we investigate the difficulty of the problem of writing out
formal proofs of given formulas in PRA. We prove a fact saying that
even if we have Thpra as an oracle and even if the target is restricted
to proofs of such simple formulas as Va(f(z) = 0), we will have no
“effective” strategy to write out formal proofs in PRA. (Thpgya is the

characteristic function of the set of the Godel numbers of theorems in

PRA.)

1 Introduction

Godel proved the second incompleteness theorem by formalizing the proof of the
first incompleteness theorem. This technique made an epoch in proof theory, and
it has been widely used. But it is remarkable that giving a perfect proof of the
second incompleteness theorem is practically impossible because it needs writing out
vast formal proofs in arithmetic. Why must we write out formal proofs? Let T" be
a suitable system of arithmetic such that 7 has function symbols of all primitive
recursive functions and that the incompleteness theorem holds for T'. (For example,
take the Primitive Recursive Arithmetic as 7".) Now suppose we are given a problem
“show T F f(m) =n" where f is a primitive recursive function. Then instead of

giving a detailed proof in T', we can use the fact:

f(m)=nistrue <« TF f(m)=n.

That is, showing that “f(m) = n is true” is sufficient to show it is provable in T
However if the problem becomes a little complicated as “show T' + Vz(f(z) =n)",

then we cannot use the above strategy because in general

Vz(f(z) =n) is true 72 T +Vz(f(z) =n).

Indeed the incompleteness theorem shows the existence of a primitive recursive func-
tion f such that Vz(f(z) = n) is true but T ¥/ Va(f(x) = n). Therefore to give a per-
fect positive answer to this problem, we must write out a proof figure of Va(f(z) = n)
in T. A proof of the second incompleteness theorem essentially contains such prob-
lems, and we feel that giving a perfect proof of the second incompleteness theorem is
practically impossible. In this paper we try to express such “practical impossibility”
objectively.

We will investigate the difficulty of the problem of writing out proofs of given

formulas of the form Va(f(z) =n) in T TFirst we define a function Q by

af =19 " proof of Va(f(z) =0) in T if T'F Va(f(x) = 0), |

0 otherwise.

(To be more exact, 2’s input is a Godel nﬁmber of a primitive recursive function
f, and the output is the minimum Godel number of a proof of Va(f(z) = 0), or 0.)
Our first result is that s not recursive. (Corollary 3.2)

By the way, when one is asked to show either a proof of T'+ A or the fact that

A is not provable, what he will do is perhaps based on his intuition,
e to try to generate some candidates of subproofs of a proof of A, and

o to decide whether the conclusions of the candidates of the subproofs are prov-

able or not.

23

24

The intuition may be regarded as an oracle, in the terminology of recursion theory.
This observation suggests us the possibility of studying the computability of the
function Q with some oracles. It is then easy to show that Q is recursive in Thyp
(i.e., recursive with Thr as an oracle) where Thy is the characteristic function of
the set of the Godel numbers of formulas provable in 7. On the other hand, Q2 is not
primitive recursive in Thy, and moreover Q) is not primitive recursive in any class of
functions {f1, fa,...} so long as each f; has a recursive upper bound (Theorem 3.3).
This is our main result in this paper.

These results’indicate that even if we have Thy as an oracle and even if our
target is restricted to proofs of such simple formulas as Vz(f(x) = 0), we will have

no “effective” strategy to write out formal proofs in T

2 Preliminaries

N will denote natural numbers {0,1,2,...}, and “functions” will mean total

functions over N.

The class P of primitive recursive functions is defined as usual (see, e.g., [1]) to

be the smallest class satisfying the following conditions:

e (Initial functions) The unary function Z, the unary function S, and the k-ary
function PF is in P (1 <4 < k) where
Z(n) = 0 (constant Zero),
S(n) =n+ 1 (Successor),
P¥(ny,...,nx) = n; (Projection).

¢ (Composition) If f is an m-ary function in P and ¢1, ..., g, are k-ary functions

in P, then the k-ary function C[f, g1, ..., gm] is also in P where

Clf, g1, Gm)(N1y ooy i) = F(G1(R15 e M), ooy G (15 ooy).

e (Primitive recursion) If f is a k-ary function in P and ¢ is a (k+2)-ary function

in P, then the (k + 1)-ary function R[f, ¢] is also in P where

RIf, g](n1, ..., i, 0) = f(n1, ...,)
R[S, gl(na, ooy nie, S(M)) = g1, ..o, nie, m, RIf, gl (01, .. i, m)).

Let F' be a class of fu'nctions. If the condition
FcP

is added to the above definition of P, then functions in P are said to be primitive
recursive in F. If f is a function being primitive recursive in F', then there is an

expression consisting of
[, 1, 2,8, Pk C, R, and the names of the functions in F

which defines f. We say the expression is the description of the function f being

primitive recursive in F. Of course many descriptions may define one function.

The axiom system PRA (Primitive Recursive Arithmetic) (see, e.g., [2]) is de-
fined as follows.

The symbols in the language of PRA are the following:
e Constant symbol: 0.

e k-ary function symbol f for each description f of k-ary primitive recursive

function. For example, S is an unary function symbol and R[P;],C[S, P3]] is a
binary function symbol. (The latter represents “+”. From now on, the term

- R[P{,C[S, P3l](t1,t2) will be abbreviated to t; + t2.)

26

¢ Variable symbols: vg, vq, vs...
o Predicate symbol: =.

e Logical connectives and quantifiers: -, A, V, —, <, V, 3.

are called numerals, and they will be denoted by 0,1,2, ..., respéctively. If A(z)is
a formula with free variable x, then A(¢) means the formula obtained from A(z) by
replacing x by the term ¢.

The axioms and inference rules in PRA consist of the following:
e Usual axioms and inference rules for classical first-order logic with =.

e Axioms for each function symbol:

C[f, gi, ...,gm](Vl, . Vk) = f(yf(vl, ceey Vk), ...,%(Vl, veey Vk))
R[f, 9](v1,..., Vi, 0) = T(Vl, e Vi)

RIf, 91(V1, -y Vi, S(V0)) = G(V1, -y Vi, Vo, R[f, 9] (V1, ..., Vi, Vo))
e The induction axiom for each quantifier-free formula A(z):
(A(0) A Vz(A(z) — A(S(2)))) — VaA(z)

We assume a standard Godel numbering function Gn; that is, Gn(a) codes each
expression « in PRA (see, e.g. [2]). If Gn(a) = n, then [a| will denote the numeral

m.

The following Propositions 2.1-2.3 are well-known. See, e.g., [1] and [2] for the

proofs.

Proposition 2.1 Let f be a description of a k-ary primitive recursive function.
Then

PRAF f(hy,...mx)=m if f(ni,...,ne) =m

PRAF =(f(n1,...n%) =m) if f(na,...,m) #m
for all ny,...,np,m € N
Proposition 2.2 For any k-ary recursive predicate R, there is a formula R(zy,..., %)
such that

PRA + R(ng,....,mz) if R(ni,...,ny) holds

PRA + -R(71,...,mz) if R(m,...,nx) does not hold

for allny,...,n € N.

Proposition 2.3 For any formula A(z) with at most one free variable x, there is

a sentence B such that PRA BHA([BW).

3 Main result

Let Prov be the primitive recursive binary predicate defined by
Prov(m,n) < n codes a formula A and m codes a proof of A in PRA.

Then we give a precise definition of the function €:

py[Prov(y, Gn(Vve(f(ve) = 0)))] if n = Gn(f) for some unary
function symbol f such that

Qn) = ¢
PRA F Vvo(f(vo) =0),

0 otherwise.

28

Lemma 3.1 There is no formula Q(x) with a free variable x such that
PRAF Q([F1) if PRAF Wvo(F(vo) = 0) (1)

PRAF-Q([7) if PRA Y Vvo(f(vo) =0) (2)
for any unary function symbol f.
Proof By “Rosser’s technique” we show that the existence of such Q(z) yields

contradiction.
Let A be a formula. Then we have a primitive recursive function Pry such that
1 if Prov(m,Gn(A)) and Vy < m(=Prov(y, Gn(=A4))),
Pra(m) =
0 otherwise.

A precise description of Pr, is as follows. Let prove(m,n) and nonproved(m,n) be

the primitive recursive functions:

1 if Prov(m,n),

0 otherwise,

prove(m,n) = {

nonproved(0,n) = 1,
nonproved(S(m),n) = nonproved(m,n)* (1 — prove(S(m),n)).

(We are assuming that 0 does not code any proofs.) Then
Pr4(m) = prove(m, Gn(A)) * nonproved(m, Gn(=A)).

From now on, “Pr4” will denote such a description.

There is a primitive recursive function g such that
g(Gn(A)) = Gn(Pry) (3)

holds for any formula A. Then let g be a function symbol of such g. By Proposition

2.3 we obtain a sentence P such that

PRA + P-Q(g([P)). (4)

29

Now we consider two possible cases:

(Case 1) PRA Vvo(Prp(ve) =0). (5)
(Case 2) PRA H Yvo(Prp(ve) = 0). (6)
In case 1 we have
PRA + Q([Prp)) (7)
by (1). By the way, (3) and Proposition 2.1 imply
PRA F g([P1) = [Prpl. (8)

Then (4), (7), and (8) imply
PRAFP

i.e., there is a proof of P in PRA. Let m be the Godel number of a proof of P,

then we have

PRA + —(Prp(m) = 0)
by the definition of Prp, consistency of PRA, and Proposition 2.1. So we have
PRA F 3vo~(Prp(vy) = 0)

but this is impossible because of (5) and the consistency of PRA..
In case 2 we have

PRA + -Q([Prp) (9)
by (2). Then (4), (8), and (9) imply
PRA - -P

i.e., there is a proof of =P in PRA. Let m be the Godel number of a proof of =P,
then we have

PRAFPrp(i) =0, fori=0,1,---,m—1 (10)

30

by the definition of Prp, consistency of PRA, and Proposition 2.1. Moreover we
have

PRA + Vv, (Prp(vi+m) = 0) (11)
because the formula
Vv (nonproved(v, +m, [=P1) = 0)

is proved in PRA by using the induction axiom. On the other hand, we have

PRA FVvg(vo=0V vo=1V --- Vvo=m—1V Ivi(vo=v;+m)). (12)
Then, (10), (11) and (12) imply |

PRA F Vvy(Prp(vo) = 0),

and this contradicts (6). i
Corollary 3.2 The function § is not recursive.

Proof By Proposition 2.2 and Lemma 3.1. |

Theorem 3.3 Let F' be a class of functions such that each f in F has a recursive up-
per bound, i.e., there is a recursive function g for f such thatVny - - - Vnr(f(ny, ..., ng) <

g(ni,....,nx)). Then the function Q is not primitive recursive in F. 2

Proof We show that if §) were primitive recursive in F', then we could construct

an algorithm to compute 2. This together with Corollary 3.2 proves the theorem.

!This formula is provable in Robinson’s arithmetic Q (see, e.g., [1]). Note that Q has an axiom
Vz(=(z=0) — Jy(z=5(y))), which is provable in PRA by applying the induction axiom to the
formula ~(2=0) — z=S(prev(z)) where prev(0)=0 and prev(S(n))=n.

%In an earlier version of this paper, the statement of this theorem is weaker and inelegant: “ ...
each f in F is either a recursive function or a function whose range is {0,1}.” The present form

is suggested by Professor Kojiro Kobayashi, to whom the author would like to give his thanks.

31

Suppose « is a description of a k-ary function which is primitive recursive in F,

and nq,...,n; € N. We will call the expression
a(ng, ..., ng)
a redez. We now define the rules of reduction, i.e, rewriting a redex:
1. (Deterministic reduction)
(a) Z(n) = 0
(b) S(n) = n+1
(c) PE(ny,onni) =
() Cla, By, o, Bl (n1yosne) = a(Br(na, ooy M)y ooy BN, ey k)
(e) Rla, Bl(ny, ..., ng, m) =
B(ny, ..., ng, m=1, B(n1, :..,nk,7n—2,ﬂ(- e B(ng, ey, L a(ng, ang)))

2. (Nondeterministic reduction)
If f is the name of a function in F then there is a recursive upper bound g of

f, and then there are (m+1) ways to reduce the redex f(ni,...,nz):
f(ny,...,ng) = 0,1,...,m
where m=g(ni, ..., Ng).

If the function © were primitive recursive in F, there is a description w of 2. Then
we can effectively compute the value of Q(n) for a given n, as follows:
If n # Gn(f) for any unary function symbol f, then Q(n) = 0. If n = Gn(f),

then we make a “reduction tree” which starts from w(n):

32

=M
Pt
sl
wn) = - =z \
v N
N1, N2, o, Ny €N ' X m

-=>. means a deterministic reduction of a redex.

f% means a nondeterministic reduction of a redex.

N\,
Note that the length of each path in the reduction tree is finite because the depth of
the nests of “|]” in w(n) must decrease by reductions. Therefore, by Konig’s Lemma,
the reduction tree is finite, and we can effectively compute the values of ny, ..., np,.
Then, for i = 1, ..., m, we examine whether n; satisfies Prov(n;, Gn(¥vo(f(vo) = 0))).
If such n; exists, then Q(n) = min{n; | Prov(n;, Gn(Vvo(f(ve) = 0)))}, otherwise
Qn) = 0.

'This algorithm is complete because there must be at most one n; satisfying the

above condition if Q(n) # 0. 1

S 3

[1] P. Op1rrEDDI, Classical Recursion Theory, North-Holland (1992).

[2] C. SMORYNSsKI, Self-Reference and Modal Logic, Springer (1985).

