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This note is a sort of supplement to our paper [6], but can be read
independently. Except for lacking in the proof of our self-embedding theorem
that every countable non-standard model of WKLg has a proper initial part
isomorphic to itself, our argument here is essentially self-contained. The goal
of this note is to carry out the popular non-standard proof of the Peano
existence theorem for solutions of ordinary differential equations within

WKLo.

The usual standard proof of Peano's theorem depends much on the
Ascoli lemma, by which one can make a solution of initial value problem from
a sequence of piecewise linear approximations. It was Simpson [3] who first
proved the theorem within WKL by avoiding the use of the Ascoli lemma. In
regard to the program of Reverse Mathematics, he [3] has actually shown that
Peano’s theorem is provably equivalent to WKLo over RCAg, while the Ascoli
lemma is equivalent to the stronger system ACAg. Subsequently, we [2]
obtained another WKLq proof of Peano’s theorem based on a Vﬁersion of

Schauder’s fixed point theorem. See [4], [5] for more information.

On the other hand, the non-standard proof of Peano’s theorem is also
known to be free from the Ascoli lemma. Thus, the non-standard proof and

the WKL proofs share the same feelings of constructivity (cf. Albeverio et
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al. [1, p.31]). In fact, by our self-embedding theorem, a considerable portion
of non-standard analysis could be developed in WKLo.

To begin with, recall some basic definitions and the self-embedding

theorem. The system RCA, consists of the axioms of ordered semirings, Z(f
induction and A? comprehension, and WKL, is obtained from RCA, by adding
weak Konig's lemma: every infinite tree of sequences of O's and 1's has an
infinite path. A structure V of second-order arithmetic is often expressed as a
pair (M, S), where M is its first-order part and S consists of subsets of (the
underlying set of) M. For an initial segment I of M, let _V|_I = (1, S|-I) where
SI1= {XNI: X e S}. Now, we have

The Self-Embedding Theorem. Let V = (M, S) be a countable non-
standard model of WKLg. Then there exists a proper initial part ViI= d, SrI)
of V and an isomorphism £:VVIT.

See [6] for a more general statement and its proof.

Fix a countable non-standard model V = (M, S) of WKLy, in which we
are going to develop analysis. By the above theorem, V has an initial part
isomorphic to itself. Since the initial part and V are isomorphic to each other,
they may exchange their roles, and so they can be regarded as V and its
extension, respectively. Then, let *V = (*M, *S) denote an isomorphic

extension of V, which will be used as a non-standard universe.

Following our paper [6], a real number in the closed unit interval [0,1] is

defined as its binary expansion. Intuitively, a binary function & codes the real

i+l

ZCZZ(’). Then, each real in V is an initial segment of a *V-finite sequence. A

set F of pairs of finite binary sequences is said to be (a code for) a continuous

(partial) function f from [0, 1] to itself if the following conditions hold:
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1.if (s, t) € Fand (s, t") € F, then t extends t” or t” extends t;
2.if (s, t) € F and s” extends s, then (s’, t) € F;
3.if (s, t) € F and t extends t’, then (s, t) e F.

For a sequence s with length lh(s), we set

S(i) _ 1
=r» bs=as+ ST -

wE L Th(s) 2
Then, (s, t) € F intuitively means that the image of open interval (as, bs) via f
is included in the closed interval [at, b¢]. Finally, we write f{) = 3 iff for each
M-finite initial segment t of f3, there exists an M-finite initial segment s of «
such that (s, t) € F.
Suppose that F is a code for a “total” continuous function in V. Let *F be
a set of *V such that F = *FNV. Since “F is a code for a continuous function”
isa H(f predicate, by overspill, there is a p ¢ M such that *F satisfies the above
three conditions for all the binary sequences with length < p. Fix such a p. Let
Seq(p) be the set of binary sequences with length p. We then define the
function *f on Seq(p) by

*f(§) = the longest sequence T such that (§, ) € *F and 1h(?) < p-

It is clear from conditions 1 and 2 that this function is well-defined. It is also
obvious_that for each § € Seq(p), the length of *f(§) is not in M, since f'is total.
Again by overspill, there is a ¢ € M such that the length of *f(5) is > q for

every § € Seq(p). So, by pruning, *f can be seen as a function from Seq(p) to

Seq(q)-

Lemma 1. Let f be a total continuous function in V. And let *f be a function

from Seq(p) to Seq(q) constructed as above. Then, 8"M) = *(8)"M for each
Se Seq(p).
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Proof. Let y = f(§nM). Choose any M-finite initial segment t of y. By the
definition of fla) = B, there exists an M-finite initial segment s of § such that
(s, t) € F. Hence we have (3, t) € *F by condition 2 of the definition of
continuous partial functions. So, t must be an initial segment of *f(3) by
condition 1. Since t is chosen as an arbitrary initial segment of y, y is also an

initial segment of *f(§). []

Theorem 2 (WKLy). Any continuous function f on [0, 1] attains a maximal

value.

Proof. If *f is maximal at § € Seq(p), f attains a maximal value *f(§)"M at
§NM. [l

Next, we show the converse to Lemma 1.

Lemma 3. Suppose we are first given a function *f: Seq(p) — Seq(q) with
P, 9 € M such that for all §, Te Seq(p),

*) §mM =1 M = *{5)NM = *(DHNM.

Then there exists a continuous function fin V such that §"M) =*f(5)"M for

all § e Seq(p).

Proof. We first put

*F={(s,t) € Ur<pSeq(n)*Ur<qSeq(r): VS e Seq(p) (s €5 — t < *(3)}.

Then it is easy to see that *F satisfies the three conditions of continuous
functions with respect to sequences s € Ur<pSeq(r) and t € Urqueq(r).

Hence, F = *FNM is a code for a continuous (partial) function in V.

To show that F is total and AS§NM) = *f(5)NM, take any real o € [0, 1].
Let§ € Seq(p) be a sequence extending «, and t be any M-finite initial segment

of *f(8). By condition (*), for any s C § such that s ¢ M, we have (s, t) € *F.
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So, by underspill, there is an M-finite s  § such that (s, t) € *F, hence (s, t) €
F. This shows that f(c) is defined and its value is *f(§)"M. Thus, F is a code

for a desired continuous function f. [l

Theorem 4 (WKLp). Any continuous function f on [0, 1] is uniformly
continuous, that is, for each n € M, there exists m € M such that Vse Seq(m)

dte Seq(n) (s, t) € F.

Proof. Fix any n € M. As in the proofs of the above lemmas, we can easily see
that for each p ¢ M, Vse Seq(p) 3te Seq(n) (s, t) € F. Hence, also by under-
spill, there exists m € M such that Vse Seq(m) dte Seq(n) (s, t) € F. [l

Theorem 5 (WKLg). Any continuous function f on [¢, 8] < [0, 1] is

Riemann integrable.

Proof. With the help of Theorem 4, the usual argument using the upper and

lower sums works. (]

Remark. The Riemann integral of a continuous function f on [0, 1] is given

by
1 . 1 . . 1
jo f(x)dx=lim,_,_ zse&q(n)maxa:s fla)- —2—; = lim,_,_ zseSeq(")mma:S fla)- 2_n

N |
= Qe T® )N M.

Theorem 6 (WKLg). Let f(x, y) be a continuous function from D = [0, 1]2
to [0,1]. Then the initial value problem

dy _ _
;E—f(x,y), y(0)=0

has a solution y(x) on the interval [0,1]. (The Peano Existence Theorem)

Proof. Given a continuous function f(x, y), we take *f,p¢ M, q¢ M as

before so that
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f=*nNV, *f: Seq(p)*Seq(p) = Seq(q).

Then define a function *y: Seq(p) — Seq(p+q) by recursion as follows:

0

y( ) = 7
* (’“)— Y(35) * 35 *f(z,,, >fp>,
where a fraction form ?; denotes the binary sequence in Seq(p) encoding the
real —, and * (——)rp is the initial segment of * ( ) with length p.

2”’

First, it is easy to see that

i ] Jjl

since |*f(x)I < 1. So, by Lemma 3, there exists a continuous function y(x) in V
such that y(ZmeM) = *y(sz)mM. By the definition of *y,

Y(_‘) _Zl<k*f( 2p’ )I_p)
We also have
[ ey dr = Ciac s, ¥ D) )M,

by the remark after Theorem 5. So, letting o = 7kp—r\M, we have

y(@) = |7 f(x,y)dx.

Thus, y(x) is a solution of the differential equation. (]
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