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Asymptotic Equivalence of A Reaction-Diffusion System to the
Corresponding System of Ordinary Differential Equations
(33 RISHBMABRRR EMIET 3 EMDHERR & o #nE M E# )

BERFEYEE EBF 3,E (Hiroki Hoshino)

1. Introduction
In this report Large-time behavior of a global solution to a reaction-diffusion system
with homogeneous Neumann boundary conditions is studied. It is proved that the solution
behaves like the solution to the corresponding system of ordinary differential equations as
time goes to infinity. This report is based on the paper [5] by Hoshino and Kawashima.
We consider the following initial-boundary value problem which stems from a model

for a simple irreversible chemical reaction:

ou

-6—t—=d1Au—umv“, t>0, z€Q,
(1.1)
Ov o
-a—t—-dgAv—uv, ‘ t>0, z €9,
ou Ov
(12) 57;—5—0, | t>0,m€89,
(13) " (u7 'U)(O’ 12) = (UO?UO)(x)a z €.

Here Q is a bounded domain in R¥ (N > 1) with smooth boundary 09, 8/dv denotes the
outward normal derivative to 912, the coefficients d;, d, and the exponents m,n are fixed

real constants satisfying

(1.4) dy, dz > 0, m,n>1

and the initial data (u, voj(:z:) are bounded and nonnegative on , that is,
(1.5) (up,v0) € L(Q2)? and wug(z),vp(z) >0 for z € Q.

In this report we may assume without loss of generality that @, > 7y > 0, where

(1.6) Uy = I%'Auo(m)dm, T = ﬁlzvo(m)dm.



If (1.1) is replaced with
0

5= di AT — K a™9", t>0, z€Q,
95
a—: = d, AT — K™ o™, t>0, z€Q

and we put ki = I(;(n_l)/(m+"—1)K;/(m+"_1) and ky = K{"/(m%—])I(z_(m_l)/(m+"_1), then

(u,v) = (k1 i, ko¥) satisfies (1.1); so that we deal with (1.1). Note that we have K;/K, =
m/n in the case where we consider the chemical reaction mX +nY — £Z and @ (resp. @)
stands for the concentration of X (resp. Y).

The initial-boundary value problem (1.1) - (1.3) was studied in [6] and it was proved
there that a unique solution (u,v)(t,z) exists globally in time, this solution uniformly
converges to the equilibrium state (ue, 0) = (U — 7o, 0) as t — oo (note that this equilib-
rium state becomes (0, 0) when % = ¥y), when Ty > Tp and n = 1, (u, v)(t, z) approaches
(%o — 7o, 0) with exponential rate and when @ > Ty and n > 1, there exist positive

constants 7" and K such that
I(u, v)(t) — (o — Vo, 0|l Loy < K(1 4+t -T)"%,  t2>T,

where o = 1/(n —1).

In [5], Hoshino and Kawashima studied more detailed large-time behavior of the solu-
tion (u,v)(t, z) mentioned above. Concerning rate of convergence, they have shown the
following: When %y = Ty, (u, v)(t, ) converges to (0,0) at the rate t™#, 8 = 1/(m+n—1),
as t — oo (Theorem 1).

We see that the polynomial rates of convergence stated above are just the same as those

for the solution (U, V))(¢) to the corresponding system of ordinary differential equations

av dv
. = _U™yr. _— = _pymyn
(1.7) o Ve, 7 vmve, t>0

with the averaged initial data
(1.8) (U, V)(0) = (To, o).

This suggests the possibility that our solution (u,v)(t,z) might behave like the solution
(U,V)(t) to the problem (1.7), (1.8) as t — oco. They have proved in [5] that the (U, V)(t)



becomes an asymptotic solution for ¢ — oo to the problem (1.1) - (1.3). In fact, when

Ty > T and n > 1,

(1.9) (w,0)(t,2) = (U, V() + O,  a=1/(n—1),
a5 £ — 0o, while in the case where T = 7o,

(1.10) (u,0)(t,3) = (U, V)(&) + O@FY),  f=1/(m+n—1),

as t — 0o (Theorem 2).

Moreover, they have also shown that the following asymptotic relations hold true:

When %y > 7y and n > 1,

(1.11) (u,v)(t,2) = (T,7)(t) + O(t*~*e~%)
uniformly in z € Q as t — oo and when %y = vy,

(1.12) (u, v)(t, 2) = (T, T(t) + Ot Pe~%)

uniformly in z € Q ast — oo, where dy = min{d;, d2}, A is the smallest positive eigenvalue
of —A with homogeneous Neumann boundary condition on 0Q, o = 1/(n — 1),‘5 =
1/(m+n—1), p=k/(n—1) with k = 1+ ((v2—1)/2)n and v = £/(m + n — 1) with
L=1+ (\/W — (m + n))/2. Exponential decay estimates similar to above ones
are obtained in e.g., [2] and [8].

Our main results stated above are essentially based on a simple energy method which
makes use of the Poincaré inequality. Namely, we derive fundamental L?(2)-estimates
by an energy method and then prove L>({2)-estimates by applying what we call LP-L?.
estimate for the semigroup associated with the problem (1.1) - (1.3).

The plan of this report is as follows. In Section 2 we give precise statements of our
main theorems. In Section 3 we discuss rates of convergence of the solution toward the
equilibrium. We prove the large-time approximation results (1.9) - (1.12) in the final
section.

We will only give outlines of our discussion in this report. For the details, refer the
reader to [5]. Furthermore, Hoshino [4] has shown that the argument in [5] is valid for a

different reaction-diffusion system with homogeneous Neumann boundary conditions.



2. Main Results

In this section, we state our main results on the initial-boundary value problem of the
reaction-diffusion system (1.1) - (1.3). Throughout the report we assume (1.4), (1.5) and
Uy > Tp > 0, where @ and T, are given in (1.6). The following results are proved in
[5]: Under the assumptions stated above, the initial-boundary value problem (1.1) - (1.3)
has a unique global solution (u,v)(¢, z) which is smooth for ¢ > 0. This solution verifies
the estimates 0 < u(t,z) < |lugl|peo(n) and 0 < v(t, z) < |lvo||feoqy for ¢ > 0,z € Q and

converges to the equilibrium (%@ — 7y, 0) uniformly in z € Q as ¢ — oo, that is,
Jlim {[(u, v)(t) — (T — Vo, 0)||oe(aye = 0.
In order that we state our results, we define
Ugo = Ty — Uy ——l—/(u — vo)(z)dz
00 = Up — Vg = 0] Jo\" 0
and
(2.1) w() = o [ (2, 90) = o [ (t,2)d
. a(t) = — [ ult, , = — [ v(t,z)dz.
€2] Ja €] Ja

Integrate (1.1) over (0,t) x © and apply the Green formula to the résulting expression.
Then, it follows from (1.2) and (1.3) that @(¢) — v(t) = o — Tp for ¢t > 0. In particular,

“we have: When @y > 7y,

(2.2) | U(t) = Ueo + (1), t>0,
and when Ty = 7y,

(2.3) Coa(t)=7v(t), t>0.

- Our first theorem, which is on rates of the above convergence as ¢ — 0o, can now be

stated as follows.

Theorem 1. There exists a positive constant T' such that the solution (u,v)(¢,z) for

(1.1) - (1.3) satisfies the following properties:



(i) When Ty > 7y and n > 1,

(2.4) (e, 0)(®) = (too, 0)lzmo(aye < K(1 41 =T)7,

(2.5) (s — T, v = D)(t)l|zgay < K(1+1—T)F e @ D

for t > T, where a = 1/(n — 1), dy = min{d;, d>}, X is the smallest positive eigenvalue
of —A with homogeneous Neumann boundary condition on 0Q and K denotes a constant
depending on ||(uo, vo)||Leo(qy2 but not on T'

(11) When U() = %,

(2.6) | (s, v)(EMlzeo(e < K141 —T)77,

(2.7) l(u =T, v — T)(¢)|| pooay < K(1+1—T)Ke @27

fort > T, where 8 = 1/(m+n—1) and dy, A and K are the same as in (i).

" Our second theorem gives a large-time approximation of the solution (u, v)(¢, z). Before
| statiﬁg the results, we summarize basic properties of the solution (U, V')(t) to the problem

(1.7), (1.8) for the corresponding system of ordinary differential equations. When %, > 7,

and n > 1, we have

(2.8) Ut) = uw + V(t), 120,

(2.9) V(@)~t® as t— oo,
where o = 1/(n — 1). When @, = 7j, as the counterparts of (2.8) and (2.9), we have

(2.10) | U@ =V, t20

(2.11) ‘ V() ~t% ast— oo,

where = 1/(m + n—1). In fact, in this case, V(t) = U(t) satisfies

dv

— = —V™" t>0 and V(0) =7,

(2.12)



and is given explicitly as
(2.13) V() =T{l+(m+n— l)ﬁom+n—1t}—1/(m+n—1).

Large-time behavior of the solution (u,v)(t,z) can now be described in terms of the
(U, V)(2) as follows.

Theorem 2. Let (u,v)(¢,z) be the solution for (1.1) - (1.3) and let (U,V)(t) be the

solution to the problem (1.7), (1.8). Then the following asymptotic relations hold:
(i) When T, > Ty and n > 1,

(2.14) (u,v)(t,z) = (U, V)() + O@™>71),

(2.15) (u,v)(t, 2) = (7, T)(t) + Ot ~e™4™),

uniformly in z € Q ast — oo. Here (U,V)(t) and (T, v)(t) verify (2.8), (2.9) and (2.2);

a,dy and )\ are the same as in Theorem 1, and p = k/(n — 1) with

(2.16) k=1+((V2-1)/2)n.
(ll) When Uo = %,
(2.17) (u,9)(t,2) = (U, V)(t) + O(tF7Y),

(2.18) (4, v)(t,2) = (T, 7)(t) + O(t"Pe™®N),

uniformly in z € Q as t — oco. Here (U, V)(¢) and (@, 7)(t) verify (2.10), (2.11) and (2.3);
B, dy and X are the same as in Theorem 1, and v = £/(m + n — 1) with

(2.19) : £=1+(y/2(m?2+n?) —(m+n))/2.

Remark. (i) Since k¥ > 1 in (2.16), we have p > « so that (2.15) actually involves



the polynomial growth order t*~*. Similarly, we have £ > 1 in (2.19) and hence v > f.
However, the equality » = § holds if and only if m = n, and we can simplify (2.18) as

(v, 9)(t, ) = (@ 0)(¢) + O(e™®X)

in this case. This would be the optimal estimate.

(ii) If we put m = 0 formally in (2.19), then the resulting £ coincides with the & in (2.16).

3. Rate of Convergence

In this section, we give an outline of proof of Theorem 1. We only discuss the case
where W, = 7, and show the estimates (2.6) and (2.7) in a series of lemmas. For (2.4)
(resp. (2.5)) refer to [6] (resp. [5]).

First, we prove the L%(2)-decay estimate by a simple energy method which makes use

of the following Poincaré inequality: For w € W'?(Q) satisfying 0w/0v = 0 on 91},
(3.1) Mlw —@|32¢q) < ||Vw”%2(n)a

where ) is the smallest positive eigenvalue of —A with homogeneous Neumann boundary

condition on 99, and w is the mean value of w(z) over €, that is,

Elz—'/ﬂw(:r)d:c.

(3.2) | , w

Lemma 3.1. Let Uy = Uy. Then there exists a positive constant T' (which is determined

by (3.4) below) such that for 1 < p < 2,
(33) I ) @llmay < KA +E-T), 2T,

where 8 = 1/(m+n—1) and K is a constant depending on ||(uo, vo)||zeo(ay> but not on T

Outline of proof. It suffices to prove (3.3) for p = 2. Note that we can choose a

positive constant 7" so large that

(3.4) 1(u, V) (OII7d7s < doA/C for ¢ > T.



By the simple energy method, the Poincaré inequality (3.1) and the Holder inequality, we

can get
1d
2dt
which leads us to (3.3) with p = 2. |

ll(, v)OllZ2@ye + Cll(w, V)DITGE <0, t>T,

Next we show the L*°(Q)?-decay estimate (2.6). We will use the LP-L? estimate for the
semigroup associated with the heat equation. Let us denote by A the operator —A with
homogeneous Neumann boundary condition on 9§ and let {e™*4}5, be the corresponding

semigroup. For given w(z), we define

1
(3.5) Pyw = ﬁ/nw(m)d:c,

(3.6) : (Pyw)(z) = w(z) — Pyw.

Note that Pyw is just the mean value W defined in (3.2). It is well known that P, and P,
are the projections onto the eigenspaces of A corresponding to the principal eigenvalue
A = 0 and to the totality of positive eigenvalues, respectively. It is also known that the

semigroup e~*4 satisfies the following LP-L? estimate: For 1 < ¢ < p < o0,
(3.7) lle™* Prwllzaay < Cm(t)= WD PLw| oy,

where m(t) = min{1,¢}, X is the smallest positive eigenvalue of A (the same as the ) in
(3.1)) and C is some positive constant. For the details of (3.14), see [1], [3] and [7].
By means of the L?- L7 estimate stated above, we can prove the L>°(2)?-decay estimate

(2.6).

Lemma 3.2. Let Ty = Tyg. Then the L>(Q)-decay estimate (2.6) holds true fort > T,

where T is the constant in Lemma 3.1 and is determined by (3.4).

Outline of proof. We make use of the decomposition w = Pyw + P,w. The Py-part
of the solution is estimated by using |Pow| < |Q|™!||w]||z1(q) and (3.3) with p=1 as

|Po(u,0)(t)| < K(1+t=T)",  t>T,



where § = 1/(m + n — 1). Here and in what follows K denotes a constant depending on
|I(t40, v0)]| oo ()2 but not on T'.

It remains to prove

(3.8) 1P+ (u, v)(#)||zooay < K(1+1t—T)7*, t>T,

—td1 A

with the same . To this end we use the semigroup e and transform the first equation

of (1.1) into an integral equation. After applying the projection P, defined by (3.6), we

obtain
t .
(Pyu)(t) = e~ DAA(PLy)(T) - / e~=n)d1Ap (ymyn)(7)dr, t>T.
T

We have a similar equation also for v, in which d; is replaced by d;. If we apply the L?P- L4

estimate (3.7) to these integral equations, then we get
(3.9) [1P4 (1, 0) ()] oy < Kem®XD)
I [ (e = r) I O () (apdr, 2T,
where 1 < g < p < co. Here we used the fact that Py (u™v") satisfies
124 (u™0"™) (2) ]| oo
< C(llu@NZ=iayllv ey 1 Pr vl ey + 1w Ze (@l Oy 1P+ (D)l o))
or, in a more compact form, k
(3.10) 1P+ (u™0™) (@)l 2oy < Cll(, 0) ONZE05 1P (1, v) (D) | ocaye,
where 1 < p < co. We reqﬁire
(3.11) (N/2)(1/q—1/p) < 1.

We use (3.9) for suitable p and g to prove the desired estimate (3.8). When N = 1,2
or 3, we put p = oo and ¢ = 2 in (3.9). When N > 4, we define {p,;} by po = 1 and
1/p; — 1/pj41 = 1/N, 1 =10,1,2,---, N — 1. We see that {p;} is an increasing sequence
such that py_; < co and py = co. We now put p = p;4; and ¢ = p, in (3.9) which satisfy
(3.11), we can show (3.8). O



10

Once the L*°(Q)?-decay estimate (2.6) is known, one can prove the asymptotic relation

(2.7) rather easily as follows.

Lemma 3.3. Let Uy = Up. Then (2.7) holds true for t > T', where T is the constant in -

Lemma 3.1.

Outline of proof. It follows from (3.10) and (2.6) that

1Py (u, 0)()lzeay < Ce™ D Py (u, v)(T)|| Loay:
t
+K/ e M=) (1 4+ 7 — T) 7| Py (u, v)(7) | oy dr
T

for t > T. Then Gronwall’s lemma yields

1P+, 0)(0)llzray < CIPs () (T)llzsap (141 = TY<em @D, ¢>7. O

4. Large-time approximation

The aim of this section is to prove Theorem 2. We only discuss the case where uy = 7,
also here. The case where Ty > Ty and n > 1 can be studied along the similar manner.
We first give an outline of proof of the asymptotic relations (2.17) and (2.18) under the
additional restriction that the initial perturbation from the mean value (%, 7p) is small
enough in Subsection 4.1. Then in Subsection 4.2 we remove this restriction imposed on
the initial data and prove (2.17) and (2.18) in full generality. For the details of (2.18) and
(2.19), refer to [5].

4.1. The case &, = T, with small initial data
Let us consider the case where Ty = 7. We want to estimate the solution (u, v)(t, z)

to the problem (1.1) - (1.3) in the form

(4.1) ut,z) = V(t)(1+ ¢(,2)), v(tz) = V(@)1 + 9, 2)),

where V() is the solution of (2.12) and is given explicitly as in (2.13). A straightforward
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computation shows that the (¢, 1)(¢, z) defined by (4.1) must satisfy

{ ¢y = diAp — V(@)™ H(m = 1)+ ny + f}, t>0, z €,

(4.2) ,

e = AP = V()" {mg + (n - DY + f}, t>0,z€Q,
0p 0Y _

(¢a ",b)(o, .’B) = (¢0;¢0)($)) S Qy

where

f=Q0+¢)"(1+ )" = (1+mé+ny),

(4.4) do(2) = (uo(e) —T) /T, to(z) = (v0(z) — To)/To.

Note that we used Ty = Tp in the first relation of (4.4). Note also that Pogo = Potho = 0,
namely, the mean value of (¢, 1)(z) vanishes.
We will prove the following theorem for (¢, v)(¢,z) that implies (ii) of Theorem 2 in

the case where the initial perturbation from the mean value is small enough.

Theorem 4.1. Let Ty = Tg. Then there exists a positive constant gy such that if

(B0, o)l oy < €0, then the (@, ) (t, ) defined by (4.1) satisfies

(4.5) (¢, $)Dllzeocay < Cll(bo, Yo)llz=ar (1 +)7,

(4.6) 1P+ (6, D) Dllzway < Cll(do0, o)l (L + 1) e

for t > 0, where C is a constant and dy, A and v are the same as in Theorem 2, that is,
do = min{d;, d;}, X is the smallest positive eigenvalue of the operator A defined in Section
3 and v =£/(m+n— 1) with £ in (2.19).
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This theorem will be proved in a series of lemmas below. We use the following notations:

For 1 < p < oo,
IP = ”(¢0:¢0)”LP(Q)2)

My(t) = sup (14 7)[[(¢, ¥)(T)llrcay
0<7<t

Mo () = sup (1+7)|Po(6,¥)(7)],

0<r<t

Mj(t) = sup (1+ 7)™ e || Py (9, U (T)|| Lreaye-
0<r<t .
Obviously we have

I, < CL, M) < CMy(t), M}(t) < CM}(Y)

for 1 < g < p < oo, where C = |Q|/a-1/p,
We state some lemmas which are used in order to prove Theorem 4.1 without proofs.

First, we estimate the Py-part of the (4, ¢)(¢, z).

Lemma 4.2. It holds true that
(4.7) Mg, (t) < K(O)M,(t)?,  t>0,

where and in what follows K (t) denotes a quantity depending only on sup ||(¢,1)(7)||zeo(q)z-
0<r<t

This lemma can be shown with use of (1.1), (3.5) and the facts that Pygg = Py = 0
and Pyd(t) = Poip(t) for all ¢ > 0.
Second, we estimate the Py-part of the (¢,v)(¢, z) by using an energy method.

Lemma 4.3. For1<p<2,

(4.16) M} (t) < CL + K(t) M (t) M (t).

Third, we derive the L*(Q)?-estimate by applying the L?-L? estimate (3.7) to the
integral equations which (¢, 1) must satisfy.
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Lemma 4.4. The following estimate holds true:

(4.8) M7 (t) < Cly + K(#) Moo (£) M1 (2).

Outline of pi‘oof of Theorem 4.1.  We can complete the proof of Theorem 4.1 as

follows. By definition we see that

(4.9) Mo (t) < C(Mg,(t) + ME(2))

for some constant C. Therefore, combining (4.7) and (4;8), we have
(4.10) MO (t) 4+ M} (1) < CL, + K(t)(M2,(t) + M} (t))>.

Recall that K(¢) depends only on sup ||(¢,%)(7)||Le(q) and hence is considered as a
: 0Lr<t

function of M. (t) or of M2 (¢) + M, F () by (4.9). Therefore (4.10) can be regarded as an
inequality for M2 (¢t) + M} (¢) and is solved in the form

M2(t)+ M}(t)<Cl,, t>0,

provided that I, is suitably small, say I, < eo. Consequently, we have M, (t) < Cl,, and
M*(t) < CI,, for t > 0, which imply the desired estimates (4.5) and (4.6), respectively.
This completes the proof of Theorem 4.1. O

4.2. The case T, = T, with large initial data
In the previous subsection, we have proved (ii) of Theorem 2 for initial data close to
the mean value. The aim of this subsection is to remove that restriction imposed on the

initial data. To this end we first observe the following asymptotic relation.

Lemma 4.5. Let Ty = T, and let (u,v)(¢,z) be the solution for (1.1) - (1.3). Then it
holds true that |

I(u =0 = D) Dllwiap /7(2) — 0 as t— oo,
where (@, 7)(t) is the mean value of (u,v)(t, z) and is defined by (2.1); note that a(t) = v(t)
for t > 0 by (2.3).
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This lemma can be proved by the comparison theorem and (2.7).
By virtue of Lemma 4.5, we can apply Theorem 4.1 for large time and prove (ii) of

Theorem 2 without any restriction on the size of the initial data.

Outline of proof of (ii) of Theorem 2. Let &, be the positive constant in Theorem 4.1.

By virtue of Lemma 4.5, we can choose a constant Ty > T (7" in Lemma 3.1) so large that
(4.11) l(u — T, v —T)(t)||Lo(ay/T(t) < &0 for t >To.

For this choice of Ty, we define (U, V)(t) for £ > Tj as the solution to the problem

dU e dV
— =0, —

(ﬁ’ V)(TO) = (ﬂa v)(TO)

= —(7”“7”, t > Ty,

Since u(Ty) = 9(Ty) by (2.3), we see that

Ut)y=Vv@E), t>T,

~

(4.12) V(it)~tF  as t— oo,

where 8 = 1/(m + n — 1), and that V(t) solves

=V ST, T(T) = 3(T)

Now, as in the previous subsection, we estimate the solution (u,v)(t, z) to the problem

(1.1) - (1.3) in the form

u(t,z) = V()(1+ $(t,2)), v(t,z) = V(£)(1+ (¢, 2)).

The (&, 9)(t, ) introduced here satisfies (4.2) and (4.3) (for ¢ > Ty) with V() replaced by
V(). Moreover, we have ||(¢,%)(To)||z=p < €o by (4.11). Therefore Theorem 4.1 can
be applied to (&, ¥)(t, z) for t > T, and we obtain

(4.13) (8, 9)(®)llzoay < CN(S, P)(To)|zoe(ay (1 +t — To) ",



15

(414)  PeE, D Ollsmay < O, D) (To)llumiap L+ = To) e3¢

for ¢ > Tp. The estimates (4.12) and (4.14) applied to the expression
(u,0)(t,) = (7, 9)(t) + V() (P+d, Py )(t, 2)

give the desired asymptotic relation (2.18). In order that we prove (2.17), we write
ult,z) = U() + V()1 = V)V () + §(t,2)),
o(t,2) = V() + V()1 = V()T (0) + (2, 2)),

where V(t) is the solution of (2.12) and where we used (2.10). Since we already verified
(4.12) and (4.13) and we can show the following lemma that concerns with the difference
between V(t) and V(t) for t — oo, we can obtain (2.17).

Lemma 4.6. When %y = 7y, we have

V() V(t)—1=0(t") as t— oo.
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