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Stability of global strong solutions of the Navier-Stokes equations

iy
( Tadashi KAWANAGO )

Osaka University -

0. Introduction
We consider the following Navier-Stokes system.
ug—Au+(u-V)u+Vr=0 in RY xR,
(NS) { V.u=0 in RMxR™,
u(z,0) = uo(z) in RN
Let P be the Helmholtz projection. We denote by || - ||, the norm of LP(RY). Kato
[K] showed that for any ug € PLY the problem (NS) has a unique local (strong) solu-
tion u(t; uo) € C([0,T); PLY) N LN+2((O,T); PLN+?) () where T = T(||luolln) >
0) and that T = oo and u(t;ue) € Co([0,00); PLY) := {u € C([0,00); PLY);
lim¢—oo |Ju(t)]|n = 0} if ||uo|| v is sufficiently small.
We study the stability of global solutions of (NS) belonging to Cy([0,00); PLY).
This class of solutions are very important since all strong global solution belongs to

Co([0,00); PLY) provided 2 < N < 4 and ug € PL? N PLY (see Section 3).

1. Navier-Stokes systeni
First we will characterize the global solutions belonging fo Co([o, ); PLY).
Proposition 1.1. Let u be a global solution of (NS) with the initial value ug € PL".
Then we have the following. |
(i) Fu € Cy([0,00); PLYN) then we haveu € LY(R*; PL") with1/q =1/2—N/2r,
where ¢ > N and r >vN.
(i) Let r be a constant such that N < r < 2N. Ifu € LYR*; PL") with

1/q =1/2 — N/2r then we have u € Cy([0,00); PL").
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Proof. We can easily derive (i) from [K, Theorems 1 and 2] by Kato. We omit the
proof of (ii) since it was implicitly given in the proof of [K, Theorem 2]. §

Remark 1.1. When N = 3, Ponce et al [PRST] obtained a siﬁﬁlar result under an
assumption: uo € PL2N H!.
Theorem 1.1. Let u(t;ug) € Co([0,00); PLYN) be a global solution of (NS). Then

there exists a constant § € Rt depending only on N and uq such that if
(1.1) vo € PLY and |lvo —uo|ln < 6
then (NS) has a unique global solution u(t; vo) satisfying
t
(12) ut; v0) — u(tsuo)ll < lloo = uallwexp (Ca [ flu(s; uo)|¥f3ds) for 20,
0

where the constant C; € R* depends only on N.
We have an immediate corollary of Theorem 1.1:

Corollary 1.1. For (NS) we set
A= {uo € PLV; u(t; ug) € Co([0,00); PLN) }.

Then A is open in PLY.

Remark 1.2. When N = 3, the set A is unbounded in PL? (see [UI)).

Our Theorem 1.1 extends [Wi, Theorem 1] and [PRST, Theorem 1]. Wiegner
[Wi] obtained a L% N L"-stability result with r > N. Ponce et al [PRST] obtained a
H-stability result for N = 3.

Proof of Theorem 1.1. Our proof is close to the argument in [N] and [Kal] for
the porous media equations. We denote J; := 0/0z;. We have a (unique) local strong
solution u(t;ve) € C([0,T); PLY). We will derive the estimate (1.2). Set w(t) :=
u(t;ve) — u(t;up) and u := u(t;up) for simplicity. Then w satisfies
3) {wt——Aw+(w-V)w+(u-V)w+(w-V)u+V7r:0 in RN xR*,

1.3

V-w=0 in RY¥ xR,
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By integration by parts,

1d
a4) 2% [ OP = -4@) - G- 2)B@) - L~ h-L-L,

where we set
Ap(w) = ([ [Vl P2y,
By(w) = ([ 191wl P o),
h =/ folP~2w - (w - V),
h= [P (w9,
f= [P~ (u- 9w,
I, =/|w|”_2w-V7r.
With the aid of Gagliardo - Nirenberg inequality,
(1.5) ollsa < Cllwl2TH Ay ()2 242,
In what follows, we élways set p = N. We will estimate I; with j = 1,2,3,4. By (1.5),
(1.6) 512 [ lolIVul < €. [ 1w+ + cayuy
| < (Clwl + &) An(w).
It follows from the integration by parts and (1.5) that
A IB+HIEISN [l Vol
<e [lol=21vul + C. [ uPhol®
< cAn(w)? + Cllullbryllol N
< eAn(w)? + Cllullp2llwll Ay (w)2N/ N+
< 2eAn(w)? + ClluliN T3 lwl§-
By similar argument in [VS] we will estimate I;. In view of (1.3) we have

(1.8) —Ar =Y dw' - 82w +wd) =) 8id;[wi(2u’ +w’)].

4, ,J
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By the Calderon - Zygmund inequality and Holder’s inequality,

(19)  lImlitnszy2 < O Iw'(2e? + w9ty sz)2 < Clwlivpa(llullige + llwlike).
ij

It follows from the integration by parts, (1.5), (1.7) and (1.9) that
(1.10) 11 < (¥ =2) [ Il =21Vul

<c. [Pl +e [ o2 v

< Cllm iyt 2llwll N353 + eAn(w)?

< C”“’”%-{Q(”“H?\H& + “w”?\wz) +eAn(w)?

< Cellully 3 llwlIN + (2¢ + Cllwli}y) An(w)*.

Therefore, we have

1d

1) @I < (5 - Colwld)An(w)® + Callul ¥13lw]¥.

N

Set & := (2Co) ™2 exp (—C1 [5~ llu(s; uo)llxig) Let ||ve — uol]|n < 6. Then we obtain
(1.2) from (1.11). 1
Remark 1.2. Although we can obtain some similar results for the Dirichlet problem

for the Navier-Stokes system, we omit here. See [K3| for the details.

2. Scalar semilinear heat equation

We can obtain some results of a semilinear heat equation in the similar argument

in Section 1. We consider the followiﬁg problem (H).
{ u; = Au+ ufP'lu in RN xR*,
(H)
u(z,0) =up(z) in RV,

where p € (1 +2/N,00). We set py := N(p —1)/2 (> 1). Giga [G] showed that for
any ug € LP° the problem (H) has a unique local solution u(t; ug) € C([0,T); LP°) N
LpotP=1((0,T); LPo+?P~1) (, where T = T(||uol|p,) > 0) and that T = oo and u(t;ue) €

Co([0,00); LPe) if Hug]];o is sufficiently small.
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We state our results without proofs. See [Ka3] for the proofs.
Proposition 2.1. Let u be a global solution of (H) with the initial value ug € L?°.
Then we have the following.

(i) If u € Co([0,00); PLYN) then we have u € LYR*; PL") with 1/q = (1/po —
1/r)N/2, where ¢ > max(po,p) and r > po.

(ii) Let r be a constant such that r > py and p < r < pop. Ifu € LY(R*; PL")
with 1/q = (1/po — 1/r)N/2 then we have u € Cy([0,00); LP°).
Theorem 2.1. Let u(t;uo) € Co([0,00); LP°) be a global solution of (H). Then there

exists a constant § € Rt depending only on N, p and ug such that if
vop € LP° and |jvg — uollp, <6
then (H) has a unique global solution u(t; ve) satisfying
e 20) — (50} < oo — ol xp(C1 [ s wollgofyhds) for 20,

where the constant C; € Rt depends only on N.
We have an immediate corollary of Theorem 2.1:

Corollary 2.1. For (H) we set
A = {ug € L*; u(t; uo) € Co([0,00); L*)}.

Then A is open in LP°.
By [Ka2] and [Wa] we see that the set A is unbounded in L°.
Remark 2.1. Our Theorem 2.1 extends [Ka2, Proposition 6] by the author, where

we assumed ug € L* N L™ and ug > 0 in RY.

3. Structure of space of solutions for (NS) and (H)
We mention the topological structure for the space of solutions of (NS) and (H).

We set

B :={ug € PLY; |lu(t;uo)||y blows up in finite time } for (NS)
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and

B := {ug € LP°; ||u(t;uo)|lp, blows up in finite time } for (H).

For (NS) we have A = PL? for N = 2 (see [KM], [M] and [Wi]). However, we can
easily derive this well-known result from our Proposition 1.1 and the energy equality.

Indeed, by the energy equality:

(3.1) lu(®)|2 +2 / IVu(s)|2ds = fluollZ,

u(t;up) is global for any uo € PL?. By Gagliardo-Nirenberg inequality
(3:2) lu@®lls < Cllu(®llIVu(t)ll,".

In view of (3.1) and (3.2) we have u(t;uo) € L*(R*; PL*). Therefore, we immediately
obtain u(t;ue) € Co([0,00); L?) from our Proposition 1.1 (ii). For (NS) we have
(AUB)NPL? = PL?NPL" for N = 3 and N = 4, which is due to the energy equality.
Therefore, B N PL? is closed in PL?2 N PLY. Since PL? N PLY is dence in PLYN, we
see that for N = 3 and N = 4 the set B is empty or B is not open in PLY,

It seems to be interesting to compare (NS) with (H). If u is a solution of (H) with
p = 3 then Au()z, A\%t) is also a solution of (H) for A > 0. We remark that the solution
of (NS) has just the same property with respect to the same selffsimila,r transformation.
For (H) with p = 3 we have the following (see [Ka2]): the set B N L? is not empty and
isopenin L2NLYN. If we set S := {ug € L2NLY —(AUB); ug(z) >0 in RY} then

S is not empty and S C A, where JA is the boundary of A in LV,
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