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STABILITY OF SOLITARY WAVES
FOR THE ZAKHAROV EQUATIONS

R KFERFZREEEE R
KH KA ( Masahito OHTA )

1. INTRODUCTION AND RESULT

In the present paper we consider the stability of solitary waves for the

Zakharov equations:

-§u+3_2 - t>0, z€R (1.1)
ot T gzt T M RS '
0 0 ,
E'U + _a_n — ——a——|u12, t > 0, X E R, (1‘3)

ot Ox Oz

where u, n and v are functions on the time-space R x R with values in

C, R and R, respectively. From (1.2) and (1.3), we have

92 92 : 92 - . :
52"~ 32" = 57 |ul?. (1.4)

The system of equations (1.1) and (1.4) was first obtained by Zakharov

[20] as a model which describes the propagation of Langmuir turbulence
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in a plasma. In this system, u denotes the envelope of the electric field
and n is the deviation of the ion density from its equilibrium. On the
other hand, (1.1)—(1.3) was given by Gibbons, Thornhill, Wardrop and
ter Haar [4] from a Lagrangian formalism. |

It is well known that (1.1)—(1.3) has a two parameter family of solitary

wave solutions:

Uy o(t, ) = /2w(1 — c2) sech yw(z—ct)-exp (Ea: — -c-—z—t + wt) , (1.5)

2 4
Ny o(t, ) = —2wsech® Vw(z — ct), (1.6)
Ve o(t, ¢) = —2cw sech® Vw(z — ct), (1.7)

where w >0and —-1<c< 1. Our purpbse in this paper is to show the
stability of the solitary wave solution given by (1.5)—(1.7) of (1.1)—(1.3)
for any w >0and -1 < c< 1.

There are a large amount of papers Concerning the stability and in-
stability of solitary waves for the nonlinear Schrodinger equations (see,
e.g., [2, 3, 7, 14, 15, 16, 18, 19]). However, to our knowledge, there are
only a few results concerning the stability of solitary waves for coupled
- systems of Schrodinger equations and other wave equations, except the

abstract theory by Grillakis, Shatah and Strauss [8] and our recent re-
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sults for the coupled nonlinear Schrodinger equations [10] and for the
coupled Klein—-Gordon—Schrédinger equations [11].

We now state our main result.

Theorem 1.1. For any w > 0 and —1 < ¢ < 1, the solitary wave
solution (uy c(t), Nuw,e(t); Vuo(t)) of (1.1)-(1.3) is stable in the following
sense: for any € > 0 there exists a § > 0 such that if (ug,no,v9) € X

verifies
“(uoa nO’UO) - (uw,C(O)’ nw,C(O)’ vw,C(O))”X <6,
then the solution (u(t), n(t), v(t)) of (1.1)~(1.3) with (u(0),n(0), v(0)) =

(up, o, vo) satisfies

inf [108), 1), 0(8) = (€t +9), Tty 1), vt +1)x < &

for any t > 0, where X = H'(R) x L%(R) x L*(R).

Remark 1.2. For any (ug,n9,v9) € X, there exists a weak solution
(u(-),n(-),v(-)) € L*([0, 00); X) of (1.1)~(1.3) with (u(0), 7(0),v(0)) =
(up,mo,v0) (see C. Sulem and P.L. Sulem [17]). We do not necessarﬂy
have the uniqueness and the energy identity. However, by using the

method in Ginibre and Velo [5], we can find a weak solution satisfying

H(u(t),n(t),v(t)) < H(uo,n0,%), t=0, (1.8)
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N(u(t) = N(uo), 20, (1.9)
P(u(t),n(t),v(t)) = P(ugp,no,v0), t >0, (1.10)

where

* 0 1 1 '
H(u,n,v) = / (|a—$u|2 + nlul® + §n2 + 51)2) dr,

N = [ luPas,

— 00

[ /(._0
P(u,n,v) = / (zua—xu - nv) dr.

hade ]

For the Cauchy problem of the Zakharov equations, see also [1], [12] and

[13].

Remark 1.3. Recently, Glangetas and Merle [6] proved the strong in-
stability (instability by blow-up) of standing waves of the Zakharov equa-

tions in two space dimensions.

In the next section, we give the proof of Theorem 1.1. We apply the
variational method introduced by Cazenave and Lions [3] to the coupled
system of the‘Schriidinger equation and the wave equations as well as
in our previous papers [10] and [11]. In [3] they proved the stability of
standing waves for some nonlinear Schrodinger equations. By a simple
inequality in Lemma 2.3 below, we reduce our problefn for the Zakharov

equations to the case of the single nonlinear Schrodinger equation.
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2. ProoF oF THEOREM 1.1

In what follows, we fix the parameter ¢ € (—1,1). First, we briefly re-
call the proof by Cazenave and Lions [3] for the stability of standing wave
solution u(t, z) = e™“*y,, .(x) of the nonlinear Schrédinger equation:

: 02 1 0 ,
255u+6x2u+1_02|u[u=0, t>0, zek, (2.1)

where @, () = {/2w(1 — %) sech y/wz. We consider the minimization
problem:

I'(y) = inf{E" (u) : u € H'(R), N(w) = p}, (2.2)
1 _ * _a_u 2 _ 1 U 4 T
B = [ (12l - gl de
S1(s) = {u € H'(R) : B(u) = I*(u), N(u) = ).

We note that E'(u) and N(u) are the conserved quantities of (2.1).
The following two lemmas are crucial parts to prove the stability of the

standing wave of (2.1). We use them in the proof of Theorem 1.1 later.

Lemma 2.1. For any w > 0, we have
=M (p(w)) = {€’Pu,c(- +y) : 6,y € R},

where ¢, o(z) = v/2w(1 — ¢?) sech /wz and
p(w) = N(pu,e) = 41 = ).
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Lemma 2.2. Let p > 0. If {u;} C H'(R) satisfies E'(u;) — I'(u)
and N(uj) — p, then there exists {y;} C R such that {u;(- + y;)} is

relatively compact in H'(R).

Lemma 2.2 is proved by using the concentration compactness method
introduced by Lions [9]. For the proofs of Lemmas 2.1 and 2.2, see [3].
From the conservation laws of (2.1) and the compactness of any mini-
mizing sequence of (2.2), Lemma 2.2, one can easily show the stability
of the set of minimizers ¥'(y) for any p > 0. Moreover, the character-
ization of the set of minimizers, Lemma 2.1, conclud‘es the stability of
the standing wave of (2.1) (for details, see [3]).

Following Cazenave and Lions [3], we cons.ider the following minimiza-

tion problem:
I(p) = inf{E(u,n,v) : (u,n,v) € X, N(u) = u}, (2.3)

E(u,n,v) = / (|5ixu|2 + nlul? + %nz + %—vz — cnv) dz,

E(p) ={(u,n,v) € X : E(u,n,v) = I(n), N(u) = p},

where X = H'(R) x L?(R) x L?(R). We note that

. 2
E(e—zc:c/Zu, n, U) = H(u, n, U) + CP(’U,, n, U) + %N(’U,) (24)



The following lemma plays an essential role in the proof of Theorem

1.1.

Lemma 2.3. For any (u,n,v) € X, we have E'(u) < E(u,n,v). More-

over, the equality holds if and only if n = —(1/(1 — ¢?))|u|? and v = cn.

Proof. Since

0< [ ul? + (1= H)n |2 = Jul* +2(1 = A)nlul + (1 - A)*n?,  (2.5)

we have
E(u n v) > /°° l_‘?_u|2 _ _l_lurt + énz + lvz P
o - — 00 ax 2(1 - C2) 2 2
_ oo 0 9 1 4 1 ,
a ~/;oo (lax"" 2(1 - ¢?) |ul® + 2(Cn v) ) dz |
2 B (u) (2.6)

From (2.5) and (2.6), we see that the equality holds if and only if

n=—(1/(1-c?)|u? and v=cn. O
The following lemma follows immediately from Lemma 2.3.

Lemma 2.4. For any p > 0, we have I(p) = I' (1) and

o
S() = { (y,0) 10 € S m = g v = en}.
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Proof. We set

20 = {(wn,0) i u e S n = - 2o luPo = en ).

For u € £!(u1), we have from Lemma 2.3

I(w) < E (u -

1—c2

Cc

2

) = B'(u) = I'0) < 1),

Thus, we have I(u) = I'(p) and %(p) C Z(p).

Moreover, for (u,n,v) € £(p), we have
I(p) = Il(”) < El(u) < E(u,n,v) = I(p),

which implies that u € ¥'(¢) and E(u,n,v) = E*(u). Thus, it follows

from Lemma 2.3 that (u) C X°(u). Hence, we have Z(u) = £%(p). O

We note that from (1.5)—(1.7) and Lemma 2.1, we have

e 2y, (1) € B (u(w)),

. 1 s » =
Puolt) = == e, uelt) = e o(t)

for any t € R. Therefore, from Lemma 2.4, in order to show Theorem

1.1, we have only to prove the following proposition.
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Proposition 2.5. For any p > 0, the set
A = {("®?u,n,v) : (u,n,v) € T(p)}

is stable in the following sense: for any € > 0 there exists a 6 > 0 such
that if (ug,mo,vo) € X verifies dist ((ug, no,vo), A) < 6, then the solu-
tion (u(t),n(t),v(t)) of (1.1)-(1.3) with (u(0),n(0),v(0)) = (uo, o, Vo)

satisfies dist ((u(t),n(t),v(t)), A) < € for any t > 0, where
dist ((u,n,v), A) = inf{||(u, n,v) — (u®,n°v%)||x : (u° n°,°) € A}.

In order to prove Proposition 2.5, we need one lemma concerning the

compactness of any minimizing sequence of (2.3).

Lemma 2.6. Let p > 0. If {(uj,nj,v;)} C X satisfies E(uj,nj,v;) —
I(p) and N(u;) — p, then there exists {y;} C R such that

{(u;(- +y;),n;(- +y;),vj(- + y;))} is relatively compact in X.

Proof. From Lemma 2.3 and our assumption, we have E'(u;) — I(u) =
I'(p). Thus, from Lemma 2.2, there extists {y;} C R such that

{u;(- +y;)} is relatively compact in H '(R). Moreover, if we put u =
ui(-+y;), n3 = n;i(-+y;), v3 = v;(- +;), then {(u?,n3,v3)} is bounded

in X. Therefore, for some subsequence (still denoted by the same letter),
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we have

(u),nd,v]) — (u’,n% %) weakly in X,

u} —» v’ in H'(R).
Since n2 + v2 — 2cnv = (1 — |c])(n2 4+ v2) +|c| (n — (¢/|¢])v)? and |¢| < 1,

we obtain

I(p) < E(u®,n° %) < liminf E(u},nd,v]) = I(p),
j—o0 -

fromywhich it follows that

(u(},n(},v?) — (u%,n%%) in X,

and (u®,n%v°%) € T(p). O

Proof of Proposition 2.5. In what follows, we often extract subse-
quences without explicitly mentioning this fact. We prove by contra-
diction. If A is not stable, then there exist a positive constant £o and

sequences {(ugj,Moj,v0;)} C X and {t;} C R such that
dist((uo;, noj, voj), A) — 0, (2.7)

dist((u;(t;), nj (%), vi(t;)), A) 2 €o, (2.8)



where (u;(t),n;(t),v;(t)) is a solution of (1.1)—(1.3) with
(u;(0),n;(0),v;(0)) = (uoj, noj, vo;). From the conservation laws (1.8)-

(1.10), (2.4) and (2.7), we have
B(e=/2u;(t;), mj(t5), v;(45)) < E(e™ "/ ?uoj, noj, Uoj) — I(n), (2.9)
N(e™**/u;(t;)) = N(u;(t)) = N(uoj) = N(e™***/?ug;) — p. (2.10)
From (2.9), (2.10) and the definition of I(x), we have
E(e™ Pu;(t5),ni(t), v;(t;)) — I(p)- (2.11)

If we put uj(z) = e~ee/2y,(t;, 2), n;(z) = n;(t;, ), '031(33) = v;(t;, ),

then from (2.10), (2.11) and Lemma 2.6, there exists {y; } C R such that
(i + ), 5+ y} 0 +ys) = (@hnheh) nX o (212)
for some (u',n',v') € L(u). Since we have
uj(z +y;) = e 2TVl 2u (15, x + y),
it follows from (2.12) that
dist((u;(t;), ni(t5),v;(t;)), A) — 0,

which contradicts (2.8).

Hence, A is stable. This completes the proof. O
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C OWFAELTHE L% UIE 5 LT, SR ER S E O
INE Bt & O Zakharov RO B DR EMICHE L THUDK
BT TITY. Wa 1] IE D REINTHB I EAHRATHES L
S TICE UT, INEREICREI N UE T, HEEE LTI BIBILERE
DAY NIV 4T Grillakis, Shatah and Strauss [8] 12 & % fZHY
4% Zakharov HRAICHIE LTV 5o A LET 3 &4 E L TRA
Lic & H BESHEOHAEENTH Y. BHTHS L5 IBbhs,
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