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Perturbation of the Navier-Stokes flow
in an annular domain
with the non-vanishing outflow condition

MORIMOTO, Hiroko UKAI, Seiji
Meiji University Tokyo Institute of Technology

Abstract. The boundary value problem of the Navier-Stokes equations has
been studied so far only under the vanishing outflow condition due to Leray.
We consider this problem in an annular domain D = {# € R* R, < || <
R,}, under the boundary condition with non-vanishing outflow. In a previous
paper of the first author, an exact solution is obtained for a simple boundary

condition of non-vanishing outflow type: u = %e, + beg onT;, i =1,2,
where u, by, b; are arbitrary constants. In this paper, we show the existence
of solutions satisfying the boundary condition: u = {Tl{i + ¢i(6)}e, + {b; +

Yi(6)}es on T;, i=1,2, where ¢;(f), ¢;(0) are 21r-peri<;dic smooth function
of 6, under some additional condition.
1991 Mathematics Subject Classification 35Q30, 76D05.

Let D be an annular domain in R? :
D ={z € R R, < |2| < R},
where 0 < R; < R, , and T; its boundary:
I;={e €R%|2|=R}, i=12
We consider the boundary value problem of the Navier-Stokes equations:

1
-—VAu+(u~V)u+;Vp = 0 in D,

(1) divu = 0 in D,
u = b on 9D,

where u is the fluid velocity, p is the pressure, v(the kinematic viscosity) and p (the
density) are given positive constants, and the vector b is a given boundary value of the
velocity.

For the general bounded domain D C R",n > 2, J. Leray [6] showed the existence
of the solution to this problem under the following condition:
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(H) /rb-nds=0, 1<i<k,

where 8D = U, T;, T; is the connected component of 8D and n is the unit outward
normal to the boundary dD. The condition (H) is stronger than the condition

k
(H)o /mb-nds.—_;/mb-nds:o,

which is to be satisfied by the boundary value b of a solenoidal vector u.

We are concerned with the problem whether does exist a solution to (1) under the
non-vanishing outflow condition (H),, even if the boundary value does not satisfy the
vanishing outflow condition (H) ([2], [6]). In the previous paper [7], the first author
showed an exact solution to this equation in an annular domain under the boundary
condition with non-vanishing outflow given by,

= %e, + b;eg onT;, 1 =1,2,
where u, by, b, are given constants and e,, e, are the unit vectors in the polar coordinates
representation {r, 6} .
In this paper, we study the case where the boundary value depends on § variable,
more precisely, the vector b is given as follows:

(2) b= {al- =+ @;(9)}8, + {b, + 10;(9)}89 on I';, 1=1,2.
Remark 1. Since the condition (H)o has to be satisfied,
(A].) a1R1 = agRg

should hold. We denote this common value by p. If u # 0, the condition (H) does not
hold.
On the other hand, without loss of generality, we can suppose the following:

(A2) i(9), ¥:(0) be 2m-periodic smooth function of9,satz'sfyz'ng

27 2r
/ 0i(6)d6 = 0, / wi(@)ds =0, i=12
0 0
Finally we put

If the absolute value |u| of u is small, we can show the existence of a solution to (1)
(2) by the usual method (c.f. [5], [7]). We show, in the following, the existence of a
solution to (1) (2) even for large |u|.

Theorem 1. Suppose (A1), A(2) hold. If the inequality

R2R? Ry\?
|wy — wgle—l_—R—%- (log R_l) <2
is satisfied and ¢;(0), ¥:(0) (1 = 1,2) are sufficiently small, then there exists at least one
strong solution to (1) (2) for any pu € R with at most countable exception.
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Remark 2. Let M, w1, wy be constants and ¢;(0) = ¥i(6) = 0(i = 1,2). Then, we have
the following exact solution wy to (1) (2) of the form:

Uy = ge, + b(u, r)es.

(?) For u # —2v,

b(u,r) = — + Cor' Y,
where
n s
W w1R2R§+E szng‘“", Y Yo
R§+ _ Rf+” R§+ . Rf+

(11) For u= —2v,
1
b(u,r) = ;(cl + calogr),
where
o= wiR?log Ry, — wyR2log Ry o waR% — wy R?
e log R, — log Ry 2= logR; —log Ry’

The pressure py can be obtained from the equation. This solution is unique if |y
and |wy — wa| (case(?)) (|wi|, |wa| (case(ii))) are sufficiently small (c.£.[7],[8]).

Let us prove Theorem 1 in several steps. Let Cg% (D) be all smooth solenoidal
functions with compact support in the domain D, H, the closure of Coa(D) in L%(D),
and V the closure of Cg%, (D) in the Sobolev space H'(D). v

Let ug, po be the solution as above. Let vy satisfy the condition
(3) diveo=0 in D, and vo = p;(0)e, + ¥i(f)es on T, i=1,2.
The existence of such function is known(c.f. [1]) but for our convenience, we choose:
vy = [er‘lfr at)dt <p1(9)+R2r‘1/R a(t)dt s (6)
®) O AO R EXOERAOIE
# | R0 = Raga)tolr) + (7 )4(6) + (100 e,

where, a(r), Bi(8) (i = 1,2) are smooth functions such that

o(Ry) = a(Rs) = 0, /R R a(t)dt = 1,

Ry »
Bi(R;) =6 (5,5 = 1,2), /R Bi(t)dt =0 (i = 1,2).

Then, we have the following estimate.
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Lemma 1. There exists a‘ positive constant ¢y such that
2
|[wolloa(o)y < co Y _(lleillezy + [1¥illesy)
=1
holds, where I is the closed interval [0, 27).
Suppose % = w + g + v, satisfy (1) with b given in (2). Then, the equation for w

is as follows:

1
—vAw + (w-V)u+ (uo- V)w+ (w:V)w+ ;Vq
(5) . +(w - V)vo+ (vo- V)w+ f,=0 in D,
divw = 0 in D, '
w = 0 on 9D,

where fO = —I/A‘Do + ('00 . V)‘Do -+ (‘vo . V)uo + (‘U,o . V)‘vo.

Let P be the orthogonal projection from L?(D) onto H, and A = —PA be the Stokes
operator. Applying the orthogonal projection P to the first equation in (5), we get:

Aw + —P{(w- )u0+(u0 V)w}

(6) +-P{(w V)w + (w - V)vo + (v V)w+fo}—°

As is well known, A is a self-adjoint positive operator in H, and the inverse Alisa
compact operator on H, (e.g., [5], [10]). Applying A™" to the equation (6), we obtain:
(1) w—T(w+ A~ P{(w - V)w+ (- V)oo + (v V)w + £} =0,
where

T(p)w = —lA’lP{(w - V)ug + (uo - V)w}.

Since A~! is compact operator in H,, and its range is the domain of the operator A
which is compactly imbedded in V', we obtain the following:

Lemma 2. The operator T'(u) is a compact linear operator on V.

Let

2nmy
n=— ', y ) = —1
7 2V+logR2—logR1Z nez i=v

We define b(u,r) for all 4 € C letting b(u,r) = b(—2v,r) for u = p,. Then, b(p, ) is
continuous and holomorphic in u € C even at the points 4 = p,. Therefore, we have:

Lemma 3. (c.f.Kato[4]) The compact operator T(p) is an entire function of p.
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Lemma 4. If |w; —ws| is sufficiently small, then 1 is not the eigenvalue of the operator

T(0).

Proof. Suppose that 1is an eigenvalue of T'(0) , i.e., there exists a nonzero w € V such
that T(0)w = w. Then,

2 A7 P{(w - V)io + (o~ V)w} = w

holds, that is,
—vAw = P{(w - V)@, + (1o - V)w}

holds, where %, = b(0,r)e, (See Remark 2). Taking the inner product with w, we have
V||[Vw||? = ((w - V)i, w).

The right hand side is equal to:

R2R2

2¢,(0) / wrwedrdé’ where ¢;(0) = R2 Rz

After some calculation, we have :

. wy —wy| R2R? R
(- 9y, ) < 22 L (10g 22) v

If |wy — wy| is sufficiently small, then the inequality

le - (.Ugl R%R% (10 R2)2 <

2 R-R\P°R

holds, and contradiction. c.q.f.d.

Let K be any compact subset of C. According to Theorem 1.9 in Chapter VII §1 of
[4], there exist a finite set {u, u3,...,up} such that for any uin K\ {uj, us, ..., ut},
(T'(1) — 1)7! exists and is bounded on V. Let u € K \ {u}, 3, ..., 4} From (7), we
obtain:

(8) w= %(T(u) _ 1) A P{(w - V)w + (w - V)vo + (90 - V)w + £}

Let us denote the right hand side of (8) by N (u)w:
(6) N(w = 5(T() = ) A7 P{(w - V)w + (w- V)vo+ (w0 V) + £},
and

2
o =Y (lleilleay + 1¥illesay)-

=1

According to Lemma 1, we have:
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(10) 2@ 1747 P{(w - Voo + (30 VwHly < o]l

(A1) 2@ - DA PSolly < S + o)l DI + lluollv,

where cg is the constant in Lemma 1, C' = ¢o||(1—T(x))~*A~Y/?|| and | D| is the measure
of D.

Lemma 5. There erists a positive constant cp such that the estimate
|AT P(v - V)wl|ly < cpllollv]lwlly, Vo,weV

holds.

It is known that there exists an absolute constant ¢ such that
||A~Y4 P (v ’- Viw|| < c||A1/2v|H|A1/2wH, Yo, w € C5°, (D)

holds. See, e.g., Fujita-Kato [3]. Using this inequality, we obtain Lemma 5 easily.
Put

(12) po=max | £, LG~ 1), T {(w+eo)lDI + Iluollv} |

where ¢q,cp,C are constants given in Lemma 1, in Lemma 5, and in (10), respectively.
Now we have the following estimate for the nonlinear operator N (u):

(13) [IN(wwllv < po(llwl]} + ollwlly + o).

1
Let 0g = .,0_{1 + 2/30 - \/(1 + 2po)2 - 1}
. 0

Remark 3. pgoq is the smallest positive rbot of the equation
X2 —2(1+2p)X +1=0.
The inequality 0 < ¢ < 1 follows easily. If 0 < 0 < 09, then the equation
po(X*+o0X +0)=X -

has two positive roots. Let r, be the smaller one:

1
. = —— 1-— — 1— 2_42}.
r 2,00{ poc — /(1 — poo)? — 4030

Lemma 6. If 0 < 0 < gq, then the operator N(u) maps the ball
B(rs)={w eV ; ||lw|lv <7}

into itself.
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Proof. Let w € B(r,). Then,
IN(w)wllv < polllwll} + ollwlly + ) < po(rs + o6 +0) = 1.
c.q.fd.

Lemma 7. If0 < o < 0y, the operator N(u) is a contraction operator on B(r,).

Proof. Let w;, w, be arbitrary elements in B(r,). Then, we have:
N(p)wy — N(u)w;
1 14—
= ;(T(,U) - 1) lA 1P{(w1 . V)w1 - (’(Dg . V)w2
+((w; — ws) - V)vo + (00 - V)(w; — wy)}.
Since
(wy - V)w; — (w; - V)w, = (w1 — w3) - V)w; 4 (w3 - V)(wy — w,),
therefore,
|| N (p)w1 — N(p)wsl||v |
cp -1 Co
< T = D7 Mes = wally (llwally + llwaflv) + —=[lwa - wo|lv
< pol|lwillv + ||wa|lv + o)|wr — wallv,

where we used (10) and Lemma 5. Since w,, w, € B(r,) and o < 0y, we have:

po(|[willv + [[wally + 0) < po(2rs +0) = 1= /(1 = poo)? — 4680 < 1.

Therefore the operator N (u) is a contraction and has a fixed point in the ball B(r,).
Theorem 1 is thus proved.
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