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Decay of Solutions to the Mixed Problem
for the Linearized Boltzmann Equation
with an External Potential in a Bounded Domain

MERZETEE HM &  Minoru Tabata)

Abstract We consider the mixed problem for the linearized Boltzmann
equation with a sufficiently smooth external-force potential in a bound-
ed domain whose boundary is a 2-dimensional piecewise linear manifold.
We impose the perfectly reflective boundary condition. We do not im-
pose the convexity of the domain. The mixed problem has a unique solu-
tion decaying exponentially in time.

§ 1 Introduction

The nonlinear Boltzmann equation with an external-force potential
has the form,

(1.1) £+ (&-V, =V 4V = QL.

This equation describes the time evolution of rarefied gas acted upon
by the external force F = —V ¢, ¢ = ¢ (x). f= f(t,x,£&) is an un-
known function denoting the density of the gas particles at the time t=
0, at the position x € ), and with the velocity & € RS, where () is a

bounded domain CRS. We assume that the gas particles are confined in
Qand are reflected perfectly from the boundary @ Q. Q(,*) denotes
the nonlinear collision operator.

We accept the assumption of the cut-off hard potentials. We
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linearize (1.1) around absolute Maxwellian state. By substituting { =
M+M""u, M= exp(— ¢ (x)—| & [/2), in (1.1), and by dropping the non-
linear term, we obtain,

(1.2) =Bu, B = A+ (exp(— ¢ )X,

where AE—(E'VX—VXSﬁ'Vé) (exp(— @ N—v) v = v(§)is
a multiplication operator. K is an integral operator. v and K satisfy
the following (see [1-2]):

Lemma 1.1. (i) There exist positive constants v . such that
v S (&)< v.(1HED.
(ii) K is a self-adjoint compact operator in LZ(RS).
(iii) (— v *K) is a nonpositive operator in LZ(RS) whose null space
is spanned by ¢, = & exp(—|€[/4), i =123, ¢, = exp(—|&[/4)
and ¢, = |&[exp(—|£[/4).

We consider the mixed problem for (1.2) with the perfectly reflec-
tive boundary condition. We will demonstrate that if ¢ =¢ (x) is suffi-
ciently smooth and if @ Q is a 2-dimensional piecewise linear manifold,
then the mixed problem has a unique solution decaying exponentially
in time. Our main result is Theorem 2.4.

§ 2 The main theorem

We impose the following on 2

Assumption 2.1. (i) Q is a bounded domain of R’
(ii) @ Q is a 2-dimensional piecewise linear manifold.
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We denote the set of all points of theedgesof 9 Q by E(2 Q). By
n = n(x) we denote the outer unit normalof 9 Q at x € F(a Q)= 8
Q\E(2 Q). ’

We impose the following on ¢ = ¢ (x):

Assumption 2.2. (i) ¢ = ¢(x) is sufficiently smooth in Q.
(ii) 9” ¢ (x)/ I x,0x,1,j = 1,2, are uniformly bounded in Q.
(iii) n(x)*V ¢(x) =0, for any x € F(o Q).

We consider our problem in L*(Q XRa). Write || + | as the norm. By
D(L) we denote the domain of an operator L. We define D(A) = {v = v(x,

£) € L(QXR), Av EL(QXR’). v = v(x,&) satisfies the perfectly
reflective boundary condition,

(PRBC) (7 v D& &) = (y v, ) & —2(n(x)* §)n(x)),

for any (x,§) € F., where y . denote the trace operators along the
characteristic curves of A onto F. = {(x,£) € F(2 Q)XR" *n(x)* &

> 0}. The characteristic curves of A are defined by the following sys-
tem of equations:

(SE)  dx/dt= &, d&/dt= —V ¢ (x).

We similarly define D(A) = v = v(x, &) € LY(Q XR"); Av € LY{Q XR),
and v = v(x, &) satisfies (PRBC) for any (x,&)€ F... Since e *"K is
bounded operator in L(Q XRS), we can define D(B) = D(A).

Lemma 2.3. The intersection of { €C; Rep = 0} and the point
and

spectrum of B isequal to {0}. The null space is spanned by e "~



—E(x, £)/2

E(x, & )e .

Consider the mixed problem,
u =By, t >0, ule =1, € L,(QXR),

where L,%(Q XR’) denotes the set of all functions € L(Q XR’) which

are perpendicular to the null space of B. The following is the main theo-
rem:

Theorem 2.4. The mixed problem has a unique solution u = u(t),
which satisfies that there exists positive constants c¢,, j = 1,2, such
that for any t = 0,

I u®) | = c,n I u Il exp(—ca,t).

The reason why we impose Assumption 2.1,(ii)
and Assumption 2.2,(iii).

We do not assume that the domain is convex. Because of this, we
cannot appropriately get rid of gas particles which follow the boundary
surface, i.e.,we cannot remove characteristic curves of the operator A
which follow the boundary surface. In the same way as in [4-5], we will
set up the resolvent equations as follows:

(0 —B) '=(p —A) " —A) 1—e *K(p —A) '} e 'Kz —A).

It is nearly impossible to demonstrate that e 'K(u —A) " is a compact
operator. Hence, in the same way as in [4-5], we will prove, with the aid
of Assumption 2.1,(ii) and Assumption 2.2(iii), that the 4-th power of
this operator is compact.
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