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ABSTRACT

The aim of this paper is to study the stability of travelling wave so-
lutions with shock profiles for one-dimensional viscoelastic materials with
the non-degenerate and the degenerate shock conditions by means of an
elementary weighted energy method. The stress function is not neces-
sarily assumed to be convex or concave, and the third derivative of this
stress function is also not necessarily assumed to be non-negative or non-
positive. The travelling waves are proved to be stable for suitably small
initial disturbance and shock strengths, which improves recent stability
results. The key points of our proofs are to choose the suitable weight
function and weighted Sobolev spaces of the solutions.

1. Introduction

In this paper we study the asymptotic stability of travelling wave
solutions with shock profiles for one-dimensional viscoelastic materials
with non-convex nonlinearity in the form

vy — ug =0, (1.1)

uy — (V) = pPigg, (1.2)
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with the initial data
(v,u)]t=0 = (vo, uo)(z) — (vi,us) as T — oo, (1.3)

which arises in the theory of viscoelastic materials. Here, € R and
t > 0, v is the strain, u the velocity, u > 0 the viscous constant, o(v)
is the smooth stress function satisfying

o'(v) >0 forall v under consideration, (1.4)

0"(v) S0 for vS0 under consideration, (1.5)

so that o(v) is neither convex nor concave, and has a point of inflection
at v = 0. We find that the system (1.1),(1.2) with g = 0 is strictly
hyperbolic, with the characteristic roots

A =£A(v), where A(v) = v/o'(v)

and with the corresponding right eigenvectors

r(v) = (?Al(v)> '

Moreover, we see that both characteristic fields are neither genuinely
nonlinear nor linearly degenerate in the neighborhood of v = 0. In
fact, the quantity

VAW) -re(v) = X (v) =" (v)/2y/0'(v),

changes its sign at v = 0, where V denottes the gradient with respect
to (v, u).
The travelling wave solutions are solutions of the form

(v,u)(t,z) = (V,U)E), €=z - st, (1.6)
(V,U)&) — (vi,uz), & — oo, (1.7)

where s is the shock speed and (v4,u4) are constant stats at +-0co. Let
the system (1.1),(1.2) admit the existence of travelling wave solutions,
then both (v4,u4+) and s satisfy the Rankine-Hugoniot condition

‘“S(’U+ - 'U_.) - (u+ - U_) = 03
{ —s(ugy —u-) —(o(vy) — o(v=)) =0, (1.8)
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and the generalized shock condition

1 I <0, if vy<v<w_

L) = 2sto o) +o) ol { S0 B SVET
' : (1.9)

We note that the condition (1.9) with (1.4) and (1.5) implies

Mog) s < Mvo) or  —AMv-) < s < —=Mvy), (1.10)

and that, especially when ¢"(v) > 0, the condition (1.9) is equivalent
to '
AMoy) <s<Mvo) or —Av-)<s<—=Avy), (1.11)

which is well-known as Lax’s shock condition(Lax[5]). We call the
degenerate or non-degenerate shock condition following s = A(v4) or
(1.11), respectively. Through this paper, without loss of generality,
let us suppose o(0) = 0.

Notations

HL (1> 0) denotes the weighted Sobolev space of Ly -functions f on
R whose derivatives 8 f,7 = 1,---,1, are also L2 -functions, where
w(z) > 0 is a called weight function, with the norm

o = (S 10251) ™"
j=0

C! (I > 0) denotes the weighted I-times continuously differentiable

space with the weight function w(z) > 0, whose functions f(z) satisfy
w(z)8if € C° j=0,1,---,l, with the norm

{
Iflley = :g;;;ww)@fl-

Denoting

(x)+={\/1—|—x2, if z>0

1, if <0,
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we will make use of the space L%x).}. and Héz”(l = 1,2). We also

denote f(z) ~ g(z) as ¢ — a when C™1g < f < Cg in a neighborhood
of a. When C~! < w(z) < C for z € R, we note that L? = H® =
Ly =Hyand [[-|=]"llo~ | lo=1"lou

Let us define

G(v) = h(v)a"(v) — A’ (v)o'(v), v € [0,v4],

where v, is a unique point in (0, v_) suth that s? = ¢'(v,), and pay our
attention to the points v; € (0, v4) which are defined as the followings

v = sup{v|G(v) > 0 on [0,v]},
vy = sup{v|G(v) < 0 on [v1,v]},
Voio = sup{v|GEv) > 0 on [vgi—g,v]},

Vo = sup{v|G(v) < 0 on [vg;_1,v]}.

Without loss generality, say say n points (n should be an odd number),

v; € (0,v4),i =1,-+-,n, we denote
IO = (’U+,0], 3 In+2 = [v*,'v_]
. n+1
I2j—1 = [vzj_z,'vzj_l], IQJ' = [’Uzj__.l,’vzj]"] = 1’2, R 7

2. Stability Theorems

In this section, we shall prove the stability of travelling wave solu-
tions with shock profiles for Cauchy problem (1.1)-(1.3) without the
. condition ¢'’(v) > 0.

Now, without loss generality, we restrict our attention to the
case

$§>0 and vy <O0<w_, e, wpsVe=h(V)<O. (2.1)
Let (V,U)(= —~ st) be a pair of travelling wave solutions connecting

(v+,us), we assume the integrability of (vo — V,up — U)(z) over R
and express that integral in the form

/—00 (vo — V,up — U)(z)dz = 0. (2.2)
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Let us define (¢o, %0) by

(G0 0)@) = [ (0= Voo = U)u)dy (2.3)

Our main theorems are the followings

Theorem 2.1(Non-degenerate case: AM(vy) < s < AMv-).) Suppose
that (1.4), (1.5), (1.8) and (2.1) hold, and assume that |(vy—v_,us—
u_ )| < 1. When (vo,uo)(z) and (V,U)(£) satisfy (2.2), and sup-
pose that (do,o) € H?, then there exists a positive constant 61 such
that if ||(do, ¥o)ll2 < 61, then (1.1)-(1.3) has a unique global solution

(v,u)(t, z) satisfying
v—V € C"([0,00); H') N L*([0, c0); H"),

u—U € C°[0,00); H') N L*([0, 00); H?).

Furthermore, the solution verifies

sup |(v,u)(t,z) — (V,U)(z —st)] = 0 as t— oo. (2.4)
z€ER

Theorem 2.2(Degenerate case: A(vy) = s < A(v-)). Suppose that
(1.4), (1.5), (1.8) and (2.1) hold, and assume that |(vy — v—,uy —
u_)| < 1 and that there exists § (0 < § < 1) such that

o'(0)vy — o(vy) < Svy(a'(0) —o'(vy)) as vy —0_.  (2.5)

When (vo,uo)(z) and (V,U)(€) satisfy (2.2), then the followings hold:

(1) Suppose that (¢g,%0) € H<21>+, then there exists a positive con-
stant 83 such that if (o, %o)l2,(zy, < 62, then (1.1)-(1.3) has a unique
global solution (v,u)(t,z) satisfying

Ve CO([O’OO);HQIH) N L2([0,00);H<12>$)

u— U € CO([Oa 00)7 H(11)+) n Lz([o’ OO), H?x)‘l")
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Purthermore, the solution verifies (2.4).
(11) Suppose that (do,%0) € H2 N L2£)+ and ¢o, € L? 3 Then
($)+
there exists a constant 63 > 0 such that if [|(do, Po)|l2 + (P, Yo)l(z),
+|¢0’$|< X < 63, then there is a unique global solution (v,u)(t,x)
satisfying

v—V € C'[0,00);H' N L%z)+) N L%([0,00); H! ﬂLfr)%)
+

u—U € C%[0,00); H' N LY,

Furthermore, the solution verifies (2.4).

)N L2([0,00); H* N L%z>+).

Remark 1.) We note that the stability results in [4,10] both o'"'(v)
> 0 and smallness of shock strength |(vy —v_,uy —u_)| are sufficient
conditions. For the degenerate shock condition, A(vy) = s < A(v_),
since Kawashima-Matsumuraf}]’s estimates cannot be applied to this
case, Nishihara[10], at the first time, showed the stability result for this
case provided that the integral of the initial disturbance over (—oo, ],
say (¢o,%0)(€), have an polynomial decay O(|£|_uzﬁ) 0<a<l)
as € — +oo. This sufficint condition 1s stronger than one in this
paper(i.e., O(|§|‘%) as £ — +oo). It seems to get hardly the stability
results by the schemes in [4,10] without ¢''(v) > 0. Here we show an
example of o(v) as the following

o(v) = bv -I—/ / ys(sinl + 2)dydz,
0 Jo Yy

where

b > max | / x3(sin% + 2)dz|,
0

which satisfies o'(v) > 0 and 0" (v) S 0 for v S0, and 0"(v) changes
signs on [v4,v_]. Therefore, we improve the stability results in [4,10].

2.) In Theorem 2.2, it means that when the initial datas are
stronger, then the property of the solution is also better. The result
in (41) is better than one in (i), because we get the stability under the
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weaker conditions in (i), i.e, we don’t restrict the higher derivate of
the initial date in the weighted space.

3.) If a"(v) > 0 for v < 0, namely, o'(v) is convez for v <0,
then 8 in (2.5) can be taken as 6 = 1.

In order to solve the stability, we make a reformulation for the
problem (1.1)-(1.3) as in [3,4,6,7,10] in the form

(0, 0)(1,2) = (V,U)E) + (9, be)(1E), E=a—st  (26)

Then the problem (1.1)-(1.3) is reduced to

¢y — 3¢5 - ¢£ =0
{ hy — s — o' (V)pe — ptpge = F (2.7)

with
F=0(V+d¢)—a(V)—0d'(V)pe.

We define the solution spaces of (4.8) as

Xo(0,T) = {(¢,%) € C°([0,00); H?), $¢ € L*([0, 00); H'),

e € L([0,00); H*)},

Xl(oa T) = {((ﬁa@b) € CO([O’OO);H{ZQ_*_)’(}S& € L2([0’ OO);H:E )a

%
e € L2([0,00); Hfy )}y
X2(0,T) = {(¢,%) € C°([0,00); H* N Ly, ), $¢ € L*([0,00);

HN LZ)%), e € L3([0,00); H* N L3y )},

with 0 < T < co. By the embedding theorem, and let

No(t) = S (6, 6)(m)llz,

Ni(t) = 5o (6, D))z ¢e) 45
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1)
+

Ni(®) = s (1065 + 16,9l + 1660

we have

SUPger |(¢1¢)(t7§)| < CNU(t)a
SUDP¢ecr ‘(¢’ ’l,b)(t, E)I < C SUDPecp |(E)}|-/2(¢7 ’(b)(t, £)| < CNl(t)a

supger [¥(, €)| < Csupeer (€)Y *9(t,6)| < CNy (1),
SUP¢cr (8, ¥)(¢, )] < CN,(2).

Theorem 2.1 and Theorem 2.2 can be treated from the follow-
ing theorem. So, it is our purpose to prove the following theorem.

Theorem 2.3 (A) (Non-degenerate Case): In addition to the as-
sumptions in Theorem 2.1. Then there exists a positive constant b4
such that if ||(do,%0)ll2 < b4, then (2.7) has a unique global solution
(¢,%) € Xo(0,00) satisfying

II(¢,1/J)(t)II§+]0 {liee(IT + lee(r)lz}dr < Cli(do, o)lF  (2.8)0

for any t > 0. Moreover, the stability
(b b)(LE| 20 as tooo  (29)

holds.

(B) (Degenerate Case): In addition to the assumptions in Theorem
2.2.

(i) Then there ezists a constant 85 > 0 such that if |(do,Po)l2,(e), <
05, then (2.7) has a unique global solution (¢,¢) € X1(0, 00) satisfying

| |
(GO, + [ SO s + e g, i

< Cl(d0,%0)l3 ¢y (2.8)
for any t > 0. Moreover, the stability (2.9) holds. |



(i) Then there ezists a positi've constant 8¢ such that if ||(do,%o)||2+
(B0, P0)lieyy +Ido, gl 3 < b5, then (2.7) has a unique global solution

(¢, ¥) € X2(0,00) satzsfymg

16, DN + (&, D)D)y, + 1965
H

b [ U8 + eI g + e + el Do
< CUlGo B+ n, by, +lonel ). (28]
+

for any t > 0. Moreover, the stability‘(Q.Q) also holds.

Theorem 2.3 is proved by a weighted energy method combining
the local existence with e prior: estimates.

Proposition 2.4 (Local ezistence) For any 6y > 0, there exists a
positive constant Ty depending on 6y such that

(A) (Non-degenerate Case): If (¢o,10) € H? and ||(do,%0)llz <
8o, then the problem (2.7) has a unique solution (¢,%) € Xo(0,Ty)
satisfying ||(é,¥)(t)|lz £ 260 for 0 <t < Ty.

(B) (Degenerate Case): (i) If (do,%0) € H<£) and |(do,%o)l2,(e)4
< 8y, then the problem (2.7) has a unique solution (¢,v) € X1(0,Tp)
satisfying |(¢,¥)(t)l2,(ey, < 260 for 0 <t <Tp.

() 1 (botn) € B0 Ly duc € 2y, o)l + [0

Po)lieyy Hdo.el )3 s < &, then the problem (2. 7) has a unique solution

(¢,%) € X5(0, To) satisfying ||(¢ DY+ (6, 9)(Dleers el

(€)+
26p for 0 <t < Ty.
Proposition 2.5 (A priori estimate) (A) (Non-degenerate Case):
Let (¢,v) € Xo(0,T) be a solution for a positive T. Then there exists
a positive constant &7 such that if No(T) < 67, then (¢,%) satisfies
the a prior: estimate (2.8)9 for 0 <t < T.

(B) (Degenerate Case): (i) Let (¢,v) € X1(0,T) be a solution
for a positive T. Then there exists a positive constant 63 such that
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if N1(T') < bs, then (¢,%) satisfies the a priori estimate (2.8)y for
0<tLT.

(ii) Let (¢,¢) € X2(0,T) be a solution for a positive T. Then there
ezists a positive constant 8y such that if No(T) < by, then (¢,1)
satisfies the a-priori estimate (2.8)2 for 0 <t < 7T.

Proposition 2.4 can be proved in the standard way. So we
omit the proof. To prove Proposition 2.5 is our global aim in the next
section.

3. The Proofs of A Priori Estimates

In this section, we will give a skecth of the proofs for our stability
theorems. At first, let’s introduce our desired weight functions which
pay a key role for our a prior: estimates. Let a weight function be

22
wo(v) = ij))t’ v € Iy,
3 = ko 4 . =L .
w(v) — w2]—1(v) = kZ]—l lh(v)a v E I2]—1, (3.1)
’UJQJ‘(’U) == k2] . m, v E Igj,
Wnt2(v) = knt1- ;7%7)7 v € Inyg,
where _] = 1, Tty EE, kl = ’U_2{_, k2 = —k‘la'(vl)/h(vl), ij—l =

—koj_2h(vej2)/0' (V2j-2), kaj = —kgj_10'(v25-1)/R(vej_1), J = 2,
,1‘—‘2*—'1 Soki >0 (: =1,2,--+,n+1). We also denote r(¢) as
another weight function in the form '

r(€) = {i’frﬁ—ﬁo, as ¢ 2 &o,

where £ is defined as such number such that V(£;) = 0 in the section
2. Then we know that w(V) € C%v4,v_], w(V) ¢ CY(vy,v_], but
wiy(V) e C*(L),1=0,1,---,n+1,n+2. r(£) has the same property
of w(V'). Moreover, we find

non-degenerate case: w(V(¢)) ~ Const., L2 = L? (3.3);

degenerate case: w(V(€)) ~r(é) ~(&)y, L: =L2= L?E)+'

(3.3)2
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Let (¢,%) € Xl‘(O,T) be é, solution of (2.7). On the every interval
R; (i = 0,1,---,n + 2), multiplying the first equation of (4.7) by
(w;o')(V)¢ and the second equation of (4.7) by w;(V)y and adding
those equations, we have
1
5{(@ie)(V)8* +wi(V)$* ke — {(wio)(V)w + pwi(V)iebe}e
— S0 )(V)$* +wi(V)P?}e + pwi(VISE + Ailt,€)
= Fuw;(V), (3:4)
where
Ai(t,€) = S (wio") (V)Ved® + pol(V)Verbibe
+ (i) (V)Vedp + Sui(VIVed?, i=0,1,-,n+2. (35)

Integrating (3.4) over R; and adding thses integrated equations, we
obtain

n+2

53 [ Ve Y / w(V)$id

n+2

+ Y / Ai(t,§)dE = /R Fu(V)pde. (3.6)

1=0

By some detail estimates on (3.6), we can prove the following Key
Lemma. .

Key Lemma 3.1 It holds

(6 8) )y, + [ ey, dr + [Vel(r, €)2dédr
0 0 Ro .

< 6o oy, + ) [ 16e0IE 4. ()

From equations (2.7), we have

e — spdge + 0'(V)de + spe —hy = —F. (3.8)
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Since Lfv(v) = Li(s) = L%E)+’ firstly, let’s consider our problem in the
weighted space Lf‘(&)' Multiplying (3.8) by r(f)%qSE on the intervals

[€0,+00) and (—o0, &y, respectively, then adding them and integrating
resulted equation over R x [0,t], we obtain

Key Lemma 5.5 & holds
t
pe(®)* 1 +(1—CNy(t /¢T2 dr
|pe( )I(E)%r ( 1(1)) i | e ( N(e)i

< (o, $o)lFey, + |¢o,e|?£> ) (3.9)

1
z
+

provided that Ny(t) is small.

Due to both of two Key Lemmas, futherly, estimating the higher order
derivations of (¢, ), we can prove (i) of Part (B) in Proposition 2.5.

Similarly, we can prove Part (A) and (ii) of Part (B) in Propo-
sition 2.5.
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