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Abstract

This paper presents fuzzy graph rewriting systems with
fuzzy relational calculus. In this paper fuzzy graph means
crisp set of vetices and fuzzy set of edges. We provide
fuzzy relational calculus with Heyting algebra. Formal-
izing rewriting system of fuzzy graphs it is important to
choose how to match graphs. Therefore matching condi-
tion is argued. Moreover a variation of relatively pseudo-
complement is studied for difference relation of edges.
Two kind of matching conditions are introduced. One is
rigorous matching and the other is ambiguous matching.
Rigorous matching lead us to the theorem that resultant
graph of rewriting and pushout construction of graphs are
equivalent. Finally we study ambiguous matching.

.1 Introduction

Fuzzy theory has a notion “Fuzzy Graph” which graph-
jcally shows fuzzied relations of objects, for example
fuzzy dynamic programming and fuzzied citation dia-
gram of documents[KST*+90]. In order to operate fuzzy
graphs one may use representation with adjacent matri-
ces. Though representation with adjacent matrices has an
advantage of numeric calculation, it can neither deletes
nor adds vetices. Adjacent matrices have no more than
informations of relations and fuzziness on fixed vertices.
On the other hand Ehrig et al[HMM91] presented an al-
gebraic approach to graph transformation and Mizoguchi
and Kawahara|[MK95] generalized graph rewriting system
with relational calculus. These researchers’ works give a
categorical aspects and one can view global observation
of rewriting graphs. These theories intend to deal with
“crisp” graphs.

This paper presents fuzzy graph rewriting systems with
fuzzy relational calculus. In this paper fuzzy graph means
crisp set of vetices and fuzzy set of edges. We oper-
ate fuzzy graph with fuzzy relational calculus which is
originated from fuzzy relational algebra[KF95]. Fuzzy
relational algebra is a fuzzy relation on single domain
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(called homogeneous). Though fuzzy relational calculus
associates with the case of multi domain(called hetero-
geneous), we can make use of many results of fuzzy re-
lational algebra. We provide set-theorctical operation
(union, intersection, etc.) with Heyting algebra, and we
give some consideration to the complements of relations
because graph rewriting implies the difference of relations.
In these consideration we are concerned about choosing
how to match graphs. It is natural that graph rewriting
system requires to match graphs as subgraphs. Working
on “crisp” graphs one may define matching condition us-
ing morphisms. If we adopt only the inclusion of relation
(which is the condition of morphisms) for matching condi-
tion of fuzzy graphs, then we have inappropriate examples
for our intuition. In the following figures which present
in the above situation, graphs in the left hand side match
graphs in the right hand side and g is a morphism of
matching:

1 g(1)

0.2 0.3 matchin
/ \ )

2 3 9(2) 4 9(3)
Matching condition is given as morphism of graphs which
implies inclusion with respect to relations of edges. Fuzzy
theory defines set inclusion by order of membership func-
tion value, but adopting this set inclusion the following
matching is possible:

1 9(1)\
2 3 9(2) 4 9(3)

We give some argument about matchings such as corre-
spondence from 1 15 2 to g(1) %3 9(2). Intuitively we
define matching condition which preserves subgraph and
equality of membership value. We investigate two kind
of matching. One matching described above is rigorous
matching which requires equality of membership value of
edges. The other is ambiguous matching which allows
some ambiguity for membership value of edges.

As shown in Mizoguchi and Kawahara [MK95] the cat-
egory of graphs and partial morphisms has pushouts, we
show the same result in the category of fuzzy graphs and



partial morphisms. Moreover confluency and critical pairs
of fuzzy graphs are studied.

In section 2 we briefly review Heyting algebra and its
properties. Set-theoretical arguments of fuzzy relation
can be resolved into Heyting algebra. In section 3 we
introduce fuzzy relational calculus. Relatively pseudo-
complement and variation of complements are studied.
In the last section we formalize fuzzy graph rewritings.
As stated above matching condition is argued.

2 Heyting algebra

In this section we will review Heyting Algebra and its
properties (ref. [Gol79]). Let (L,C) be a lattice. For
a,b € L the relatively pseudo-complement of a rel-
ative to b , denoted by a=b, is the greatest element
z such that a Mz C b. A lattice (L,C) is called rela-
tively pseudo—complemented lattice if there exists
the relatively pseudo-complement of a relative to b for
any a,b € L. In the case of b = 0, if 0 exists in (L, C),
then it is called pseudo—complement of a , denoted by
-a. Equivalently we can state as following; for any v € L
aflzCb ifand onlyif zCa=b
Heyting algebra is relatively pseudo-complemented lat-
tice with the zero element. We review some properties
without proof. ‘

Proposition 2.1 Let (L,C) be e Heyting algebra and let
a,b,c be in L.

1. There erists the mazimum element 1 € L, which is
defined 1 = a=>a for any a.

2. aC b if and only if a=b = 1.
3. bC a=b.
4. (a=b)Ma=anb.

5. (a=b)NbLCb.

6. (a=>b) N (a=>c) = a=bNec.

7. an(bUc) = (anb)U(aMNc), aU(bMNc) = (aUib)N(alc).

8. a € —a.

In a Heyting algebra double negation of an element is
not equal to the original element, and the law of the ex-
tended middle does not hold. But both are equivalent.
Theorem 2.1 In a Heyting algebra (L,C), for anya € L
al(-a)=1

a = a

if and only if
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3 Fuzzy relations

The fuzzy relation algebra in terms of homogeneous rela-
tions is presented by Kawahara and Furusawa[KF95] and
they adapt scalar of relations in order to prove the repre-
sentation theorem. We will show that hetcrogeneous fuzzy
relations are a Heyting algebra in the sense of [KF95].

Let A, B be sets. A fuzzy rclation (relation, for short)
on A and B is a function a from the cartesian product
A x B to the closed ‘interval [0,1]. We denote the set of
all relation on A and B by Rel(4, B). The zero relation
04, and the universal relation © 4, 5 are relations with
04,8(a,b) = 0 and ©4,5(a,b) = 1 for any (a,b) € A x
B, respectively. Clearly 04,5,04,8 € Rel(4,B). We
abbreviate 04,p and ©4 p to 0 and O if their domains
are understood from the contexts. Throughout this paper
we write  : A — B for a relation @ on A and B, and
the uppercase letters, A, B, C,- - -, and the 3 letters means
sets and relations, respectively.

In the sense of [KF95] we define the order in Rel(A4, B).
The relation « is contained by 8, denoted by o C 3, if and
only if a(a,b) < B(a,b) for any (a,b) € A x B. Obviously
it holds that 0 C a C O for all a € Rel(4, B) and;

Proposition 3.1 (Rel(4,B),C) is a partially ordered
set. '

For a family {a)}» of relations we define fuzzy relations
Maay and Uyay as follows:

(Max)(a,b)

/\[ak(a, b)]
A
V[ak(a‘, b)]

A

(Uraa)(a,b)

we call them the 2 and the infinimum of {ax}, respec-
tively. For shorthand we write a8 and a U 8 for the
2 and the infinimum of {a,8}. The opcrations M and U
meets commutative law, associative law and absorption
law. Moreover from proposition 3.1 we have:

Proposition 3.2 (Rel(A4, B),C,N,U) is a lattice with
the zero element.

Definition 3.1 For o and § in Rel(A, B), the relation
a=>f is definced as

(1 if a(a,b) < B(a,b)
(a=pB)(a,b) = { Ba,b) :‘f Z(a, b) > ﬁ(i b)

Clearly a=>f € Rel(A, B).

The binary operation = determines the relatively
pseudo-complement on Rel(A, B).

Proposition 3.3 Let a and § be in Rel(A, B). For any
relation v € Rel(A, B), it holds that

alNyC g ifendonlyif vCa=p



Proof : Assume that v C a=>ﬂ, ie. 7y(a,b) < (=
B#)a,b) for any (a,b).

a(a,b)

(aﬂ(@ﬁ))(a,b)={ alt) 5 if a(a, ) < B(a,b)

if a(a,b) > B(a,b)

Clearly wé have a N (a=0) = a1 f. By assumption it
holds that My C aM(a=p) E= aN B C . Conversely
assume that ey C B. I ofa,b) < v(a,b), then afa,b) =
(M1 y)(a,b) < B(a,b). So that we have (a=>p)(a,b) = 1.
Therefore it holds that 7(a,b) < (a=8)(a,b). Otherwise,
ie.: ala,b) > v(a,b), by assumption we have y(a,b) =
(@f17)(a,b) < Bla,b) < (e=>P)(a,b). Hence v & (a=0).
o

We deriote the relatively pseudo-complements a=>0 of
a relative to 0 by ~a. From the arguments so far, we have
an important property of fuzzy relations.

Theorem 3.1 For any sets A and B, (Rel(4,B),C
,7, L) is a Heyting algebra.

We call. a relation a € Rel(A, B) regular if and only
if a(a,b) = 0 or a(a,b) =1 for any z and y.

Proposition 3.4 If @ and f are regular then ~a U B =
(a=1).

Proof : Since (Rel(A, B),C,M,U) is a Heyting algebra
it holds that ~a = ¢=>0 C o=>0 and:
anpBCpB ifandonlyifl [Ca=p

Then we have ~a Ul g C (a=8). Conversely, if o{a,b) =
B(a,b) then 1 = (a=p)(a,b) < (ma U P)(a,b) = 1. Else
if a(a,b) < B(a,b), afa,b) = 0 and B(a,b) = 1 since o
and B are regular. Hence we have 1 = (a=f)(a,b) <
(-~ U B)(a,b) = 1. Otherwise, ie. afa,b) > B(a,b),
similarly a(a,b) = 1 and B(e,b) = 0. Thercfore 0 =
B(n,b) = (a=>pB)(a,b) < (~aU PB)(a,b) = 1. Hence we
have (a=8) C -a U,@ a

The converse of proposmon 3.4 does not necessarily
holds. The following is a counterexample of it.

Example 3.1 Set0 <b < a <1. Let us define relations
@ ond B from A = [0, 1] to B = {0} (one-point set) as

follows;
' 0 0<zr<a
a(a,b):{% T=a
1 a<z<1
0 0<z<b
ﬁ(a,b):{ % z=1b
' 1 a<z<1

Though (~a U B)(a,b) = (e=>0)(a,b) = 1 for any (a,b) ,
that is, ~a U B = (a=P), o and (§ are not regular.
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For relations a € Rel(A4,B) and 8 € Rel(B,C) we
define the composition of a and § by

V/ le(a, b) A B(b, o)}

beB

(aB)(a,b) =

Proposition 3.5 [KF95]

1. For a € Rel(4,B), B € Rel(B,C) and v €
Rel(4,C), afNy C (BN ary).

2. A relation a € Rel(A, B) is regular if and only if
there exists a rclation B € Rel(A4, B) such that o U
B=0andanf=0.

Proof : The former is straightforward. We prove the
latter. Suppose that « is not regular, i.e. there exists
(@o,bo) such that 0 < afag,by) < 1. This contradicts
either aM B =0 or aU B = 0. Hence « is regular. O

Proposition 3.6 For a € Rel(A,B) and B,7 €
Rel(A, B), if o*a C idp, then it holds that a(f=>7) C
(af = o). Especially a{(-f8) E —(af). Moreover if
id4 C aal, then it holds that a(f=7) = (af=>av).

Proof : By Dedekind formula and assumption we have
a(f=>7) Naf C af(f=7) Na’af] C of(f=7) N A] T ay.
Hence a(f=>7) & af=>ay. In addition to ofa T idp
suppose that id4 C aa’. Let § be arbitrary relation such
that § C (af=rovy). Equivalently it holds that @ Mé E
ay. By Dedekind formula we have the following: Brats ©
al(af N aaté) C of(afné) C a'ay T 4. Therefore it
holds that o6 © A=+, By the added assumption § C
aols T a(f=>7). Hence aff=ay C a(f=>y). O

Proposition 3.7 For relations o, B € Rel(A, B) it holds
that (a=p)! = of=44.

Proof : It is straightforward from definitions. O

If a relation a € Rel(4, B) satisfies univalency afo C
idg it is called partial function. Moreover a partial
function @ € Rel(A, B) is called (total) function if it
satisfies totality idq T aal. We use lowercase letters,
f,g,h,--- for partial functions and functions. For simplic-
ity we have arrow denotation for relations and functions.
For o € Rel(A4, B) we denote a : A — B and for a par-
tial function (resp. function) f € Rel(A4, B) we denote
f: A— B: pin (resp. tfn) . We define subtraction of
relations by: a — 8 = amn(-p).

Proposition 3.8 If a,3 : A — B are relations and f :
X — A and g : Y — B are partial functions, then f(an
B)g' = fagt N fBg". Moreover if f and g are functions
then f(a— B)g" = fag — fBg".



Proof : We need to show fag! N f8¢" T f(an B)g".
By Dedekind formula fag! N fB¢* C f(ag'gN fifB)g C

" f(e 11 B)g'. In addition let us suppose that f and g are
functions. Then f(a - B)g! = faghn f(~B)g!. By propo-
sition 3.6 and proposition 3.7 f(-8)g' = -~(fBg"). Hence
fla—P)g" = fag® - fBg". D

The regularity of relation is absolutely determined ci-
ther related or not. We present the extended regularity
relative to a given relation.

Definition 3.2 Let a,8 € Rel(A,B) and a T 3. The
relation a is regular with respect to f if and only if « E B
and a(a,b) # 0 implies a(a,b) = B(a,b).

@ is regular with sespect 10f

Figure 1: Regularity with respect to some relation

Proposition 3.9 If a,a’ € Rel(A4, B) are regular with
respect to B € Rel(A, B) then aNa’ end alla’ are regular
with respect to 3.

Proposition 3.10 If a is reqular with respect to B then
there extsts a relation v such that ally = § and aNy = 0.

Proof : Choose v as

_ [ B(a,b) if afa,b)=0
7(a,b) = { 0 it alab) = Bla,b).
It can be proved that 7 holds the condition. [

We call such relation ¥ quasi—complement of a with

respect to 3 , denoted by %a. The next lemmas show
that regularity relative to some relation is extension of
regularity and quasi—complement is weaker negation than
pseudo—complement.

Theorem 3.2 Let a,0 € Rel(A,B) and a C 3. Then
the following statements are equivalent.

1.  the relation a is regular with respect to .
2. For every k € [0,1], a(a,b) A kB(a,b) = ka(a,b).

JzCBAaNz=0 &« x;-ﬂo.
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Proof: (1.— 3.) Suppose that 2 C v and Mz = 0. For
any a, b it holds that z(a, b) < v(a,b) and (a,b)AB(a,b) =
0. If a(a, b) = 0 then (7a)(a,b) = ¥(a,b). Elseif a(a,b) #
0 then (a)(a,b) = 0. So that z(a,b) < ()(a,b). Hence
z Cha. Conversely suppose that z Coa. For any a,b
it holds that z(a,b) < (%a)(a,b). From the definition of
quasi-complement we have z(a, b) < (7a)(a,b) < 7(a,b).
Moreover {from proposition 3.10,

afa,b) Ax(a,b) < afa,b) A (Ta)(a,b)
(an (Fe))(a,b)

0

il

Hence we have that z C v and aNz = 0.

(3.— 1.) Suppose that a(a,b) # ~(e,b) for any a,b.
Then (*a)(a, b) = 7(a,b) from the definition. By assump-
tion take the relation Mo as x then, (Ra)(e,b) < v(a,b)
and a(a,b) A (Fa)(a,b) = afa,b) Ay(a,b) = 0. As a C v
it holds that 0 = afa,b) A y(a,b) = a(a,b). Hence, if
afa,b) # 0 then afa,b) = v(a,b). The proof completes.
m]

Lemma 3.1 The relation a € Rel(A, B) is regular if and
only if it is regular with respect to ©,p.

Proof : For only-if part Obviously a C ©. If afa,b) #
0, then a(a,b) = 1 = O(a, b) by the regularity. Conversely
suppose that a(a,b) # 0. From assumption afa,b) =
Oa,b)=1. O

Lemma 3.2 Let o, 0,7 € Rel(A4,B).
reqular with respect to -y, then

If a and 3 are

1. T is reqular with respect to 7,
2. Ta = a,
3. ifa C B then 70 CTa,
4. HaUp) = (Fa) N (2P),
5. (fa) U (H6) CHa N f),
6. "o C -a, and
7. BN (ma) = AN (7).
Proof :
1. Trivial by the definition of quasi-complement.
2. Easy from 1. and proposition 3.10.

3. Let z ChB. Then  C 4 and £ M B = 0. Therefore
zNaCzNF=0.

4. Let £ CH(a U B). Equivalently we have = C v and
zMNa=0and zNB = 0. Hence z T (Ta) N (76).



5 If z C (%a) U (58) then we have z T « and (z N
a)N(zNp) =0, thatis,z Cyand zMNa =0 and
zMB = 0. Hence it holds that  C(anpB). Converse
does not necessarily holds.

6. We need to show that an ~a = 0.

if a(a,

0 A(a,b) b)
if a(a,b)

(enaa,t) = { S0

is equal to 0. Hence Za C ~a.

(a b)

7. From the above clearly 81 (5a) C B (-a). Con-
versely (yM(-a)) C v and (7N (~a))Na = yN(-a)N
a = 0. Hence we have (7N (=) € (Fa) = 7N (7).

The proof completes. O
Definition 3.3 Given 0 < ¢ < 1. A relation o is €~
regular with respect to v if for any z,y,

a(asb) # 0 - 7(a’b) # OA 'C(((l, b) - 7(“1 b)l <e

@ is € regular with respect tof8

° TAX B
Figure 2: e-regularity

Needless to say, if a relation is regular with respect to
some relation then it is e-regular. We say that two rela-
tion are e—equal if each of them is e-regular with respect
to the other.

Proposition 3.11 If relations a and 3 are e~regular with
respect to v then a Ul 8 is e-regular with respect to 7.

Proof : Suppose that (oL 8)(a,b) # 0. Then we have
a(a,b) # 0 and B(a,b) # 0. By assumption, it holds that
7(a,b) # 0 and

|7(a7 b) - a(aw b)‘ <e |7(a‘: b) -

So that

Bla,b)| < €

y(a,b) - (@ U B)(a,b)] < ¢
holds. Hence a Ul § is e-regular with respect to y. O
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Lemma 3.3 Let o : A — A be e-regqular with respect to
7:A— A, and let f be a function from B to A. If f is
regular and injective then flaf is e—regular with respect

to fivf.

Proof : For any a and b suppose that (flaf)(a,b) # 0.
As f is regular and injective there uniquely exist ¢; and
¢z such that

fu(a)cl) A Q(Cl, CZ) A f(CZ) b) 7;‘{: 0',

By regularity of f it holds that f¥(a,c1) = f(c,b) =1
and a{c;,c2) # 0. Since « is e-regular with respect to vy
we have y(cg,c2) # 0 and

[v(e1, c2) — afer, )| <€

Note that f¥(a,c1) A 7(cr,2) A f(cas8) = (ca,c2) and
fa,c1) Aaler, cz2) A f(e2;0) = afer, c3), then

I(ffuyU £)a,b) - (FlUeU f)ab) <e

Hence flaf is e-regular with respect to flyf. O

Lemma 3.4 If a relation a is e-regular with respect to v
then there exists & such that it is regular with respect to
v and ~a = .

Proof : If ((~a) Nv)(a,b) # 0 then ((—a) N v)(a,b) =
4(a,b) by the regularity of —a. Thercfore ((~a) M) is
regular with respect to 7. Put & ="((~a) M7). Take z C
-aNé. Equivalently z C ~a and T vy and zN(~a)Ny =
0. Hence z = 0, that is, ma & = 0. Conversely observe
that

S N(=a)Ny)Na E = ((me)Ny)N--ea

= ~((~a)N7)U-a)

If (ma)(a,b) = O, then a(a,b) # 0. By e-regularity
v(a,b) # 0. Therefore (% ((~a) N 7) U ~a)(a,b) =
v(a,b) # 0. Else if (na)(a,b) = 1 then obviously (=
{{(~a)Ny)U~a)(a,b) # 0. Sothat =(H((ma)Ny)U-a) =
Hence = A((~a)Ny)Na = ~&Na = 0. Then we can
conclude -~a = -&. O ‘

Domains of relations can be represented by relations.
For relation o : A — B the domain of « is a relation
d(a) = aaf Nid,. We review properties domain of rela-
tions from [MK95].

Proposition 3.12 [MK95] Leta: A — B and f: B —
C be relations and f : A — B be a partial function.

1. d(ef)d(e) = d(ap).



2. d(fB)f = fd(B).

Proof : By Dedekind formula d(af) = afffal Nid, C
a(ff'a? Na') C afpla Naal. Therefore d(af) =
(aBB'a'Nid )N (afpla Naa') = appla Naat Nidy C
d(a). By Dedekind formula and univalency of f we have:
d(fB)f = (fBB' ' Nida)f C fBB S fNFEfBANFL
J(BB N fif) € f(BB* Nidp) = fd(B). O

Proposition 3.13 Leta: A — A, 0 : B — B and f :
A—B: pf. If0C flaf then 0 = fifofif.

Proof : Obviously we have flfoflf C 9 since fis a
partial function. Choose © 4 4 for a. By assumption § C
f'O44f Thus 0 = 0N f'O4 4f C fHfOF' NOpA)f =
ffaf'f by Dedekind formula. O

4 Rewritihg for graphs

Mizoguchi and Kawahara[MK95] presented graph rewrit-
ing with regular relations. This section presents the for-
malization of fuzzy graph rewriting system in the same
manner as [MK95]. _

A graph (A, o) is a pair of set A and arelationa: A —
A. A partial morphism of graph (4, a) into (B, 8) is a
regular-partial function f : A — B satisfying d(f)af C
JB. U f is a total function then we merely say morphism.
Note that we will deal with “regular(crisp)” sets of nodes
and “fuzzy” relation of edges and morphisms arc regular
relation.

It is easy to show that all of graphs and their partial
morphisms form a category, which we denote by Pfn(F-
Graph). In the sense of regular relations it is proved
that the category of sets and partial functions (denoted
by Pfn) has pushouts(ref. [Kaw90]).

Theorem 4.1 The category Pfn has pushouts.

This theorem lead us to the same fact as [MK95] in the
. sense of Pfn(F-Graph).

Corollary 4.1 The
pushouts.

category Pfn(F-Graph) has

Let us consider the following diagrams, which are in
Pfn(F-Graph) and Pfn. In the left hand side f and
g are partial morphisms. By the theorem 4.1 one can
construct pushout in Pfn, which is in the middle.

(Ao)—L=(B,f) 4—t.p (Aa)—Ls(Bp)
91 91 h 9l lh
(€ CotmD  (Cr) — (D))

Define § = k'yk U h!3h. Then we obtain the pushout
square in the right hand side.
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Rewriting consists of two notion. One is “rewriting
rules” which is correspondence between nodes and can
be formalized as partial functions on scts of nodes. The
other is “matchings” into which rewriting rules are ap-
plicd. Malchings must indicate appropriate subgraphs in
objective graphs.

Definition 4.1 A rewriting rule is a triple p =
({4,0a),(B,B), f : A — B) where f is a partial function
(It is not necessarily a partial morphism).

Now we will consider matching conition. Working on
“crisp” graphs one may define matching condition using
partial morphisms. If we adopt only the inclusion of re-
lation (which is the condition of partial morphisms) for
matching condition, i.e., ag C g8, then we have inappro-
priate cxamples for our intuition.

1 9(1)
015 & %ll N
2 3 S y(2) 1 9(3)
(4,9 (X3

In this example (A, ) is matched into (G, &) , but in the
next example (A, @) is not matched into (G, £).

g(1) |

1
: matching
2 3 #= g(2) 4 9(3)
(4,0) (G,9)

In order to except such examles we should preserve equal-
ity of membership value.

Definition 4.2 A morphism g from (A, a) into (G.£) is
a matching from (4, @) into (G.£) if g'ag is reqular rel-
ative to §.

By theorem 4.1 we can construct the pushout from
rewriting rule and matching. For partial functions in def-
inition 4.1 we have the following pushout square in Pfn.

Atep
gl 7

Y
G- k“"H

The graph (G, §) is said to be rewritten into (H,7) by
applying a rewriting rule p along a matching g if
the relation 7 is defined as 7 = k! Bk URY (€ — g ag)k. We



denote by (G, &) =/‘> (H,n). Applying rewriting rule is
/9

viewed as a rewriting square:

(4,0) —L> (B, )

o [»

(G, &) —— (H, )

Mizoguchi and Kawahara [MK95] show that the rewrit-
ing square is a pushout square in Pfn(Graph) if the func-
tion in rewriting rule is a partial morphism of graph. In
our case the similar results can be obtained. Moreover the
construction of pushouts in the category of fuzzy graph is
the same as [MK95].

Theorem 4.2 Let p be a rewriting rule ((A, ), (B, ), f :

A — D) and g : (A,a) — (B,B) be a matching.

If f : (A,a) — (B,B) is a partial morphism, then

rewriting square (G, &) ‘7 (H,n) is a pushout square in
/9

P{n(Graph).

Proof: As f is a partial homomorphism we have flaf =

(fnfrffaf C AidanffMaf C fld(flaf CFBT R
by Dedekind formula. We need to show that n = h*gh U
k'ak. From the construction of 7 and by lemma. 3.2,

RIBR UK (€ — glag)k

BB U K (T (Sofag))k

R lafRUKE N (Sgtag))k
k'glagk U KN (g ag))k
K(g'agu (6N (g'ag)))k
= K (En(dlagU (“g'ag)))k
= k'¢k

Hence it holds that n T h¥Bh U k*(¢ — glag)k U ki¢k C
h'Bh U kt€k. The proof completes. O

n

oo

Next we define the ambiguous matching condition. Re-
sultant graph applied along an ambiguous matching can
be equivalent to pushout construction in the sense of that
ambiguity.

Definition 4.3 Fir e € [0,1]. g : A = G is a e
matching from (4, a) to (G, §) if and only if the relation
glag is e-regular with respect to €.

Definition 4.4 Two graphs (A, a) end (B, 8} are e-cqual
if and only if each of a and B is e-regular with respect to
the other.

By lemma3.3 we can state that;

Theorem 4.3 If rewriting function f is an injective par-
tial morphism and matching is e-matching, then the re-
sultant graph of rewriting and resultant graph of pushout
square are e-equivalent.
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