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W (E7)—-invariant polynomial of
degree 10 and 28 bitangents of
plan equartic curves
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§1. The root system of type E-.

We first recall the definition of the root system A(E;) of type E;. We always denote it by A
for simplicity in this paper. Let E be an inner product space of dimension 8 with an orthonormal

basis {;;1 < j < 8} with respect to an inner product < -,- > and let E be its linear subspace
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orthogonal to €7 + €s. As in [Sed], §4, we define the following 63 vectors of E:

Y1 =€ —€7, Y=€ji-1—Y+"N, Y;=—€-1+7%, (1<j<8)

Yik = €jo1 —€k—1, Yjk = —€j_1 —€k-1, (1<7<k<8)

Yijk = —€ic1 —€j-1 —Ek—1+ 70, (1<1<j<k<8)

8
where vo = % Z €; — €7. The totality A of £+;, £v,k, vijk is a root system of type E; (cf. [B]).
—

As a fundamental set of roots of A, we may take
ay = Y12, Q2 = 7123, O3 = 723, Q4 = Y34, O5 = Y45, Q6 = Y56, Q7 = Y67

Then the corresponding Dynkin diagram is:

a;  —— az ag  —— as as  —— az

a2
We denote by A™ the set of positive roots in A. It is easy to see that AT consists of Viy Vijs Vijk-

If g; is the reflection on E with respect to the root aj, the group generated by g¢;,---,g7 is
the Weyl group W(E7) of type E;. In the sequel, we frequently identify W(Ag) ~ L7 (resp. the -
Weyl group W(Es) of type Eg) with the subgroup of W(E-) generated by g1,9; (j = 3,4,5,6,7)
(resp. g; (7 = 1,2,3,4,5,6)).

Using the 63 positive roots defined above, we define linear forms on E by

h;j =7i(t),  hjk =7k(t),  hijk = vijk(t), (t€E).

§2. The configuration space of 7 points in PZ.

We briefly review the definition of the configuration space of 7 points of P? which we denote by
P(2,7). We first define the vector space M3,7 of 3 x 7 matrices. Then M3, admits GL(3) x GL(7)-
action in a natural manner. Let D(7) be the maximal torus of GL(7) consisting of diagonal
matrices. Let D;jx(X) be the determinant of the 3 x 3 matrix consisting of the ¢, 7, k-th column
vectors of X € M3 7. If M3 7 is the subset of M3 7 consisting of X with D;;x(X) #0 V(i,7,k)(i <
J < k), we denote by P(2,7) the quotient of.Mé.-, by the action GL(3) x D(7). It is possible to
choose as a representative of any element of P(2,7) a matrix of the form |

1 0 01 1 1 1
X = 01 01 1 z2 z3
0

0 1 1 yvi1 y2 w3
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In this way, P(2,7) is regarded as a quasi-affine subset of C°® by the correspondence

10 0 11 1 1

01 01 zz z2 x3 — (1,2, %3, Y1, Y2, Y3).
0 01 1 w1 y2 s
In fact, P(2,7) is identified with C® — So(Ag), where So(Asg) is the union of the 28 hypersurfaces

below:

z;=0, ,—-1=0, =0, y»-1=0, z;i—-z;=0, yi—y;=0, =zi—-yi =0,

riy; —ziy; =0, (1—z)(1—-y;)—(1—z;)(1-w)=0,

1 1 1
901(11,122,13,3/1,?!2»!/3)=det T X2 I3 =0.
Yi Y2 Y3

We introduce the following seven birational transformations s;,- - -, ss, SR:

s1: (zy, 22,23, 91, Y2, ¥3) — (1/x1,1/22,1 /23, 91 /21, y2 /22, y3 /x3)
s2 : (T1,%2,23,Y1,¥2,¥3) — (y1,92, Y3, 21, T2, T3)
‘ 1 ! 1 U / /

83 (x1312,13)y11y21y3) — (xlnyvIZ}» Y1, Y2, y3)
s¢:(z1,72,23, 91,92, ¥3) — (/1,22 /21,23 /21, 1/ va, 2 /w1, y3 /1)
ss @ (z1,T2,23,Y1,92,¥3) — (T2,%1, T3, Y2, Y1, ¥3)

86 ¢ (xl»fz,l's,yl,yz,ys) — (xl‘xs,h,yx,ys,yz)

sr:(z1,22,23,91,y2,y3) — (1/x1,1/x2,1/23,1/y1,1/y2, 1/ y3)

where
x;:—xj—y.]’ y;z—-yil’ j=1,2,3.
2
The correspondence

g1 — 81, g2 — SR, gj — S (]:3717)

induces a group isomorphism of W(E7) to the group generated by s, -, s¢, Sr.

We introduce 7 polynomials of (z1, 2,3, y1, y2, y3) defined by

Ui(xlvz'lax:i’ylxy?vyfi) = 4P6—j(31,$2,$3,y1,y2, y3), (.7 =1,2,3,4),
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os(z1, 72,23, Y1, ¥2,¥3) = T2y3(1 — 23)(1 — 12) — z3y2(1 — 22)(1 — w3),
o6(Z1,22,23,y1,¥2,¥3) = T1ya(1 — 23)(1 — 1) — z3y1 (1 — 21 )(1 — w3),

o7(Z1, 22,23, 91,92, ¥3) = T1y2(1 — 22)(1 = 1) — Zavn (1 — 21 )(1 — 32),
where ¢; (7 = 2,3,4,5) are polynomials introduced in [Sed], §4. In particular,

e2(z1,2,3,Y1,¥2,¥3) = 122231 Y2931 (1/21, 1/22, 1/ 23, 1/ 1, 1/ y2, 1/ ys)

Let @; be the hypersurface in C® defined by o; = 0 (j = 1,--+,7). Then it is easy to see
that £, acts on the set {Q1,---,Q7} as a permutation group. If 67 = o7 and &; = ;41 0 s;
(j =1,2,--+,6), and Qj is the hypersurface in C® — Sy(A¢) defined by &; = 0, then Q; is the
Zariski closure of Qj in C%. A geometric meaning of QQ; will be given in §6. In the sequel, we
denote by Po(2,7) the complement of the union S(E7) of So(As) and Q1,---,Q7. Clearly all the

elements of W(E7) induce biregular transformations on Pg(2, 7).

§3. The cross ratio variety C(A(E7), Dy).

For any subroot system A; of type D4 in A, we defined a D4-cross ratio map of the Zariski
open subset Z(A) of the projective space P® = P(E() associated to the complexification Ec of
E to CR(P) ~ P'. There are totally 315 subroot systems of type Dy in A. The corresponding

Dy-cross ratio maps are denoted by

. .
CTlig,igi7] — (higighigigiq hiyighiyigis —hijighiigighigighizigis ¢ hiyighivigighigishigigis)
2 — . . . . . . . . . . . . . . . . . . . . . . . . - . . . . . . . .
Cr[i,-;».igq,isis] - (hll'315h!thish'z'a'shllﬂue . "hﬂz'a‘s h'ﬂq'sh*l'a'sh'z'us . hllizhtawhlslshw)

Crfiliz,isq] = (Riyigizhigigizhigighiy —hijizighigigicPisiz hig * Riyigighigigis higizhig)
(cf. [Se4], §4). By taking the product of all the 315 maps above, we obtain a map crpy,a of
Z(A) to CR(P)**®. Let C'(A, D4) be the image crp,,a(Z(A)) and let C(A, D4) be its closure
in CR(P)*'®,
For any subroot system A; of A, we defined a subvariety Ya,p, (A1) in [Sed], §4. There are four

kinds of hypersurfaces of C(A, D,) defined as the form Ya, p, (A1) for suitable subroot systems.

§4. Hypersurfaces corresponding to subroot systems of type Es.

Weintroduce hypersurfaces of C(A, D4) which are fixed by W( Es)-actions (cf. [Sed], §4,(4.15.10)).
If A, is a subroot system of type Eg in A, it is easy to show that Ya p,(4,) is a hypersurface of
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C(A, D4). Such a hypersurface is called that of the 5°" kind. As a basic property of hypersurfaces

of the 5'* kind, we have the lemma below.

Lemma 4.1. (cf. [Seda]) Ya,p,(A(Es)) ~ C(A(Es), {As, Ds}).

Lemma 4.1 establishes an embedding of the cross ratio variety C(A(Es), {As, D4}) into C(A, Dy)
To show an identification of C(A(FEs), {As, D4}) with the variety defined [L], we need some

preparation on cubic curves in P? passing through 7 points. For simplicity, we take 7 points
Py,---, P; of P? as follows:
P,=(1:0:0), P, =(0:1:0), P =(0:0:1), Py=(1:1:1),

Po=(l:zy:y), Ps=(1:22:y2), Pr=(1:z3:ys)

We assume that the 7 points above are in a general position which means the corresponding

matrix
1001 1 1 1
01 0 1 =z =z =3
001 1 yv1 y2 ys

is a representative of the configuration space P(2,7).

-, Pg; Pr) be the cubic curve in P? passing through Pi,--
P g g
++, Pg; P7) has a cusp at P;

Let C(P,-- -, Py such that P; is a
double point (cf. [M],[L]). We now consider the case where C(P,

(cf. [L}). This condition implies a relation ¥(z,y) = 0 among (z,y) = (z1,Z2, %3, Y1, Y2, Y3).

The explicit form of the polynomial ¥(z,y) is too lengthy to write down here. It is provable

that deg, ¥ = deg,, ¥ =38.
Noting that C(A, D,) is a compactification of Po(2,7), we obtain a hypersurface Ycu,p of

C(A, Dy) as the Zariski closure of the hypersurface of Po(2,7) defined by ¥(z,y) = 0.

Theorem 4.2. Y.usp = Ya,p, (A1) NPo(2,7).

The basic idea of the proof employed here is the comparison between the defining equations of

Ya.p,(A1) and Yeusp. Before entering the details of its outline, we state a result on the polynomial

¥(z,y).

Lemma 4.3. We put

(I>(:t7y) = @l(x,y)z - 4®2(xvy)a
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where
Oi(z,y) = miT2y1 —T1Z2y3 — T1T3Y1 + T1Z3Y2 — T1Y1Y2 + 11 Y3 + Ty
—Z1y3s + T2y1Ys — T2Y1 — T3y1Y2 + T3ya,

Q2(z,y) = (z1—yi)(z2ys — z3y2)(y1 — 1)(y2 — y3)21.
Then there is s € W(E7) such that Pos = V.

We are going to‘explain the outline of the proof of Theorem 4.2.
We first compute the condition that the cubic curve C(P,- -, Ps; Pr) has a cusp at P;. For

this purpose, we assume that F(£1,&2,£3) = 0 is the defining equation of C(Py, - -, Ps; Pr), where
F=c§ + b+l + 645352 +cséibs + ceb162 + c1€265 + Csflég + cob2b + c10€182€3.

In the discussion above, we have taken & = (& : & : ;) as a homogeneous coordinate of P?. The

condition that C(P,- .-, Ps; Pr) passes through Py,--+, Pr is equivalent to
(C.1) F(P))=0, j=1,---,7.

The condition that P; is a double point of C(Py,---, Ps; P7) is equivalent to

(C.2) Fe.(Pr)=0, 1=1,2,3.
The condition that P is moreover a cusp point of C(P;,- -+, Ps; P7) is equivalent to
(c.3)  Faa(P)Fae(P) - Faa(P)? =0,
(From (C.1), (C.2), we conclude that the ratio of ¢;,- -+, c10 is uniquely determined. Substi-
tuting such ¢;,- -, c1o to the equation (C.3), we obtain an algebraic relation
(4) ¥(z,y) =0

if (z,y) € C® — S(4s). We need a long computation to obtain (4) and it is hard to reproduce
here.
Our next purpose is to compute the defining equation of the hypersurface Ya,p, (A1) in P(2,7).
For this purpose, we first recall the definition of the rational map of P® to P(2,7) in [Sed],
Lemma 4.2. We put

2 (t) = has4 - hazs - his - hiss za(t) = has - ha3s - hie - hi3e 25(t) = hos - hass - hi7 - hiav
his - hisa - hos - hass’ his - h1as - hae - hase’ hia - hisa - ho7 - hoss’

n(t) = has - hosg - his - hi2s ua(t) = has - hoss - hig - hi2s vs(t) = has - haszs - hi7 - hiae
hig - hiag - has - hass’ his - hizq - has - hase’ hig - hi24 - ha7 - haay

and define the map Fg, of Z(A) to the (z, y)-space by

FE7 (t) = ($1 (t)a T2 (t)v x3(t)1 )1 (t), y2(t)) y3(t))$

where P(2,7) is identified with a Zariski open subset of the (z, y)-space (cf.[Sed], §4) and hi, hij, hijk
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are linear forms on E associated with the roots of A. Now we put
G =hiz, (=his, (=ha, (=hss, (s=hss, (s =hss, (1= her.

It is clear from the definition that linear forms in question corresponding to the roots of A(Es)
are expressed as linear combinations of (; (j = 1,---,6). We may take { = ({; : -+ : (6 : (7) as
a homogeneous coordinate of P®. Now we write (; = (j7 (j = 1,---,6). Then C=((C
C¢),7) is also a local coordinate of an affine open subset defined by (7 # 0 in P°®

Noting this, we write #;(C) = z;(t), () = y; (1) (7 =1,2,3). Now we put
wi(( s Ge) = Em &0, v(¢ ) =lm () (G =1,2,3).
We define polynomials

fH=a(G+G+G+G+ GG+ G+ + G+ G+ 4G +EG)

(G + G+ GHEG+ GG+ GG+ G+ G+ G)G + G,
fr=ma(Q+ G+ G+ G+ G+ )G+ G+ )G+ G+ GG+ G+ G+ C)
(G +G+GHEG+ G+ G+ G+ + G+ G+ G+ ) (G + G,
fizmws(G+G+HGNG+ G+ - (G ‘+ G+ G+ C)(C +Ca),.
fa=n(G+ G+ G+ G+ G+ G+ (G + (G +Gs)
~(G+G+GE+G+G+ G+ cé)(‘CQ + (a4 €8)as

fo=y2(CG+ G+ G+ G+ G+ )G+ G+ C)(G + GG+ G+ Ce)

—(G G+ GGG+ G+ G+ G+ GG+ G+ s+ ),

fo=ys(Ci+ G+ C(G +C) = (G + G+ G+ G
Regarding

(5) fi==f=0,

as a system of equations for (i, -, (g with coefficients in the function field C(z, y)‘, we are going '
to solve the system (5). If zj,y; (j = 1,2,3) satisfy an algebraic equation ¥'(z,y) = 0, the
system (5) has a non-trivial solution. ;From the construction, the hypersurface ¥'(z,y) = 0 in

P(2,7) = C'(A, D,) is nothing but the subvariety Ya,p,(A(Es)) (cf.[Sed], §§1,4). By a little
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lengthy computation, we conclude that ¥'(z,y) coincides with ¥(z,y) up to a constant factor,
where ¥(z, y) is the polynomial introduced before.

In this way, we can prove Theorem 2.

§5. Comparison beween Ya(g,),p,(A(D4)) and Ya(E7), D4 (A(Es)).

It is worthwhile to compare similarities between hypersurfaces of the 5'* kind and the subvariety

Ya(ge),0,(A(D4)) of C(A(Es), Dy) introduced in [Sed], §3 (cf.[N], [L], [Sh2]).

TABLE I
Ya(ge),04(A(Dy4)) Ya(£7),0,(A(Es))

(I.1) || a cubic surface with an Eckardt point | a plane quartic curve with a special flex

I2) f A=-1=0 Y(z,y)=0

(1.3) || a cross ratio variety for A(D,) (?) C(A(Es),{As, Ds})

(I.4) || associated quintic a W(E7)-invariant of 10th degree
(I.5) || configuration of 6 points configuration of 7 points

We give here an explanation on TABLE I.

(6.1) Let S be a non-singular cubic surface in P®. An Eckardt point on S is the intersection
of three lines on S (cf. [N]). Every cubic surface does not have an Eckardt point. On the other
hand, a flex of a non-singular plane quartic C is a point p € C such that there is a line [ triply
tangent to C at p (cf. [Sh2]). A flex is ordinary if INC consists of two points and a flex is special
if INC = {p}. Every plane quartic does not have a special flex.

(6.2) In [N], the parameter A was introduced. It waskshownl in [Se3] (cf.[H]) that X is regarded
as a rational function on P(2,6). In fact, using the notation in [Se3], we have

_ z2(z - Dy — )2 = 1)
y2(z1 — z2) (22 — 1)(1n — 1)°

(6.3) Is it possible to regard Ya(gs).0,(A(Dy)) as a cross ratio variety for the root system
A(Dy) of type Dy ?

(6.4) If 65(t) is a W(Es)-invariant polynomial of degree 5 (which is unique up to a constant
factor), it is shown in [Se3] that the polynomial Ps(t) = 85(t1, ta, t3, 4,16, —3ts) is W(Fy)-semi-
invariant under the notation there. Hence, by W (F; )-action, we obtain totally 45 quintic polyno-
mials on the standard representation space of W(Es). For the sake of convenience, we call these
polynomials associated quintics. There is a 1-1 correspondence between the set of associated
quintiés and that of the 45 triple tangent planes.

Similarly, there is a W( Ey)-invariant polynomial g, (t) of degree 10 which plays a role analogues
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to 8s. (The construction of §g,(t) will be given later.)

(6.5) (cf. [L]) Let Py,---, Ps be 6 points of P?. We consider a conic C passing through five
points P, -, Ps and a line L passing through Ps, Ps. The conditioﬁ corresponding to A—1 =0
is that the line L is also a tangent of C at Ps. Let P;,---, P; be 7 points of P2. The condition
corresponding to ¥(z,y) = 0 is the main subject in the previous section. Namely, let Py,---, Py
be 7 points of P2. We consider a cubic curve C passing through seven points P;,- -+, Py such that
Pr is a double point. The condition corresponding to ¥(z,y) = 0 is that C has a cusp at P;.

We are going to explain the construction on §g,(t).

Let w; be a fundamental weight of A(E7) such that < wj, ax >= §;x. Then w7 belongs to the
set of weights of the 56 dimensional irreducible representation of the simple Lie algebra of type
E-. By definition, w7 = 2a1 + 3a2 + 4a3 + 64 + 55 + 4as + 3a7. The totality I1 of o € A
such that < w7, >= 0 form a root system of type Es. Let Q27 be the set of weights of 27
irreducible representation of the simple Lie algebra of type Eg corresponding to the root system

II. Then z, = Z w? (p =1,2,--.) are W(II)-invariant polynomials. (From the definition,
w7

W(Il) >~ W(Es).)

Lemma 5.1. Under the notation above,
P(t) = 43545600w1° — 3628800228 + 10080022ws + 725760255
+(420023 — 60480026 )w$ — 2016022 25w3 + (17523 — 403202726 + 18144023 w?
+(336023 25 — 5760029 w7 + 100822
is a W(E7)-invariant polynomial of degree 10.

For simplicity, we put P = P(wn, z2, 25, 26, 28, 29). ;From the definition, P is defined on the
standard representation space E of W(E7). Therefore P = 0 is a hypersurface on P® = P(Ec).

Similarly, P(—2w7, 22, zs, 26, 28, 29) = 0 defines a hypersurface H,, in P®.

Theorem 5.2. The closure of crp,,a(Hw,) is isomorphic to Ya(g,),p, (A(Es)) by W(E7)-

action.

(From the theorem above, ég,(t) = P(wr, 22, zs, 2, 28, 29) is a required W(E7)-invariant poly-
nomial. Therefore P(—2wr, 22, 25, 26, 28, 29) is an associated W (E;)-invariant polynomaila of degree
10. There are totally 28 associated hypersurfaces in C(A, Dy).

It is interesting to characterize the polynomial ég,(¢) among W(E7)-invariant polynomials of

homogeneous degree 10.
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Appendix. Theorem 4.2, Theorem 5.2 I22WT — HFMHE I X 7 2 DFH —

(1) §4 DX ¥(z,y) DETEII P2 D RE. HMHE T X5 4 REDUCE3.4 % Toshiba J3100 TF|
ALTEHELTHESNZ 2 @) DORXPBE LW L 2R L7, 10,000 TTREOR RS L TERY
121,800 ITREOKICZ o7z, BifL, B EBDOBMR L7 risa/asir * PC9801 NS/R THIH L TEtE
LB L TARZD, Thkbhl )Ry ET7:.

(2) Ya.p,(A(Es)) DFD C(A, Dy) DESTERARIL 56 RITTEHD weight LT T 5, 56 RITH
B weight IE

d(e1 +e2+e3+es+es5+€6), E(ei +eip teiz Heiy —€iy —€ig), x(m *2¢)

Thb. wr= (1 —2s6) BELF—wr IZFILT B0 U (z,y) = 0 TERSNABFME. +(e; +62+
€3+ €4 — s —€6) WXL TAD% Lemma 4.3 TEA L &(z,y) TERSNLEFEE. ZOFTEI
risa/asir (C$ 072, simple reflection T weight % K4 IZB D & F4T L T 1,800 ITEREOX* A
BEBRTEEERL TRV, BREERTLILIIES.

(3) 1,22, 23,41, y2, Y3 ¥ t DFREEATERLT, &(z,y) (RATEE t OFBERIBLNEDS,
FOGFDODERTZVEFIL 22 KERATHS., COXE SOICAMTHETS L 1 ROETFH 12 6
HY, FBRYOEFHF(t) = P(—2wr, 22, 25, 26, 28, 290) \-% D, —ROBFIL T THEMEIINNTTS.
F(t) i3t DREABE 5,000 ITRRETH L. BULREBEBICI>T F@) 25 W(E,) AERZEEX
HIDIREHATIIZWE Y ICPALS. EsDBEIZE I 2oTN 2L\ ) DHME—DRIL. Fhild &
DWT, P(pwr,22,25,26,28,20) B W(E?) ARICEZDEILERp 2RO L, EWwIHIEELE R,
SLELWETE26IT, ¢t & LTHBREZTRALTORY L2 THALEEZ, EUREEXRAL
THRNTHALZ, ELWAPIEEL {Zvd> computer ICFHES®-ETA, p=1426i1d 0 LdH i
BETIRIEL W I Edfbdolz. 0T, WOPRREERAL THPO-LZAVTROIELWE
ENTRET, ENTt 2 EBBE LTABELTERER L. W% I E2H P(~2wr, 22, 25, 26, 28, 20)
13t REe AT 5,000 ITREL 7% ) BVWRIED P(wr, 22, 25, 26, 28, 20) 1 270 ITRED b L & Hh
Iz nEnRiciz o7z,

§6. Relations between C(A, D;) and cubic surfaces.

At a meeting organized by H. Yamada held in RIMS, Kyoto University (December, 1993),
I. Naruki and J. Matsuzawa gave talks on a root system construction of universal cubic sur-
faces. They constructed a fibre space C of cubic surfaces over Naruki’s cross ratio variety
C(= C(A(Es), D4)) so that the natural projection w : C — C is W(Eg)-equivariant.

In this section, we discuss a relation between C(A, D4) and C.

For this purpose, we introduce the set P(2,k) of k points (P, - --, P) in P? such that P; # P,
if i # j. By definition, P(2,k) admits a PGL(3)-action. Let P(2,k) be the quotient of P(2, k)
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by PGL(3). It is clear that P(2,7) is nothing but the one introduced in §2. There is a natural
projection p of P(2,k + 1) to P(2,k) defined by p((P:, -+, Pk, Pxy1)) = (P1, -, Pi).

From now on, we focus our attention to the cases k = 6,7. It is known (cf. [Se4]) that
there is a birational W(Ek)-action on P(2,k) (k =6,7). This easily implies that the projection
p: P(2,7) — P(2,6) is W(Es)-equivariant. Denoting by p the extension of p to C(4, Dy), we
obtain a biratioanl W (Es)-equivariant map p: C(A, Dy) — C(A(Es), Dy).

We consider the W(Eg)-orbits of the set of hypersurfaces of the 1** kind in C(A, D4). There

are two orbits. The first one denoted by €, consists of those corresponding to roots contained in

A(Es):

Yo, Yy (1<i<j<7), Y (1<i<j<k<7).

The second one denoted by 22 consists of the remaining 27 hypersurfaces:

Yi (1<i<7?), Y (1<i<T?), Yy (1<i<j<7).

For any (P1,---,Ps) € P(2,6), the closure S(Pi, -, Ps) = p~1((Pr,---.B5)) of its fibre in
C(A, Dy) is of dimension 2. The surface S(Py,- -, Ps) intersects with all the hypersurfaces of
Q,. By the intersection relations among hypersurfaces of the 1°* kind, we easily find that the
intersection relations among the 27 curves S(Py, -+, Ps)NY (VY € Q2) on S(P,,- -, Ps) are same
as those of the 27 lines on a non-singular cubic surface.

If the interpretation of the work of Naruki and Matsuzawa is correct, C coincides with C(A, Dy)
and p : C(A,Dy) — C(A(Es), Ds) defined above is the natural projection w. As an easy
consequence (?), S(Py,- -, Ps) is a cubic surface. Therefore it is hopeful that S(Py, -, Ps)NY
(VY € Q) are the 27 lines on it. If this is true, hypersurfaces of )2 are global sections of 27 lines
of cubic surfaces in the total space C.

(From the definition, P(2,7) is identified with the open subset of (zi1, z2, z3, y1, ¥2, ¥3)-space
outside the union So(Ag) of 28 hyperplanes (cf. §2). Moreover, we introduced 7 hypersurfaces
Q1, -+, Q7 of the (z1, 22, z3, y1, Y2, y3)-space in order to define Py (2, 7). It is clear that the closure
of the hypersurface D;;x = 0 in C(A, Dy) is nothing but Y;;x and that of Q; is Y;.

We now take seven points Py, -, Ps, P; as in §4 and fix P; (j = 1,--,6) for the moment.
Then P; is regarded as a point on P? — {Pi,.--,Ps}. Therefore (z3,y3) are interpreted as
an inhomogeneous coordinate of P?. Under this identification, the defining equation Di;7z = 0
corresponds to the line on P? passing through P; and P; for ¢,j (1 < i < j < 7). On the other
hand, the defining equation of Q; corresponds to the conic on P? passing through the five points
{Pj;7 =1,---,6,5 #1}. This is a geometric interpretation of hypersurfaces Qi,---,Q7 (cf. [M],
Theorem 26.2).



227

In [Se4] §3, we have studied the structure of subvarieties of the form Y(M) in C(A, D4), where
M is a subset of A consisting of mutually orthogonal positive roots. In particular, we now treat
the intersection Yo NYjp for a,8 € A such that Y,,Ys € Q,. The intersection Y, N Ys may be
regarded as a giobaj section of the intersection of two lines of cubic surfaces S(Py,- -, Ps), being
assumed that S(Py,---, Ps) is a cubic surface for any (P1,---, Ps) € P(2,6). It is interesting ot
make clear a relation between cubic surfaces and the global section of the intersections of two

lines on them.
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