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Abstract. We define center curves in the moduli space, consisting of all affine conjugacy classes of

cubic maps and analyse the dynamics of maps along these curves.

25.1 Moduli space of the complex cubic poly-
nomials.

We consider the family of cubic maps = — g(z) = c32° + cpz* + ciz + co (3 # 0,¢: € C).
For such a cubic map g, we have two normal forms ; 2* — 34z + VB, A, B € C. Therefore, the
complex affine conjugacy class of g can be represented by (A, B). The moduli space, denoted by

M, consisting of all affine conjugacy classes of cubic maps, can be identified with the coordinate
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space C? = {(A, B)} (s]).

25.1.1 Center in a hyperbolic component.

A complex cuBic map f, or the corresponding point (A, B) € M, belongs to the connectedness
locus if the orbits of both critical points p; such that f'(p;) = ’0, 1 = 1,2 , are bounded. And
f is hyperbolic if both of these critical orbits converge towards attracting periodic orbits. The
set of all hyperbolic points in the moduli space M forms an open set.

Each connected component of this open set is called a hyperbolic component. By M.Rees({9]),
each hyperbolic component contains a uniqu¢ post-critically finite complex cubic map. So follow-
ing A. Douady and J. Hubbard ([2]), this map is called a center map orThurston map and
the coordinates (A, B) of f will be called a center in the moduli space. Following M.Rees( [9]
Jand J.Milnor( [5] ),. the centers are roughly classified into four diffeent types, as follows. (In the
following t, p, q denote integers.) A center is of the type A, if two critical points p;,p: of the
center map coinside and has the period pV: f?(p1) = p1. (In fact, only possible values for p in
this case are 1,2.) A center is of the type By if fP(p1) = p2 and f9(p;) = p1; of the type C(y),
if f'(p1) = p2 and f%(p;) = p2; of the type D, if f?(p1) = p1 and f'(p2) = ps.

These exhaust all types of centers. It is clear that there are only a finite number of centers of

a given type.

Example: There exist a unique center of type A;. The corresponding parameter is (0, 0) for
i = 1and (0, —1) for : = 2. There exist three centers of type C(3),. The corresponding parameters

are

(A, B) = (=.75040, —.18820) , (—.74949, —.18679) , (—.0924912, —.0614376).

25.2 Center curves in the moduli space.

The center curves CDp, BCp, which are algebraic curves, can be defined according to the
above four renormalization-type. We show how the equations of these curves are obtained by

induction on p (7] and [8]).

Theorem 2.1 : Defining equation of a center curve For a given p, there ezist an
algebraic curve CDp containing all centers of the type C(r), and Dk p, and another algebraic
curve BCp containing all centers of the type Byii and C(,yx. For ezample, we obtain precisely

the following curves;
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CD1 : B=4A(A+ 1),
BC1 : B=4A(A-1)*, :
CD2 : B*-8A°B+4A°B —5AB +2B + 164° — 164°
—124" + 16A° —4A + 1 =0,
BC2 : B®—124°B® — 6AB® + 2B” + 484°B + 24A°B + 214 B
—6AB + B —64A° + 96A7 — 20A4° — 124° — A =0,

Proof: Let f(z) = 2° — 3Az + VB, with critical points +v/A. '
The equation of curve BCL: B = A(2A-1)? is obﬁaine?d by the following equations:
f(VA) = (~VA) = (-24+1)VA+VB=0
f(-VA) -VA = (A-1)VA+VBE=o0
The equation of curve CD1: B = A(24 + 1)% is obfajned by the following equations:
f(VA) - VA
F(=~VA) - (~VA)

The equation of curve BC2 is obtained as follows:

(—24-1)VA+VB =0,
(2A+ 1)VA+ VB =0.

fAVA) ~(=VA) =0, fH(-VA)-VA=0
Therefore, |
BC2: B®-124°B* —6AB” + 2B + 48A°B + 24A%B + 21A%B
—-6AB + B - 64A;’ + 96A7 — 204°% — 124% — A = 0.

The equation of curve CD2 is obtained by the equations: -

- fUVA) - VA, fH(—VA) - (-VA) =0
Thus

B(124° —34 4+ 1+ B)’ — A(-8A" +6A4” —1-64B)> =0

Fixed points can be also considered as periodic points of period 2. So, this curve contains CD1.

Dividing the left-hand side of the last equation by the defining pplynomial of CD1, we get the
equation of CD2 as follows:

CD2: B? —8A%B +4A?B — 5AB + 2B + 16A° — 164°

—124* 4+164% 44+ 1 =0.
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Suppose now,

(VA = P,VA+Q,VB,
ff(~-VA) = -P,VA+Q,VB,
where P,,Q, are polynomials of A, B. Then we have
P, = AP}, +3BP,_1Qi_, —3AP,_1,
Qp = 3AP;_1Qp-1+ BQj_1 —3AQp-1 +1.

The equation of curve BCp: (P, + 1)°A — Q?,B = 0 is obtained as follows:
fPFVA) = (-VA) = (B, +1)VA+Q,VB =0,
fP(-VA)-VA = (-P,-1)VA+Q,VB=0.
The equation of curve CDp is obtained as follows:
VA -VE = (P—1\)WA+QVEB=0,
fF(=VA) - (-VA)

(=P, +1)VA+Q,VB =0.

Let

é»(A,B) := (P, —1)’A - Q.B.
If ,(A, B) = 0 is the defining equaiton of CDg, then we have
$5(A,B) = [] ¢4(4,B).
alr
Therefore if {q1, <, qn} is the set of all divisors of p except p, then

CDp: ¢(4, B) = ,(4, B)/ | ¢0s(4, B) = 0.

i=1

Remark: The defining equations of Center curves BCp and CDp ,1 < p < 5 are obtained by
RISA/ASIR (computer algebra system by FUJITSU CO.LTD.) -

25.3 Algebraic-geometric properties of cen-
ter curves |

We can embed C? canonically in P?*(C) : (A, B) — (1: A: B). Then an affine algebraic curve
Vo = {(A,B) € C? : h(A, B) = 0} uniquely determines a projective algebraic curve V = {(C: A:
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B) € P*(C): H(C: A: B) =0} in P(C) such that h(A,B) = H(1: A: B) and VNC? = V.

Definition. For a center curve Vp, the corresponding projective algebraic curve V is called the
projective center curve. We denote by PBCp and PCDp, these curves corresponding to BCp

and CDp respectively.
We give some algebraic-geometric properties of these curves.

Theorem 3.1 : The interseciton with the line at infinity ([8]).  Each projective center
curve and the line at infinity, Lo : C = 0, intersect at the point (0 : 0 : 1) only. This point

(0:0:1) is singular and its multiplicity can be calculated explicitly.

Remark. PCDI1 and PBC1 are both cuspidal cubic. But for p > 2, the point (0:0:1) is not a

“stmple cusp”.

25.3.1 Case p=1,2.

We get the following theorem about the irreducibility of each projective center curve, which is

based on Kaltofen’s algorithms on RISA/ASIR (computer algebra system by FUJITSU CO.LTD.)
((10] , [6]).

Theorem 3.2 : Irreducibility and Singurarity ( [8]).  For projective center curves‘PCDi
and PBCi (i =1,2), '
ePCD1 and PBC1.
These two are irreducible curves of degree 3. Hence, no other singular points exist.
e PCD2.
It is an wrreducible curve of degree 6. It has one 4-fold point (0: 0 : 1) and one ordinary double
point (0.25,—0.4375) .
e PBC2.
It is-anarreducible curve of degree 9. It hasrone"6-f‘old point (0:0: 1) and four ordinary double

points:

(—0.1341351918179714, —1.37344484910264),
(—0.5531033117555605, —0.6288238268413773),
(0.3041906503790061 * i + 0.3436192517867655,
 0.6886343379400248 — 0.04267412324347224 x 1),
(0.3436192517867655 — 0.3041906503790061 * i,
0.04267412329900053 * i + 0.6886343379735695),
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25.3.2 Genus of center curves.

Definition

(3

To calculate genus g of each projective center curve I', we determine the principal part at
(0:0:1) of the curves by using Newton Polygons and apply the Pliicker’s formula. I am grateful
to Y. Komori([4]) for helpful suggestions on the genus.

Lemma 3.3 : Principal part of the center curves.  The principal part at (0 : 0 : 1) of

PCD1 and of PBC1 is (C? —4A%)}, of PCD2 is (C? — 4A%)?, and of PBC2 is (C* —4A%)>.

Plucker’s formula Let T be an irreducible curve of degree n. Let Singl’ = {P,,---, Px} be
the set of singular points P; of T' and of its strict transform obtained by blowing up several times.

Let r; be the multiplicity of P;. Then,

C(n=1D)n=-2) =ri(r—1)
9= ) Ty

i=1

Theorem 3.4 : Genus. The curves PCD1 and PBC1 are rational. Hence the genus s 0.
The genus of PCD2 13 1. The genus of PBC2 is 3.

We would like to state the following conjectures for the projective center curves:

Conjectures e All projective center curves are irreducible.
e All singular points except (0: 0: 1) are ordinary double points.
o Especially, for real graph of center curves, the sigular point exists only in R;.

e The pricipale part at (0: 0: 1) of every projective center curve has a form (C? — 4A3)F.
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