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0. Introduction

Our purpose is to give a framework for understanding geometric changes of singularities
appearing in solutions of completely integrable first order differential equations and then to
study the special case of ordinary differential equations to get a well-known result.

This paper is closely related to the study [3] which uses Arnold’s result([1], [2]). We
consider first order differential equations in the context of contact geometry([5]). And we
employ a method when classifying functions up to diffeomorphisms preserving discriminant
sets, which uses explicit coordinate changes arising from vector fields preserving discriminant
sets ([4]). We hope that the same method suffices (with suitable modifications) to describe
generic changes of singularities of solutions for first order partial differential equations with
complete integral.

We would like to thank Professor J. W. Bruce for introducing me to this method.

1. Complete solutions and discriminant sets

First we shall describe the geometric structure connected with first order differential
equations following S. Izumiya’s formulation([5]). Let J*(R",R) be the 1-jet bundle of n-
variables functions which may be considered as R?"*! with natural coordinates given by
(21,3 Zn,¥,P1, -, Pn), Where (21, -,2,) is a coordinate system of R*. We have the
natural projection 7 : JY(R*,R) = R* x R ; =(z,y,p) = (z,y).

A system of first order differential equations (or, briefly, an equation) is defined to be an
immersion germ ! : (R7,0) — J'(R™,R), where n + 1 < r < 2n. Let 8 be the canonical
contact form on J'(R™,R) which is given by § = dy — 7%, p;dz;. By the philosophy of Lie,
we may define the notion of solutions as follows. An (abstract) solution of I is a Legendrian
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immersion i : L — J'(R™,R) such that i(L) C I(R"), where L is a n-dimensional manifold
and the Legendrian immersion is an immersion 1 : L — J}(R™, R) such that 8 = 0.

Let f : R® — R be a smooth function. Theén j'f : R* — J'(R™,R) is a Legendrian
embedding. Hence, in our terminology, the (classical) solution of { is a smooth function f
such that j!f(R™) C I[(R"). On the other hand, we can show that an (abstract) solution
i: L — J'(R™,R) is given by (at least locally) a jet extension j'f of a smooth function f
if and only if 7 07 is a non-singular map. Thus the graph of the (abstract) solution 7 0 (L)
in R™ x R may have singularities.

We say that [ is completely integrable (or | has an (abstract) complete solution) if there
exists a submersion germ g = (g1, -, p,—p) : (R7,0) — R""" such that [, = 1| p~1(2) :
p~(t) — JY(R™, R) is an abstract solution of [ for any ¢ € R™™™. Then y is called .a complete
integral of | and the pair (g,!) : (R",0) = R™™™ x J}(R",R) is called an equation germ with
complete integral. ‘

In order to study generic types of singularities appearing in solutions of completely inte-
grable equations, we now introduce a natural equivalence relation among equations with
complete integral([5]). Let (g,!) : (R",0) — (R™™ x JY(R",R), (o, (0, Y0, Po0))) and
(¢, 1) : (R,0) —» (7™ x JYR™,R),(t1,(z1,¥1,p1))) be equation germs with complete
integral. We say that (p,!) and (p',!') are equivalent as equations with complete integral
if there exist diffeomorphism germs ¢ : (R™™™,t) — (R, 4), © : (R",0) — (R",0),
£ (R® x R, (z0,9%0)) = (R* X R,(z1,%1)) and a contact diffeomorphism germ
- K 2 (JYR™R), (20, Y0, o)) — (J'(R™,R), (21,91, 1)) such that the following diagram is

commute: ‘ -
(R, t) < (R7,0) - (J'(R",R),(z0,%0,0)) — R* xR’
lé 12 1K L
R, 4) < ®,00 5 (J(R*R),(zn,y.p) —— R*xR

Let f: (R xR",0) — (R,0) be a function germ such that rank(89f/0t;, 0> f [8t,0¢;) =
r — n. We call such a function germ a complete family of function germs. We now define a
map germ Ly : (R x R*,0) — JY(R",R) by Ls(t,q) = (0f/0q(t,q), =, 0F/0qi(t,q) -
g — f(t.9),9)-

Then L, is an immersion germ if and only if f is a complete family of function germs.
Hence (71, Ly) is an equation germ with complete integral, where = (R™™ x R",0) —

(R™™,0) is the canonical projection. Then we have the following proposition.

Proposition 1.1. ([5]).  Let (g,I): (R",0) — (R x J'(R*,R), (%o, (z0, Y0, P0))) be an
equation germ with complete integral. Then there ezists a complete family of function germs
f:(R™™ xR"0) — (R,0) such that (p,1) and (my,L;) are equivalent as equations with
complete integral.
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This proposition guaranties that it is enough to study L for studying singularities of
solutions of equations with complete integral.

Now we show how the graphs of abstract complete solutions of equations relate to dis-
criminant sets of an unfolding of some function (a family of height functions).

Let f: (R™™™ x R",0) — (R,0) be a complete family of function germs.

We consider the following set:

x/ = {(t,0f/0q(t,q),0f/0q(t,q) - ¢ — f(t,q)) |t ER",¢ eR"} CR™™™ x R" x R.
For a fixed t € R, Z{ =X n{t} x R* x R is the graph of an abstract solution of
the completely integrable equation L; and is clearly the affine dual of the graph r{ =
{(q, f(t,9)) | ¢ € R} of f. So we refer to the assembled family of duals £/ as the big dual.

The big dual can be studied by considering the following (r — n) parameter family of
height functions([2],[3]),

H;:R*x (R™™" x S* x R) — R, where Hf(q,t,u, z) = (g, f(t,q)).u — z, S is the unit
vectors in R™*! and . denotes the usual inner product in R™+1.

Since we are only interested in these graphs near (0, f(0,0)), we consider the germ
F:R*x (R xR" x R),(0,0,0,0) = R,0 defined by
F(q,t, )\ 2) = (g, f(t,9)-(M — 0f/341(0,0), A2 — 8f/0¢2(0,0),- - -, An — 0 /0gn(0,0),1) — 2.
- We can naturally regard F as a (r + 1)-parameter unfolding of Fp(q) = F(g,0,0,0) :
(R*,0) — R,0. Then the discrimiﬂant set of F' is (by deﬁnition) the set germ
Dr,0={(t,\,2) e R"-" x R* x R | F(q,t,\,z) = OF/8q(q,t, A, z) = 0 for some g},0.
Geometrically the discriminant set can be thought of as the big dual, that is, the sections
t= constant of Df are locally diffeomorphic to the duals E{ of the graphs I‘{ .

Therefore in order to see geometrically how the graphs of abstract complete solution of
equations change, we need to consider the natural projection germ of the discriminant set
Dr to the t-parameter, i.e. py : (R, Dp),0 = R™™,0: pi(t, A, 2) = ¢.

2. Functions on discriminant sets

In this section we study the special case n = 1 and r = 2, i.e. the case of ordinary
differential equations. Then we need to consider the following 3-parameter unfolding.

F:R x R3(0,0) — R,0 given by F(q,t,\,z) = (q, f(t,q))-(A — 0f/04(0,0),1) — 2,
where f: (R x R,0) — (R,0) is a complete family of function germs,

l.e. rank(0f [0t, 0% f/0tdq) |o= 1.

First we consider the discriminant set Dg of F' for "generic” complete family of function
germs f. We shall define the genericity of complete family of function germs ([5]). Let UxV
be an open subset of R x R and CF(U x V,R) = {f € C®(U x V,R) | rank(f;, fi) = 1 at
any (t,q) € U x V}. By Proposition 1.1 we may consider that CF(U x V,R) is the space
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of equations with complete integral. A subset of CF(U x V,R) is called generic if it is open
and dense in CF(U x V,R).

Let P be a property of complete family of function germs f : R x R,0 — R. The
property P is said to be generic if for some neighbourhood U x V of 0 in R x R the set
P({UxV)={f € CF(U xV,R) | the germ f: (U x V,(t,q)) — R has the property P for
any point (t,q) € U x V} is generic in CF(U x V,R).

Now we obtain the following:

Proposition 2.1. For a generic complete family of function germs f, F' contains only
Ay, Ay and Aj singularities and all these singularities are versally unfolded by F'.

Proof. Fy= F(—,0) has an A; (k > 1) singularity at ¢ = 0 if f®(0,0) = --- = f(*)(0,0) =
0 and f(*+1)(0,0) # 0.

For 0F/02(q,0) = —1, 0F/0X(q,0) = q and OF/0t(q,0) = 0f/0t(0,q), so A; and
A, singularities are always versally unfolded and an Aj; is versally unfolded if and only
if 33f/84¢*5t(0,0) # 0.

We now define subsets of J*(R x R, R) as follows: S; = {0*f/8¢*(t,q) = 3*f/0¢(t,q) =
0'f[0g*(t,q) = 0}, So = {0°f/0q*(t,q) = O°f[3¢°(t,q) = 8°f/0q*Bt(t,q) = 0}. Then
consider j*f : R x R,0 — J*(R x R, R). By the transversality theorem we get the result.

Then for generic complete family of function germs f, the discriminant set germ Df at
0 of F is diffeomorphic to a plane, cusp‘ida.l edge or swallowtail in 3-space. To see how the
duals change, we need to consider the natural projection of these discriminant sets D to
the t parameter, i.e. p; : (R?, Dr),0 — R, 0, where py(t, )\, 2) =t. ~ ,

Let G be the standard versal unfolding G(g,b) = +¢**! +b;¢*' + - - + by_1¢ + by, where
b€ R?®and 1 < k < 3. Using the fact that F is a versal unfolding of an Ax-singularity(k < 3)
we can find smooth germs ¥ : R x R*,0 — R, 0, ¢ : R® = R? 0 with ¢(—,0) : R,0 — R,0
a diffeomorphism, 1 a diffeomorphism and F(¢(q,b),%(b)) = G(g,b). The discriminant
set of G is mapped by v to the discriminant set of F' (3 being a discriminant preserving
diffeomorphism), and 1, the first component of 1, is the function on D¢ corresponding to

the natural projection p; of Dg to the t-axis, as in the following commutative diagram:
RxR* &9 Rxmr® & R B R
T(¥)  Tidxd v
RxR* 9 RxRmR® 2 R®

where p: R x R® — R3? is the natural projection.

We use the discriminant preserving diffeomorphism 1 to study the function 1 instead
of the natural projection p; (see [2], the proof of Theorem 1.2).
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Proposition 2.2. Let F(q,t,),2) and 4;(b) be as above.

(1)If F is a versal unfolding of A,-singularity and G(q,b) = q* + by, then we have
O1/0b5(0) # 0 or 81 /8b5(0) # 0. '

(2)If F is a versal unfolding of Ay-singularity and G(q,b) = ¢* + biq + by, then we have
Onpn /0b5(0) # 0.

(3)If F is a versal unfolding of As-singularity and G(q,b) = ¢* + b1g% + bag + b3, then we
have O, /0b,(0) # 0.

Proof. (1) From the chain rule we find that
2 (4(4,0),0) 22(g, 0)+ 5 ((4,0), 0) 52(0) + 55 (6(a, 0), 0) 52(0) + 55 ((4, 0),0) 522(0) = bus,
where § is the usual Kronecker symbol andz =1~ 3.

Since F is an unfolding of an A;-singularity, 0F/0q($(g,0),0) has a Taylor series starting
with terms of degree at least 1. So we get

or(#(4,0),0)52(0) + 55(4(3,0),0)52(0) + 55(6(¢,0),0) 52(0) = b1: mod(g).

1fOF [0t(4(q,0),0) = al,BF/az\(qﬁ(q, 0),0) = a; and OF /02(¢(q,0),0) = a3 mod(q), then
(a1, az,a3)(8%;/8b;(0)); j=123 = (1,0,0), where az # 0. If 01, /0by(0) = O, /0b3(0) = 0,
then (&;/0b;(0)); j=2,3 is regular and (a2, a3)(9%:/0b;(0)); j=2,3 = (0,0). Therefore a; = a3 =
0, which is a contradiction. Hence we have di; /3b,(0) # 0 or 01, /0b5(0) # 0. -

(2) In the same way as in (1) we get

5 (6(0,0),0)52(0) + 2£(6(4,0),0)%2(0) + £(6(0.0,0320) = { §Z 57 moate),
If aF/at(¢(q’0)10) = ang +a12,3F/8z\(¢(q, )7 ) = a219q + ag and aF/az(é(qa 0)1 0) =

a31q + az; mod(q?), then - :

(e o ) @@= (g 1 o)

a12

where (“?1 “31) is regular. Tf 84y /Obs(0) = 0, then B, /Dbs(0) % 0 (or Oubs/bs(0) # 0)

Gy Qa32

sad (200 ) (o om0y = (o) - Therefore 04/a(0) = 04/ 86(0) = 0, which i
a contradiction. Hence we have 9, /0b5(0) # 0.

(3) In the same way as in (1) we get

8E(4(4,0),0)52(0)+ 5% (¢(q,0) 0)%22(0)+5E(¢(4,0),0)52(0) = ¢* od(q") (i=1~3).
If BF/at(é(q,O) 0) = ang® + anq + ay3, OF [0X(4(g,0),0) = a31¢* + a92q + 693 and
3F [82(4(q,0),0) = a31¢* + asq + azz mod(q®), then

a1 ag asy 1 O 0
a1 Q9 a3p | (0%:/00;(0))ij=123=]0 1 0},
Q13 Q23 433 0 0 1

where (a;;)ij=1,23 and (a” a23) are regular. If &, /8b;(0) = 0, then Bp,/0b,(0) #

azy das3



110

0 (or Ov3/0b,(0) # 0) and (Zzz Zzz) (g:iz;g;:gﬂg) (O> Therefore 94,/0b,(0) =

013/0b,(0) = 0, which is a contradiction. Hence we have 011/0b,(0) # 0. This completes
the proof.

Using the conditions on t; of Proposition 2.2 we classify function germs 1, : (R3,0) —

(R,0) up to local diffeomorphisms of R3 preserving the standard discriminant set D¢ of G.
Then we get the following.

Proposition 2.3. Let 1,(b) be as above.

(1)If G(g.5) = ¢* + by and Ip1/88,(0) # 0 (or ey /Dbs(0) # 0), then b, is equivalent,
via a discriminant preserving diffeomorphism, to the trivial projection onto by-coordinate (or
bs-coordinate) of a product discriminant set (i.e. a plane).

(2)If G(¢,b) = ¢® + big + by and 811 /0b3(0) # 0, then 1, is equivalent, via a discrim-
inant preserving diffeomorphism, to the trivial projection onto bs-coordinate of a product
discriminant set (i.e. a cuspidal edge).

(3)If G(q,b) = ¢* + b1q* + byg + by and 8, /0b,(0) # 0, then 1, is equivalent, via a
discriminant preserving diffeomorphism, to the projection of the standard discriminant set

(i-e. the swallowtail) onto by-coordinate. We call it the standard swallowtail projection.

Proof.  The standard method of obtaining diffeomorphisms is to integrate smooth vector
fields. If the diffeomorphism is to preserve the discriminant, then the vector fields must be
tangent to the discriminant (in the sense of being tangent to the smooth strata in the natural .
stratification of the discriminant).

(1) The discriminant of G(g,b) is the set Dg = {(0,5,,b3)}. Then we can obtain a free
basis for the £(3,1)-module of vector fields tangent to the set D¢ as follows( [4)):

Q= &(3,1){6,0/0b,08/3b,,8/8b3},

where £(3,1) is the ring of C* map-germs f : (R 0) — R'. Then the integration yields
diffeomorphisms ¢ : (R?,0) — (R®,0) preserving D¢, whose 1-jet ;1 #(0) are

{ (b1,b2,83) — (by, k1by + linby + liobs, koby + ly1by + l2ob3), where det(li;)i j=12 # 0,

(b1, b2, b3) — (kby, by, b3), where k # 0.

Let 7'41(0) = c1by + c2by + c3bs, where ¢, # 0 or ¢c3 # 0. Hence changing coordinates
(b1, b2, b3) — (b, c1by +c2by + c3b3, b3) or (b1, b2, b3) — (by, c1b1 + 25+ c3b3, by) turns 7*1(0)
into f : (b1, b2, b3) — by, which satisfy the following determinacy condition Qo.f D M3, where
M3 is the maximal ideal of £(3,1) and Qo = {6 € Q: ¢ o= 0}. (We can get the following as
in the similar way to the ordinary determinacy theorem. That is, if €. f D M5F, then fis
k-determined with respect to Dg-preserving diffeomorphisms. ) Therefore f is 1-determined
with respect to the Dg-preserving diffeomorphisms and hence 1; and f are equlva,lent via
a Dg-preserving diffeomorphism.



111

(2) The discriminant of G(g,b) is the set Dg = {(b1, b, b3) | 463 + 2763 = 0}. We can
obtain a free basis for the £(3, 1)-module of vector fields tangent to the set D¢ as follows([4]):
Q = £(3,1){9b,0/8b, — 263/ db,, 2b;0/dby + 3b,8/0b,, 8/ b3}

Then the integration yields diffeomorphisms ¢ : (R*,0) — (R3,0) preserving D¢, whose
1-jet 714(0) are '

{ (b1,b2,b3) — (b1, b2, 16y + mby + nbs), where n # 0,

(b1,b2,b3) — (by + kb, by, b3),
(by,ba, b3) — (kby,1by,b3), where k* =P (k,1>0).

Let j141(0) = c1b1 + c2b2 + c3b3, where ¢3 # 0. Hence changing coordinates (b, b;, b3) —
(b1, b2, c1b1 + c2b2 + c3b3) turns 7*41(0) into f : (b1,b2,b3) — bs, which satisfy the follow-
ing determinacy condition Qo.f O Mj. Therefore f is 1-determined with respect to the
Dg-preserving diffeomorphisms and hence 3; and f are equivalent, via a Dg-preserving
diffeomorphism.

(3) The discriminant of G(g, b) is the standard swallowtail set. We can obtain a free basis
for the £(3,1)-module of vector fields tangent to the set Dg as follows([4]):

Q = £(3,1){26,8/0b; + 3b,0/0b; + 4b30/b3,6b,8/0b; + (8b3 — 262)0/0by — b1520/0bs,

(1653 — 4b2)8/8by — 8b1b,3/0b; — 3630/ 3bs}.

Then the integration yields diffeomorphisms ¢ : (R?,0) — (R3,0) preserving D¢, whose

1-jet 7'¢(0) are

(b1, b2, b3) — (by + 3kby + 6k?b3, by + 4kbs, bs) ' (2)
(b11b2)63) —* (bl +tb31b21b3) : ' (7‘7’)
(b1, by, b3) — (kby,lby,mbs), where B> =P, k¥ =m, I*=m® (k,I,m #0) (iir)

Let j141(0) = ¢1by + c2by + c3bs, where ¢; # 0. By (iii) k£ = |, 7'1(0) is equivalent
to £b; + ¢2'by + c3'bs. By (ii) t = tc3' we get by + c2'by. Then we get (b — %@'21)3) by
(1) k= :{:%CQ’. Finally by (ii) t = —%czﬂ we get f : (by,by,b3) — by, which satisfy the
following determinacy condition €y.f D Mj. Therefore f is 1-determined with respect to
the Dg-preserving diffeomorphisms and hence 1; and f are equivalent, via a Dg-preserving
diffeomorphism. This completes the proof.

From Proposition 1.1 ~ 2.3, for almost all first order ordinary differential equations with
complete integral the local models for the changes in the graphs of solutions are the follow-
ings. ‘

(1) the graphs of solutions near go are all diffeomorphic to lines.

(2) the graphs of solutions near ¢o are all diffeomorphic to cusps.

(3) the family of graphs of solutions near go are obtained as sections of
the standard swallowtail projection.
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