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1 Introduction

Besides of investigating the intrinsic properties of a logic, like decidability or completeness,
it is desirable to relate it to its neighbors. While in general it is far from clear what the
neighbors of a logic are, modal logicians traditionally take the lattice of all modal logics
or some principle filter within this lattice. Thus, for a modal logic A, relating it to its
neighbors meant investigating the structure of the lattice of modal logics. However, in the
late 70s it has become clear that the lattice of normal modal logics is extremely complex.
Let us mention only the embedding of second order logic into modal logic due to Thomason
[32] and the results of Blok (cf. [4], [5], [6], and below) about the structure of this lattice.
Without any restriction as concerns the class of modal logics under consideration no
positive result is available. And, as concerns the lattice structure, discrimination between
(interesting) logics via there position within the lattice is not possible. (For instance,
intuitively the theory of the reflexive frames, T = K + Op — p, should have a specific
position with in the lattice of normal modal logics, simply because it has such a simple
geometric meaning. However, it just behaves like nearly all the others). ‘ ‘

In this situation it is one of the basic questions to find and describe interesting proper
sublattices of the lattice of modal logics, which allow a more detailed treatment and thus
lead to finer tuned theory with more discriminative power. The object of this paper is
to show that the lattice of subframe logics as defined here is such a lattice, and that
the natural neighbors of a subframe logic can be found within the lattice of subframe
logics. It will turn out that from the perspective of this lattice we observe many subtle
and interesting differences between logics which seemed to behave similar if taken in the
whole lattice.

This paper gives a survey of the results [33] and [37] on lattices of subframe logics. If
a proposition is stated without proof and reference then the proof can always be found in
[33] or [37].

Definition of subframe logics.
A structure H = (h, ], A) is called a n-frame (or simply a frame) if I = (<1;: 1 <i < n)
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is a sequence of binary relations on h and A C 2" is non-empty, closed under the boolean
operations N and —, and under

Oa={zeg:(Vyeg)(zd;y=>y€a)},

for 1 <7 < n. n-frames form a natural semantics for normal modal logics in the proposi-
tional language £, with n modal operations 0;,1 < ¢ < n. The logic Th’H of a frame H
is the set of formulas which are valid in H; we write H |= ¢ if a formula ¢ is valid in H.
For a class M of frames put

ThM = ({ThH : H € M}.

Conversely, for a modal logic A, call a frame H a A-frame, in symbols H |= A, if all
formulas ¢ € A are valid in H. The class of A-frames is denoted by GfrA. The mapping
A — GfrA is an anti-isomorphism (with respect to inclusion) between the lattice of modal
logics (in the language £,) and classes of n-frames of the form GfrA (cf. [29]).

For each n-frame H and each b € A with b # 0, the structure

Hy = (b,{(<;N(bxb):1<i<n),{anb:a€ A})

is a n-frame as well, and we call it a subframe of H. A normal modal logic A is a subframe
logic iff GfrA is is closed under forming subframes. Let us introduce the operation Sf on
the class of all frames Gfr by putting

SfM = the class of isomorphic copies of subframes of frames in M,

for M C Gfr. The notion of a subframe of a frame has at least two roots. Call a frame
H = (h,<],A) a Kripke frame if A = 2", In this case we shall write (h, ), or simply h
instead of (h, <, A); the class of Kripke frames is denoted by Fr and we put FrA = GfrANFr.
Now, at the level of Kripke-frames (h, <) the set of subframes coincides with the set of
substructures of the relational structure (h, ), in the sense of classical model theory. One
can show (cf. [33]) that a complete logic A, i.e. alogic A with A = Th(FrA), is a subframe
logic iff Sf(FrA) C FrA. Hence, restricted to complete logics A, we are dealing precisely
with those logics whose Kripke frames are closed under substructures. At the level of the
Boolean algebra (A, N, —, h) forming the subframes is a natural extension of forming the
relativization to an element b € A, already discussed in the context of cylindric algebras
(cf. [20]). Subframe logics containing K4 = K + Op — OOp (the logic of the transitive
frames) have been introduced by K. Fine in [15] by using splittings. Such a definition was
available because of the following fundamental result in [15].

Theorem 1.1 All subframe logics containing K4 have the finite model property.

A syntactic criterion.
Given a natural semantic definition the question arises whether we can describe subframe
logics by means of syntactic closure conditions. Fortunately, this is the case. For a formula
¢ and a variable p, define ¢ | p inductively via

glp = qAp

(ery)lp = (¢lp)A(¥1p)

(&) lp = —(¢lp)Ap

(Qig)lp = Oilp—dlp)Ap, for 1<i<n



Put ¢'! = ¢ | p, for a variable p not in ¢, and put & = p — ¢l It is shown in [33]
that a normal modal logic is a subframe logic if and only if it is closed under the rule

¢4

In a certain sense this characterization corresponds to the result of classical model theory
that the models of a first order theory T are closed under substructures if and only if T
is axiomatizable by universal sentences.
A complete sublattice.

The basic observation for a lattice theoretic treatment of subframe logics is that they
form a complete sublattice of the lattice of modal logics (cf. [33]). For a subframe logic
A denote by SA the lattice of subframe logics containing A. We can say a bit more.
Consider a complete sublattice D of a complete lattice . Then, for a € F, the upward
projection a Tp and downward projection a |p of a in D are defined by

aTp=A\(beD:b>a)and alp=\/(be D:b<a),

respectively. Denote, for a modal logic A, by A7 the upward projection and by A | the
downward projection of A in SK,,. Here, K, denotes the smallest normal modal logic in

the language £,. By A + I' denote the smallest modal logic containing an n-modal logic
Aand T C L,. Assume that A = K, +T'. Then

A=K, + T where IS = {4 : g e T}

It follows that the upward projections of effectively axiomatizable logics are effectively
axiomatizable, as well. For the downward projection we have

A l= Th(SfM),

if A = Th(M), for a class of frames M.

Ezamples.
Certainly the logics already introduced, K,,, T, and K4, are subframe logics. The basic
logic interpreting the provability predicate in arithmetic, namely

G = K4+ 0(Tp - p) - Op,

is a subframe logic. This logic is characterized by the transitive Kripke frames without
infinite ascending chains (cf. [8]). On the other hand, the most natural modal logics in
which intuitionistic logic is embeddable via Godel’s translation, i.e.

S4 = K4 + Op — p,

Grz = S4+ 0O(0(p — Op) — p) — p)),

are subframe logics. Grz is the logic characterized by the transitive and reflexive Kripke-
frames without infinite strictly ascending chains (cf. [11]). The finite width logics K.I, =
K+1,,n >0, where

L =AOpl<i<n+1) = \(O@iA(p VOP)i# 54,5 <n+1)),

are subframe logics. They are, for n > 0, characterized by the Kripke frames in which
no point has more than n incomparable successors (cf. [14]). Thus, I, is also known as
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.3, and corresponds to the condition known as right linearity. Hence K4.3 and S4.3 are
well-known subframe logics (cf. [9]) The logics K.Alt, = K + alt,, n > 0, are also
subframe logics, where

alt, = A(Opi|1 <i<n+1) - \/(O(p: Apj)li # j).

Those logics are, for n > 0, characterized by the Kripke frames in which no point has
more than n successors (cf. [1] and [31]). Let us now turn to polymodal logics. Here we
find the minimal modal logics with n operators so that all operators are conjugated, i.e.,
the logics K, + cn,, where 7 : {1,...n} — {1,...,n} with 7 o7 = Id and

cn, ={p— 0;Cup:1<i<n} (1.1)
K, + cn, is characterized by the Kripke frames (g, ﬁ) satisfying
R;= Ry,1<i<n. (1.2)

Examples are the selfconjugate logic K.B; = K + cnyy, which, if added to S4 gives S5,
and the minimal tense logic K.t = K, + cn, with 7(1) = 2 and 7(2) = 1 (consult [10]
and [17]). We denote this mapping 7 by ¢t. Call a logic A a logic with conjugates if it
contains a K, + cn,. The following simple construction from [23] and [16] gives us more
subframe logics. Consider n monomodal logics A;,;1 < ¢ < n, and suppose that A; is
formulated in the language with 0;,1 < ¢ < n. Then the fusion of (A; 1 < i < n),
Q(A; : 1 <4 < n), is the smallest modal logic in £, containing U{A; : 1 < i < n}. If all
the A; are subframe logics then the fusion is a subframe logic, as well. In fusions there
is no connection between different modal operators. A number of interesting subframe
logics is available by adding axioms to fusions, e.g., if A is a monomodal subframe logic,
then

At=(A®K) +cny

is a subframe logic, as well, known as the minimal tense extension of A (cf. [34] and [35]).

Motivation, the history, and tools. v
We shall now discuss in which properties of lattices of subframe logics we are interested
and why. The most important lattice theoretic concept we deal with is the notion of a
splitting of a complete lattice of modal logics. Take a complete lattice D = (D, V, A, 0, 1).
Then we say that py € D splits D if there exists a p; € D such that (pg,p;) devides
the lattice into two disjoint parts, the filter £p; = {d € D : d > p;} and the ideal
Ipo = {d € D :d < po}. In this case p; is uniquely determined by p, and we say that
p1 is the splitting-companion of py. p; is denoted by D/ps. The pair (pg,p;) is called a
splitting-pair. If p; is the splitting-companion of some py then we simply say that p; is
a splitting of D. Another way to introduce splittings is the following. Call an element
d (strongly) prime in D if, for d > A(d;|¢ € I), there always is an ¢ € I with d > d;.
McKenzie [25] shows that d is prime in D iff d splits D. Hence splittings can be visualized
as follows.
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What is the use of this concept in modal logic? Let us consider a logic A in a complete
sublattice D of the lattice of all normal modal logics. Natural questions about A in D are
the following.

1. Kripke-separation :
A logic A has the Kripke separation property in D if there is no other logic © € D
with Fr© = FrA. (Mostly this property is called strict completeness, e.g. in [4]).The
problem is whether A has the Kripke separation property in D.

2. Finite Kripke separation
A logic A has the finite Kripke separation property in D if there is no other logic
© € D with fFr© = fFrA, where fFr® denotes the set of finite ©-frames. The

question is whether A has the finite Kripke seperation property in D.

3. Lower covers
A logic © # A is a lower cover of A in D iff {©; € D: © C ©; C A} = {©,A}.
Which logics are the lower covers of A in D, if there are any?

4. Aziomatization problem
Let us assume that there is a recursive set Lp of formulas which is complete for D,
ie. (1) Kn+ ¢ €D, forall ¢ € Lp, and (2) if A € D then A = K, + T, for a set
of formulas I' C Lp. Is the axiomatization problem for A (relative to D) decidable?
In other words, is {¢ € Lp : K, + ¢ = A} a recursive set?

Certainly the interest of the problems above depends on the lattice D and on A. We
shall have a look at a simple example and summarize (a small part of) the research on
splittings in modal logic in the 70s. Take for A the logic S5. Denote by £O the lattice of
normal logics containing a normal logic ©. Then, tradionally one would take D to be one
of the lattices £S4, £K4, or EK. We first have a look at £S4. Here all those problems
are solved by the observation that S5 is a splitting of £S4. The pair *

{Th( ), S5)

is the required splitting pair in £S4 (cf. [28]). (We draw frames (g, S) in such a way
that x denotes an irreflexive point and e denotes a reflexive point). Using the figure on

splittings this means
S5 =({A € £S4: A}
Note that this splitting pair also shows in a nice way the geometrical meaning of S5.

It just says that the frames validating S5 are precisely those quasi ordered sets (g,95)
in which S is an equivalence relations. The questions above are solved as follows. The
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figure on splittings shows that the only lower cover of S5 in £S4 is S5 N Th( ).
(3.) is solved. Now (1.) is solved by the consequence that = ©, for each logic ©
with S4 C © and S5 Z ©. So S5 is the only logic containing S4 whose Kripke frames
are precisely the sets with an equivalence relation. (2.) is solved analogously (by using
that S5 has the finite model property). (4.) is translated into the problem whether
{¢:S4 + ¢ = S5} is recursive. But,

{¢:54+¢ =55} =S5 {¢:[e=a] I£ 4},

and the set to the right is certainly recursive. Intuitively, the frame is of more
importance than its logic. So, we shall say that splits S4 and we shall write

S5 = 54/ [+==4]

We come to £K4. In this lattice S5 is not a splitting. However, by extending the
notion of a splitting to the notion of a join-splitting we can apply basically the same
technique. An element p; € D is a join-splitting of D by F C D if all py € F split D and
p1=V(D/p:p € F). py is denoted by D/F. Again for an element a € D and F C Ea
we call a join-splitting £a/F a join-splitting of a and denote it by a/F. The following
proposition states that join-splittings behave quite similar to splittings.

Proposition 1.2 Suppose that p; = D/F. Then, for alla € D, a > p; if and only if
aLp, forallpe F. ,

The following is shown in [28].

$5 = Ka/{ [x], (=], [o==2] }

(We omit writing Th(—)). In completely the same way as in £S4 one may now solve all
the problems stated above for S5 in £K4. It should have become clear why splittings
give us interesting information about logics. In [3], [27], and [28], a lot of other systems
containing K4 are shown to be join:splittings of £K4. However, the basic question is
whether we can apply the same technique in order to investigate S5 in the lattice of all
modal logics K. This is not the case. A frame g is called cyle free if there is no path
of length > 0 from a point in g to itself, and a frame is rooted if there is a point z such
that all the other points are endpoints of a path of length > 0 from z. The following is
proved in [4].

Theorem 1.3 A logic © splits EK if and only if © = Th(G), for a finite and rooted and
cycle free frame G.

This theorem means that there are nearly no interesting join-splittings in £K. This can
be seen by the observation that

D=K+0T=K/[x] (1.3)

is the largest join-splitting of EK (cf. [4]). More important in the context of subframe
logics is the following Corollary from [33].

Corollary 1.4 No logic in SK is a join-splitting of EK.
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So we get none of the basic systems introduced above. But maybe the definition of a
join-splitting is too weak! It might well be possible that there are splittings of E(K+<T)
which we do not obtain as join-splittings of EK. So, we call an element p; € D an iterated
splitting of D by (Fy,...F,), (here F; C D, for all 1 < i < n), if each po € F; splits D
and, for 1 <7 <n—1,each py € F;,; splits D/F;/F;/ ... /F;, and

p1 =D/F/Fs/.../Fu_1/F,.

The following proposition states that iterated splittings behave quite similar to join-
splittings.

Proposition 1.5 Suppose that py = D/F1/Fs...[F,. Then, foralla € D, a > p; if and
only ifa £ p, forallpe F1UF,...UF,.

-

However, the following crucial result of [4] states that we get only one new (not very
exciting) logic.

Theorem 1.6 A logic A € EK s an iterated splitting of EK if and only if it is a join-
splitting of EK or it is the inconsistent logic.

The conclusion is that in the lattice EK splittings are not the appropriate tool for studying
interesting systems. One may ask whether some of the problems stated above have a
positive solution without using splittings. Again, [4] gives a negative answer.

Theorem 1.7 If a logic A is not an iterated splitting of EK and not = K then there exist
2% Jogics © with FrA = Fr®. Moreover, A has 2% lower covers in EK.

As concerns the axiomatization problem it is an old problem to show

Conjecture 1.8 If a finitely ariomatizable logic A is not an iterated splitting of EK and
does not coincide with K then the axiomatization problem for A in EK is undecidable.

It is justified to conclude that only via sublattices there is hope to get positive results as
concerns the lattice structure of the lattice of modal logics. So we shall now have a brief
look at lattices of subframe logics. First note that we do not loose splitting pairs when
we take a complete sublattice.

Proposition 1.9 Suppose that F is a complete sublattice of D and that {(po,p1) is a
splitting pair in D. Then {po 7,01 TF) is a splitting-pair in F.

Quite easily we obtain with (1.3) that

(Th(x]), T)
is a splitting pair in the lattice of subframe logics. First, Th([x]) |= Th([x]). Also, via

simple syntactic manipulation,
(K+O0T) =K+ (OT) N =K+p—-0@pAT)=K+p—-0p=T.

Now we can solve for T, in the lattice SK, all the problems stated above. For instance,
the only lower cover of T in SK is T N Th([X]), in contrast to the result that T has 2%
lower covers in K. Let us introduce some notation for the case of subframe logics. Let
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A be a subframe logic. Then © € SA has the Sf-separation property (ssp) in SA iff it has
the Kripke separation property in SA. © has the Sf-finite separation property (fsp) in SA

iff it has the finite Kripke separation property in SA. The Sf-aziomatization problem is
solvable for © in SA iff

(87 A+ 4% = 0}

is a recursive set. Now T has ssp and fsp in SK since T has the fmp and = ©, for
each subframe logic © with T ¢ ©. The Sf-axiomatization problem for T is decidable
since '
{0 K+ ¢ =T} =Tn{": [x]}% 4},

Certainly this example is not surprising. The main difference if compared with the lattice
€K, is the fact that there are numerous interesting examples of iterated splittings in SK
which are not join-splittings. Thus, the result on T is useful, since now, in order to prove
that a logic A D T is an iterated splitting of SK it suffices to show that it is an iterated
splitting of ST. At the moment we note only the following example.

S5 =K/ [ /5 [7==a] /5" = |

(Here we omit writing Th(Sf—) and /3 means splitting in the lattice of subframe logics).
Thus, for S5, all the problems stated above have a positive solution in the lattice of
subframe logics.

2 On Correspondence

For subframe logics a number of concepts from completeness and correspondence theory
turn out to be equivalent. First recall the following definitions of classes of frames. An
n-frame (h, <, A) is refined if both

(Vz,y € h)(x =y & (Va € A)(z € a & y € a)),

(Vz,y € h)(z <,y & (Va € A)(z € Dja = y € a)).

See [29] for an extensive study of refined frames. The class of refined frames is denoted
by Rfr. A frame H is descriptive if it is refined and NU # @, for each ultrafilter U in the
boolean reduct of H* (consult [18]). We denote the class of finite Kripke frames by fFr
and the class of finite and rooted Kripke frames by rFr. Also,

RfrA = Rfr N GfrA, FrA = Frn GfrA, fFrA = fFrn GfrA, rFrA = rFr 0 GfrA,

for each logic A. Now we can define the concepts which will turn out to be equivalent. A
logic A is compact (alias strongly complete) iff each set I' C £ which is consistent with
A is satisfiable in a frame in FrA. A logic A is r-persistent if (h,q) € FrA whenever
(h,<,A) € RfrA. [13] calls r-persistent logics natural logics. A is d-persistent if (h,d) €
FrA whenever (h, g, A) is a descriptive A-frame. Following Goldblatt [19] we call a logic
A complez if, for all G € GfrA, there exists H = (h, <], A) with (h, J) € FrA such that
Ht ~ Gt

Note that, in general, r-persistency does not imply d-persistency (cf. [13]). Also, in
general, d-persistency does not imply elementarity (cf. [13]). Moreover there are compact
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logics which are not d-persistent (cf. [38]). A class of Kripke frames F is called universal
iff it is definable by a set of universal first order sentences. F has the finite embedding
property if g € F if and only if each finite subframe f of g is in F, for all g € Fr.

Theorem 2.1 For a subframe logic A the following conditions are equivalent:
(1) FrA is universal and A is complete.

(2) A is elementary and complete.

(3) A is d-persistent.

(4) A is r-persistent.

(5) A is complez.

(6) A is compact.

(7) FtA has the finite embedding property and A is complete.

Later we shall mostly work with r-persistency. However, the finite embedding property is
closely related to splittings. Suppose that F' C rFr and A is a subframe logic. Define

FrAp = {g € FrA: (Vf € F)f ¢ Sfg}.
We write Frg instead of (FrK, ).

Corollary 2.2 Suppose that a subframe logic A is complete and elementary. Then there
15 a set F C rFr such that FrA = Frg. If A is finitely axiomatizable, then there exists a
finite set F C rFr with FrA = Frp.

Intuitively, if we want to show that a complete and elementary subframe logic A is an
iterated Sf-splitting, then we should take a set F C rFr with FrA = Frp, and show that F
defines an iterated Sf-splitting such that A = K,/ SfE. (See the next chapter for a precise
definition of the right hand side of this equation). This is indeed the simple idea behind
many results to follow. Call a class of Kripke frames F definable by modal formulas if
there exists a modal logic A with FrA = F. Let us note the following characterizations.

Theorem 2.3 A universal class of Kripke frames F s definable by modal formulas iff F
15 closed with respect to p-morphic images and disjoint unions.

Corollary 2.4 For each set F C rFr, the class Fry is definable by modal formulas iff Frg
s closed under p-morphic images.

3 A Splitting Lemma

From now on we are dealing with lattice theoretic properties of lattices of subframe
logics. Suppose that A and © are subframe logics. Then © = Th@, for a frame G. Hence,
© = Th(SfG). Now suppose that © splits SA. Then we shall say that G Sf-splits A and
we shall denote the splitting SA/© by A/ StG. For a set of frames F such that all frames in
F Sf-split A we shall denote the join-splitting by the theories Th(SfG),G € F, by A/SfF.
By definition, A /SfF is the smallest subframe logic © containing A with G [~ ©, for all
G €F.

The following Theorem provides a criterion for Sf-splittings. It is also important that
we get an axiomatization of the Sf-splitting. For n > 0 we denote by £, the propositional
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language of polymodal logic with n Boxes Oy, ...,0,. For a formula ¢ € £, and m € w
the formula 0™¢ is defined as follows.

0% = ¢; O™t = A\(0,0™¢[1 < i < n).

Let O™ ¢ = A(DO'¢|i < m) and define for a set of formulas I' Notice that the construction
of O™¢ depends on the language. If we want to indicate that O™¢ is defined in the
language £ we write O7¢. Consider a finite frame G = (g, S ). Reserve a variable p, for
each y € g. We define a formula Vg by putting

Vo = Ny — OipelySiz,1 <i<n)
A /\(Py — O0;=p.|=(ySiz),1 <i < n)
A /\(Py — p.|y # 2).

Theorem 3.1 Suppose that G = (g, §> is a finite frame with root 0, and A is a subframe
logic. Then (1) G Sf-splits A iff (2) there exists m € w such that for all'H € GfrA

O™V g, po is satisfiable in StH = (Vn > m)D(")Vg,po is satisfiable in SfH.
In this case A/STG = A + (D™Vg — —po)°F.

There exist more general versions of this result. [21] presents a characterization of split-
tings of lattices of type A for finitely presentable algebras. In [33] this result is generalized
to a characterization of splittings of arbitrary complete sublattices of the lattice of modal
logics by arbitrary subdirectly irreducible algebras. However, here we shall not need those
versions. For a large class of subframe logics A it can be deduced that all finite and rooted
frames Sf-split SA. An n-modal subframe logic A is m-transitive, m > 0, if the formula

tr, = (D(Z:)p — D?jlp)Sf

belongs to A. For instance, K4 is 1-transitive. Put K,.Tr, = K, + tr,. By definition,
the logics K,,.Tr,, are subframe logics. A tedious but straightforward proof shows that
K,.Tr,, is d-persistent, hence complete and elementary. An n-frame g is a K,.Tr,,-frame
if and only if for each finite path from z to y in g there exists a subpath of length < m
from z to y in g. We get from the Theorem above

Corollary 3.2 Suppose that A is a m-transitive subframe logic, for some m > 0. Then
each G € rFrA Sf-splits A and A/ng = A+ 0™V, — —pg.

Note that in this case, for the axiomatization, we don’t need (O(™Vy — _'Po)Sf. We leave
the proof to the reader since we shall not use this fact. That finite and rooted frames
always Sf-split m-transitive logics A follows also, by Proposition 1.9, from the result
of Rautenberg [28] that those frames already split £A. The deeper reason is that the
corresponding varieties of modal algebras have equational definable principle congruences
(EDPC), consult [7]. _

We formulate the results as concerns the relation between the concepts we have intro-
duced in the introduction. It will be said that a set F of finite and rooted frame defines
an iterated Sf-splitting of a subframe logic A if there is a partition F; U...UF, of F such
thastf the frames in F;,; Sf-split A/5TF; ... /3fF;, for 0 < 4 < n. The result is denoted by
A/?'F.
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Proposition 3.3 Suppose that © € SA, and A a subframe logic. Suppose that © is an
iterated Sf-splitting of A by a set of finite and rooted frames F.

o IfF is finite and © is decidable, then the Sf-aziomatization problem for © in SA is
decidable. We have

{8*:A+6 =0} = {66 c O, (Vg € F)(G £ ¢°)}
e If © is complete, then © has ssp in SA.
o If © has the fmp, then © has fsp in SA.

o The lower covers of © in SA are

{®NTh(SfG) : G € F, G not subreducible onto another frame in F}.

4 Characterizing Sf-splittings

In this section we characterize the Sf-splittings of basic lattices SA. We know already
from Proposition 1.3 and 1.9 that rooted and cycle free finite frames Sf-split K,,. On the
other hand, Blok has shown in [6] that only the reflexive point splits £T. The following
result tells us that for SK the situation is comparable to €K while for ST it is quite
different from £T. Important for later applications is that we also obtain that those
Sf-splittings are r-persistent. Let us recall the definitions.

Cycle free frames.
An n-frame G = (g,ﬁ) is cycle free if o # ., for any path (z;|0 < j < m) in G with
0 # m.

r-cycle free frames. :
For an n-frame G = (g, ) define G* = (g, (S; — {(v,v)|y € g}|s < n)). In other words, we
replace all reflexive points by irreflexive points. Then G is r-cycle free if G* is cycle free.

Theorem 4.1 (1) A finite rooted n-frame G Sf-splits K,, iff G is cycle free. In this case
K'n./ng =K, + D(dp(g))Vg — TPo-

All joz'n-Sf-splz'ttmgé of K,, are r-persistent.
(2) A finite rooted frame G € Fr(®™T) Sf-splits T iff G is r-cycle free. In this case

®nT/ng = Q"T + D(dp(g))vg — —g.
All join-Sf-splittings of T are r-persistent.

Hence splittings of £A are even more sensible to cycles than splittings in SA. Let us
note two more characterizations of splittings and Sf-splittings of important lattices which
underline this interpretation. Recall that K.t is the minimal tense logic. Define for a
2-tree T = (t,<1,<p) the frame 7% = (¢t,<; U <3%, <, U <7'). Obviously 7% = K.t.
Also put 75% = (t, Ry, R,), where R; is the reflexive, transitive and symmetric closure of
<;, for ¢ = 1,2. In the following theorem item (1) is shown in [22].

Theorem 4.2 (1) A finite and rooted frame G splits K.t iff G = [x]t. (1’) A finite and
rooted frame G Sf-splits K.t iff there exists a 2-tree T with G = T*. (2) A finite and
rooted frame G splits S5 ® S5 iff G = [x]S5. (2’) A finite and rooted frame G Sf-splits
S5 ® S5 iff there exists a 2-tree T with G = TS5,
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5 Iterated splittings by 7-closed sets

Now that we know which frames Sf-split K, we have to find a path to go on. We shall
explain the idea how to do this by a simple example. Put K5 = K + Op — OCp. K5 is
an r-persistent logic such that FrK5 is axiomatized by (Vz,y, z)(zRy A £Rz = yRz) (cf.
[26]). How to prove that K5 is an iterated Sf-splitting? Following correspondence theory
it is readily checked that FrK5 = Frg, where F consists of the following frames.

Fr =[x} Fo =[o=x} Fs = ex] Fa = [0} Fs =[o—s}

.7:6:X<:. f’r:.(:. s

In order to prove that F defines an iterated Sf-splitting which coincides with K5 we have
to decide with which frames to Sf-split first. It turns out that

K5 = K/ F Sy, Fo, Fo} |5 F S 7o 5T,

where the right side of the equation is defined. In order to clarify this order we define
Arrow subframes.
Suppose that F = (f, ]?) and G = (g, §> are finite n-frames and z € g. Then F is an
z-arrow subframe of G, in symbols F <, G,if f=9, R, C S;,for1 <i<n,and z is a
root of F. F is a strict z-arrow subframe of G, in symbols F <, G,if F <, G and F # G.
In general, for F <, G, we should first Sf-split with F and then with G. (Above, F;
is indeed the only frame in F which splits SK.) This motivates the order of the frames
Fi...Fs. However, in order to proceed in this way, we need some knowledge about the
intermediate steps. Roughly, we need to know that a F with F <, G does not occur in
a frame for A if we want to show that G Sf-splits A. More precisely, we would like to be
sure that '

o Ay = K/ F is complete and that FrA; = Fryz),
o Ay = Ay /S {Fy, Fs, Fe} is complete and Fr, = Friz, 5, 7 7}
L] A3 = Az/Sf]:;; 1s complete and FI'A3 = Fr{flyfz’f‘s,}'h]?s}.

and so on, for all the other intermediate steps. Often this will be achieved by proving
that those intermediate logics are r-persistent. The frames F¢ and F7 fit into this scheme
since

X X
.7:11: )<X and f12= )<.

do not occur as subframes of frames in FrA; = Fryry. The argument is similar for .
Let us note already that the heuristic ideas above are not valid in general. For instance,
it will be shown (cf. Theorems 5.2 (1.) and 6.4) that Fy; Sf-splits K but that Fy5 does
not Sf-split K/Sf]-'u. On the other hand

<

Sf-splits K /5f 7y,
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Following the idea of forming z-arrow-subframes we shall first investigate Sf-splittings
by sequences of frames from

T-closed sets.
Suppose that 7 = (t, <) is an n-tree with root 0. Then we put

(T) ={F e Fi|]T <o F}.

Then ((7), <o) is a finite partially ordered set with smallest element 7 and greatest
element (¢,(t xt:1 < i < n)). For F € (T) we denote by [T, F] the interval {G : T <,
G <o F}. Alsoput [T,F[=[T,F]—{F}. Aset F C(T)is T-closed if F € F implies
[T, 7] CF.

n-trees. v
Above, and in what follows, a n n-frame G = <g,§> is an n-tree if it is cycle free and
rooted and S; N S; = @, for all ¢ # j, and each & € g has not more than one predecessor
with respect to the relation S = U{S;|1 < < n}. 1-trees are called trees.

Since we want to define iterated Sf-splittings by 7-closed sets F it is important to
know whether Frg is a class definable by modal formulas. This can be checked by using
Proposition 2.4. However, it is instructive to have an axiomatization. For a finite n-tree
T =(t,<)and T <, G = (g, 5) define

Virg = N = plz#y)
AN(py — Cipaly <; @)
A N(py = ~Cipz|~(zSiy))

Proposition 5.1 A =K, + D(dp(T))V[T’g] — —pg @S the r-persistent subframe logic with
FrA = Fr[T,g]. .

Obviously we get an axiomatization for each logic of the form Th(Frg), where F is 7-
closed for some 7. The formulas V7 g look quite similar to the formulas axiomatizing
iterated Sf-splittings, but they are not equivalent. This will follow from the fact that
quite often logics of type Th(Frg) are not iterated Sf-splittings. The following Lemma is
proved in a similar way. We are ready to prove the first general splitting result. In one of
the cases of this result the following frames will play a major role. Put, for m € w,

line,, = ({0,...,m},<),
disc,, = ({0,...,m},S), where iS5 iff j =i+1,
HELP,, = [disc,, liney,].
It follows immediately from Theorem 4.1 that HELP,, defines an iterated Sf-splitting such
that H,, := K/SfHELPm is r-persistent and FrH,, = Fryg p . Roughly, in presence of
H.,, a lot of frames will Sf-split which do not Sf-split without H,,.

Transitive closure.
For a frame G = (g, S) define the transitive closure S* of S by putting

—

zS*y iff there is a path of length > 0 from z to y in G.

Two classes of frames.
For an n-tree 7 = (¢, <) define the set (7)g by

(t,R) e (T)p & T <o (t,R) and R, C <" U{(z,0):z € t},1<i < n.
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For a n-tree 7 = (t, <) define the set (T)y by
R e (T)yeT <o, R and R, C 2" U{(¢,0):zet}U{(z,z):z€t},1<i<n.

Theorem 5.2 Suppose that G € (T) and that A is a r-persistent subframe logic with
FrA C Frir g[. Suppose that one of the following cases holds.

1. G € (T)r.
2. Ge€(T)y and A D Q"T.
3. G, T, and A are monomodal, G € (T)y and A D K/S*HELP,,, for anm € w.
4. A has conjugates, i.e. A 2 K, + cn, (see the Introduction).
Then G Sf-splits A and A/5°G is r-persistent with Fr(A/3fG) = FrA N Frigy.

We proceed with some applications of this Theorem. Often it will be more convenient
to allow Sf-splittings of logics A by frames G with G £ A. In this case we simply put
A/ SfG = A. This mainly applies to iterated Sf-splittings.

Define an n-tree 7 by putting 7 = ({0}, (0|1 < 7 < n)). By Theorem 5.2 (1.) (T)g
defines an iterated Sf-splitting of K,, and

®"T =K./ (T)r.

Corollary 5.3 For all 1 with m o m = id the logics @ T + cn, are iterated Sf-splittings
of K, by finite frames. They have the fsp, the ssp and the Sf-aziomatization problem is
decidable. Examples are T.t and ®"T.B;.

X1 , o]
< <
wd,, = Xm+1 *m+1i,

and rwd,, =

For m > 0 put

(7.1)

It is readily checked that Fryyp_ = Fr(K+1,,), where WD,,, = [wd,,, rwd,,,]. We also have
WD,, C (wdy,)y. So we can apply Theorem 5.2 (3.) to WD,, and have that A + I, is
an iterated Sf-splitting by finite and rooted frames whenever A O H,,, for some m € w.
This applies, for instance, to T + I,,,.

Recall from Proposition 3.2 that the logics K,,.Tr,, play an important role in lattices
of subframe since they are those which allow splittings by arbitrary frames in rFr. So, it
would be nice if we could get K,,.Tr,, as an iterated Sf-splitting. In the next section we
shall see that this not the case. However, for conjugated logics, more can be said.

Corollary 5.4 K.t + tr, is an iterated Sf-splitting of K.t by finite frames and has the

ssp in SK.t. T.t + tr, is an iterated Sf-splitting of Ky by finite frames and has ssp in
SK,. (Here, tr, = (ch’;) — D(c";*“l)p)Sf)'

We see that Part 4 of Theorem 5.2 is indeed the strongest result so far. We also get the
following result for minimal tense extensions A.t of monomodal logics A. For a monomodal
frame (h, <) define

<h> 4>t = <g7 4, <]—1>‘
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and for a set of monomodal Kripke frames F put F* = {h’ : h € F}. A straightforward

proof shows
Fr(A.t) = (FrA)" and (Fr(©.t) = Fr(A.t) & FrA = Fr@), (7.3)

for all monomodal logics A and ©. The following Corollary follows 1mmed1ately with
Theorem 5.2 (4.).

Corollary 5.5 Let T be a tree and F C (T) be T -closed. Then F* defines an iterated
Sf-splitting of K.t such that K.t/Sth s r-persistent and

Fr(K.t/>'F?) = (Frp)".
Put, for m > 0,

tr, = ({0,...,m+ 1}, {(i,5)|j <i-+1}). (7.2)

It is readily checked that Frrg = Fr(K.Tr,), for TR,, = [discpm41,tr,]. Thus, the
minimal tense extensions (K.Tr,).t as well as (K +1,).t are iterated Sf-splittings of K.t
by finite frames. We even get K4.t. Put

Fy =[x} Fa = a).

Now it is not difficult to show that
K4.t = (K. Try.t)>F 7L /S L.
By the previous Corollary (K.Tr;).t = K.t/SFTRL. So we conclude

Corollary 5.6 (1) The logic K4.t is an iterated Sf-splitting of K.t by finite frames. It
has the ssp and the fsp and the Sf-aziomatization problem is decidable in SK.t. (2) The
logic S4.t is an iterated Sf-splitting of Ko by finite frames. It has the ssp, the fsp and the
Sf-aziomatization problem is decidable in SK,.

6 Negative Results

In this section we deliver some general counterexamples. Denote by G.3 the logic G +1;.
G.3 has the finite model property and its frames are prec1sely the strict orderings without
infinite ascending chains. Hence

G.3 = Th{line,, : n € w}.

Theorem 6.1 Suppose that A is a r-persistent subframe logic with line,, = A, for all
m € w (or, equivalently, A C G.3). Suppose that there exists G € rFtT which is r-cycle-
free and G = A. Then A is not an iterated Sf-splitting of K by frames in tFr and A does
not have the ssp.

The Theorem above applies, for instance, for K.I,, and K.Tr, but certainly also to un-
countably many other subframe logics.

Theorem 6.2 Suppose that K.Tr, C A C G.3 for ann > 0. Then A is not a join-Sf-
splitting of K. Tr,41 by finite and rooted frames and does not have the ssp in SK.Tr, ;.
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Recall that all frames in rFr(K.Tr, ;) Sf-split K.Tr,,;. Thus, Theorem 6.2 states that
as long as we do not Sf-split with finite G.3-frames we shall not get a logic containing
K.Tr, as a join-Sf-splitting of K.Tr,,;; hence not as an iterated Sf-splitting of K by
frames in rFr. Thus, the following result is just a reformulation of Theorem 6.2.

Theorem 6.3 Suppose that F C rFr(K.Tr, 1) such that F N {line,, : m € w} = 0 and
Fr(K.Tr,,1)p C FrTr,. Then

K.Tr,../>'F

18 incomplete.

This result shows that splittings also form a powerful tool for establishing numerous simple
examples of finitely axiomatizable incomplete subframe logics. So far we did not disprove
certain quite plausible conjectures as concerns extensions of Theorem 5.2 (1.). Consider a
tree 7 = (t,<) and a point z € t without successors (i.e. with {y: z < y} = 0). Denote
by T,z the frame (t, < U{(z,x)}). The following result states that with each tree 7 with
|t| > 2 there is associated a strictly descending chain of (incomplete) subframe logics ©,,,
n € w, with Fr@, = F"{T,Tr(z>}~

Theorem 6.4 Suppose that T = (t,<) is a tree with |t| > 2 and z has no successors.
Then there is a sequence (k(n): n € w) such that, for

0, = (K/SfT) + (D(k(n))v’fr(z) N __]po)Sf, n e w,

~

For alln € w, FrOy = Frr 7} and ©, is incomplete.
For alln € w, @n D ®n+1-

T, () does not Sf-split K/SfT.

™ e ¥

ThFrr o, =y} does not have the ssp and is not an iterated Sf-splitting by finite and
rooted frames.

7 Subframe Logics above K4

The main result of this section is a classification of subframe logics containing K4. In
order to prove it we have to Sf-split with a number of frames. But some work was already
done in Theorem 5.2. Put

G, = |2 G2 = [x—x] g3 = [e—x] Ga = |
Gs = 6 Ge = |#— 6> G, = | €
and put

TR = [diSCz, g]_] U {g2 e g7}

Based on the following two Lemmas one can show the main Theorem.

Lemma 7.1 FrK4 = Frg.
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Lemma 7.2 For alln € w,
Ay, = K /5fline, /S discy, 61] /3G, /5 ... /5 g,
is well-defined and |
An =K+ {(@®V5 - p)> : G € TRU {line,}} = K4/ line,.

Theorem 7.3 Suppose that F is a set of finite, transitive and rooted frames and that
n > 2. Then the following conditions are equivalent.

(1) K4/5F has ssp in SK.

(2) K.Tr, /S (TRUF) = K4/5F.

(3) K.Tr, /3 (TRUF) has fmp.

(4) K. Tr, /SY(TRUF) is complete.

(5) (Im € w)(line,, € F).

(6) K4/SfF is an iterated Sf-splitting of K by finite and rooted frames.

Corollary 7.4 For A € SK4 the following conditions are equivalent:
(1) A € G.3.

(2) A is an iterated Sf-splitting of K by finite and rooted frames.

(3) A is a join-Sf-splitting of K. Try by finite and rooted frames.

(4) A has ssp in SK.

(5) A has fsp in SK.

(6) A has ssp in K.Tr,.

(7) A has fsp in K.Tr,.

Thus, only a minor weakening of transitivity to try destroys all the nice properties of
subframe logics containing K4. Now, for a logic ® without the ssp in SA one would like
to know the cardinality of the set of logics ®; € SA with Fr® = Fr®;. Put

531\(@) = |{@1 € SA:Fro = Fr@l}“
The following partial answer for logics containing K4 is delivered in [33].

Theorem 7.5 If A € SK4 and A C G, then §sk v, (A) = 2%.

It is an open (and from a structural point of view interesting) problem whether also
6sk(G.8) = 2%, We note that is is easy to show with the frames from the last section

8 The upper part of SK,

Investigating the upper part of a lattice is a classical problem in modal logic (cf. [5],
[12], [24]). So it is interesting whether the upper part of the lattice of subframe logics
behaves better than the upper part of the lattice of all normal modal logics. Recall from
the Introduction that K.Alt, is the (mono)-modal theory of all frames (h, <1) satisfying
Hy : z < y}| < n, for all z € h. First we need the foolowing result on the finite model

property.
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Theorem 8.1 For all n,m > 0 all subframe logics containing ®"K.Alt,, have the fmp.

Based on this result one can show

Theorem 8.2 For all n,l > 0 all subframe logics containing Q"K.Alt; have the ssp and
the fsp.

We note that, in a certain sense, this result is optimal since there exists a finitely axiom-
atizable undecidable monomodal subframe logic such that in all rooted frames only one
point is allowed to have more than 4 successors. (This is not shown in [33] or [37] but
will be shown elsewhere).

Recall that a logic A is called tabular iff A = Thg, for a finite frame G. Since each
tabular logic contains some ®"K.Alt,,, we conclude

Corollary 8.3 All tabular subframe logics have ssp and fsp.

Call a logic A Sf-pretabular iff it is a maximal non-tabular subframe logic in SK. By
Zorn’s Lemma, all non-tabular subframe logics are contained in a Sf-pretabular subframe
logic. Examples are K.Alt;, G.3, S5 and Grz.3. (Recall that Grz.3 is the reflexive
counterpart of G.3, i.e.

Grz.3 = Th{rline,, : m € w},

where rline,, = ({0,...,m}, <), for m € w, (cf. [15])). Now we can formulate all desirable
properties of the upper part of SK,. The codimension of a logic A in SK,, is the length
of the longest C-chain in SK,, from A to £,.

Corollary 8.4 (1) All Sf-pretabular logics have infinite codimension in SK,. (2) A
subframe logic is tabular if and only if it has finite codimension in SK,. (3) The Sf-
aziomatization problem in SK, is decidable, for all tabular subframe logics. (4) All Sf-
pretabular logics have the fmp.

We shall now restrict attention to monomodal logics. One of the classical problems
of modal logic is the description of the pretabular logics in certain lattices, if possible.
However, even for logics containing K4 such a description is not available by Blok’s result
that there are 2% pretabular logics containing K4 (cf. [5]). (On the other hand, there
are precisely 5 pretabular logics containing S4 (cf. [12])). The situation is different
for monomodal lattices of subframe logics. Here we shall describe those Sf-pretabular
logic which do not contain K.Alt,, for all n > 0. (A description of all monomodal Sf-
pretabular logics seems possible. However, it is readily checked that there exist > R, such
logics containing K.Alts). Consider the following sets of frames

X1 X1
FOO:{X<:1 :nEw}a,ndGOO:{X<E 'n € w}.

Xn+1 Xn+1
From F% and G% we obtain sets F* and G° by adding {(0,0)} to the relations, and we
obtain F! and G' by adding {(z,z) : 1 < 2 < n+ 1} to the relations. Finally we obtain
sets F°! and G™ by adding {(z,z) : 0 < z < n+1} to the relations. Recall the definition -
of Grz.3 from the Introduction (1.5).
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Theorem 8.5 A monomodal subframe logic A with A 2 K.Alt,, for all n > 0, is an
Sf-pretabular logic iff A is one of the logics G.3, Grz.3, S5, or one of the following logics

Th(SfF), Th(SfF?), Th(SfF'), Th(SfF"),
Th(SfG®), Th(SFfG®), Th(SfG?), Th(SFG").

The following result shows once more the fundamental role of the logic G.3 for the struc-
ture of the lattice of monomodal subframe logics.

Theorem 8.6 All monomodal Sf-pretabular logics not equal to G.3 have the ssp in SK.

9 Tense Extensions

In this final section we compare monomodal subframe logics A with their minimal tense
extension A.t. The object is to get insight into the different lattice theoretic behavior
of subframe logics with and without conjugates. Denote by £ the monomodal language
with 0. We shall assume that monomodal logics A are always formulated in £, and we
assume that A.t is formulated in the bimodal language with modal operators O and O™
Bimodal logics containing K.t are called tense logics. We denote, for a tense logic ©, by
O, the monomodal logic © N £. The first important question is whether (A.t), = A, ie.,
whether A.t is a conservative extension of A. That this is so, has been assumed in some
articles, e.g. in [22]. Here we shall show that this is not the case. Recall from (7.3) the
definition (h, 1)t = (h, <, <17!), for each (mono-)modal Kripke frame (h, <), and that

Fr(A.t) = (FrA)" and (FrO@.t = FrA.t & FrA = Fr@),

for all monomodal logics A and ©. The following Proposition follows immediately.

Proposition 9.1 Let A € SK. (1) If A is complete, then (A.t)y = A. Especially,
(A.t)y = A, for all subframe logics containing K4. (2) If A has ssp in SK,

{0 e SK: 0.t =At}={A}.
(8) If A.t has ssp in K.t, then
{0 eSK:0t=At} ={0c SK:Fro =FrA}.

Thus, by (3), combining Corollaries 5.5 and 5.6 with the counterexamples of section 8,
we obtain numerous subframe logics A with |[{© € SK : ©.t = A.t}| > 1. This holds, for
instance, for A € {K.I,,K.Tr,,K4}. Even more can be said, also as a straightforward
consequence of Corollary 5.6 and Corollary 7.4, for logics containing K4.

Theorem 9.2 For all subframe logics A containing K4,
{6 € SK|0.t = At} = {0 € SK : FrA = Fr0}.

Hence, |{© e SK: 0.t = At} >1iff AZ G.3.
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After this easy application of the results we already had we now come to the main result
of this section. We first note the following result on intrinsic properties of the subframe
logics under consideration, which already indicate some interesting connections between
usually independent properties (cf.[34] and [35]).

Theorem 9.3 If A is a subframe logic containing K4 then A.t has the fmp iff A is elemen-
tary. A.t is complete, for all A € SK4 and A.t is decidable, for all finitely axiomatizable
A € SK4.

Note that this result does not extend to all logics above K4. [36] presents an example
where A has the fmp but A.t is incomplete. Now, what about the lattice theoretic behavior
of subframe logics of type A.t7

Theorem 9.4 Let A be a monomodal subframe logic containing K4. Then the following
conditions are equivalent:

(1a) A.t is an iterated Sf-splitting of K.t by frames in rFr.

(1b) At is an iterated Sf-splitting of K4.t by frames in rFr.

(2a) A.t has fsp in SK.t.

(2b) A.t has fsp in SK4.1.

(8a) A.t has ssp in SK.t.

(8b) A.t has ssp in SK4.t.

(4a) A is elementary.

(4b) A.t is elementary.
{(be : K4 + ¢ is elementary } is recursive. For A D S4 we can replace K4 by S4 and
K.t by K», in the equivalences above.

So we find, for minimal tense extensions, a remarkable connection between the lattice the-
oretic properties of a logic and intrinsic properties like elementarity and fmp. Compared
with the results on SK4 we see that conjugates change the behavior in an unexpected
way. While Grz behaves nice in SK the logic Grz.t does not in SK.t (since it is not
elementary). On the other hand K4 is problematic in SK but K4.¢ is fine in SK.t.
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