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on the spaces of symmetric matrices Sym,,(R),
and, of Complex and Quaternion Hermitian matrices
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1 Introduction — Abstract in English

Let P(z) be a real-valued homogeneous polynomial on an m-dimensional real vector space
V :=R™. Consider the subgroup G of GL(V),

G = {g € GL(V); P(g-z) = v(9)P(z)}. (1)

where v(g) is a constant depending only on g € G. Let S := {z € R™; P(0) = 0} and let
VoUV7y-.-V; be the connected component decomposition of the set V — S.

In order to construct a G-invariant hyperfunction, which is automatically a tempered
distribution, we take a complex power of the polynomial function P(z). We define the
functions |P(z)|; (¢ =0,1,...,l) with a holomorphic parameter s € C on V by

s P(x)|®* ,if z € V;, :
|P(x)l; ::{ | (0)| ,if z&'V:. - &)

Let 8(V') be the space of rapidly decreasing smooth functions on V. The integral

Zi(f,s) = / \P(2)|tf(z)do 3)

is absolutely convergent for f(z) € $(V) if the real part R(s) of s is sufficiently large. Thus
we can regard |P(x)|{ as a tempered distribution on V' with a holomorphic parameter s € C
when R(s) is large. It is well known that Z;(f, s) is meromorphically extended to the whole
complex plane s € C. The possible poles of Z;(f, s) appear in points of negative rational
numbers. Let C§°(V — S) be the space of C*-functions on V — S. If f(z) € C°(V — 8S),
then Z;(f, s) is absolutely convergent for any s € C. This means that Z;(f, s) is an entire
function in s € C.

Suppose that Z;(f, s) has a pole of order ng at s = s5. The Laurent expansion of Z;(f, s)
at 8 = sq is written as

Zi(""'_"")(f) Z":(so’_n0+1)(f) Zz'(aor—l)(f) (30,0) (s0,1)
(s —so)™ (5 Zsq)mo1 Foeeet W+Zi )+ 27 (f)(s —so) + -+

4)

where the coefficients Zi(‘”’k)(f) (i=0,1,...,1,s0 € Qeo,k € Z and k > —ngp) are tem-
pered distributions. When f(z) € C5°(V — S), then Z;(f,s) is holomorphic at s = sp.

Thus Zi(3°’k) (f) = 0 for negative integers k. That is to say, the support of the tempered

distributions f Zi(“’k) (f) is contained in S if £ is negative. We say that such a tempered
distribution singuler distributions.



If we can calculate the location and the exact orders of Z;(f,s)’s poles, then we can
construct singular distributions supported in S as negative-order coefficients of the Laurent
expansions of Z;(f, s). In addition, the coefficients hold the invariance with respect to the
action of the group G.

The location of poles and the possible maximal orders of poles are determined by com-
puting the divisors of the b-functions of P(z)*. But the following problems can not be
solved only by calculating the b-function; 1) determining the eract order of poles and 2)
obtaining the exact support of the singular distributions appearing in the coefficients of the
Laurent expansion.

In the presentation, the author gave a complete answer for these problems in the following
cases.

1. V = Sym, (R) := the space of n X n real symmetric matrices, P(z) = det(z) for = €
Sym,(R), G=GL,(R) ,g-z=grlgforge Gandr € V.

2. V = Her,(C) := the space of n x n complex Hermitian matrices, P(z) = det(z) for
z € Her,(C), G=GL,(C) ,g -z =gatgforgec Gandz € V.

3. V = Her,(H) := the space of n x n quaternion Hermitian matrices, P(z) = det(z)
for z € Her,(H), G =GL,(H) ,g-z =gzlgforge Gand z € V.

Here, tg and g stand for the transposed and conjugate matrices of g , respectively.

The contents of this note is the same as the lecture at July 31,1995 in the main hall
of RIMS, Kyoto University. The author arranges the original OHP slides shown at the
presentation and reprinted here with slight modification and some comments.

2 Slides and comments

The purpose of this lecture is to construct a suitable basis of the space of singular invariant
hyperfunctions on V. The basis consists of the coefficients of the Laurent expansion of
| det(x)|®, the complex power of the determinant function. We estimate the exact order of
the poles of |det(z)|* and give the exact support of the negative-order coefficients of the
Laurent expansion of |det(z)|® at its poles.

Similar results are obtained by Blind [Bli94].
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Let V := Sym,(R) be the space of n x n symmetric matrices over the real
field R, and let GL,(R) (reap. SL,(R)) be the general (resp. special)
linear group over R. Then the real algebraic group G := GL,(R) operates
on the vector space V' by

g:z——rg-z-tg,

with € V and g € G. We say that a hyperfunction f(z) on V is singular
if the support of f(z) is contained in the set S := {z € V; det(z) = 0}. We
call S a singular set of V. In addition, if f(z) is SL,(R)-invariant, i.e.,
flg-z) = f(z) for all g € SL,(R), we call f(r) a singular invarient
hyperfunction on V.

Let P(x) := det(z). Then P(z) is an irreducible polynomial on V, and is
relatively invariant with respect to the action of G' corresponding to the
character det(g)? ,i.e., P(g-z) = det(g)?P(z). The non-singular subset
V — S decomposes into (n + 1) open G-orbits

Vi = {z € Sym,(R);sgn = (n —1,9)}. (5)

with i =0, 1,...,n. Here, sgn(z) for z € Sym,,(R) stands for the signature
of the quadratic form ¢,(?%) :=*7-z - ¥ on ¥ € R". We let for a complex
number s € C,

IP(z)]* ,if zeV;,
P(x)|} = 6
P { 0 Jif z & V. (©)
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Let 8(V') be the space of rapidly decreasing functions on V. For f(x) € 8§(V), the
integral :

Zi(f,5) = /V \P(@)]: f(2)d, (1)

is convergent if the real part of s is sufficiently large and is holomorphically extended to
the whole complex plane. Thus we can regard |P(z)|] as a tempered distribution with a
meromorphic parameter s € C. ’

We consider a linear combination of |P(z)|¢

. .
PEA(z) .= ) " o| P(a) 3, 8)
Slide 3 : =0
with s € C and @ := (ao, a1,...,a,) € C**1. Then PI%sl(z) is a
hyperfunction with a meromorphic parameter s € C , and depends on
@ € C"*1 linearly.
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The following theorem is well known (see for example [Mur90]).
Theorem 2.1. 1. P&#(x) is holomorphic with respect to s € C ezcept
for the poles at s = —%—1 withk =1,2,....

2. The possibly highest order of P®l(z) at s = —EEL is given by
Slide 4

&) ,(k=12...,n-1),
2] ,(k=mnn+1..., and k+nis odd), 9)

I.%LJ ,(k=n,n+1...., and k + n is even).

Here, | x| means the floor of x € R, i.e., the largest integer less than x.

Any negative—order coefficient of a Laurent expansion of Pl&:3l(z) is a singular invariant
hyperfunction since the integral

[ r@Pei@e ="z, | (10)

i=0

is an entire function with respect to s € C if f(z) € C*(V - S).
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Conversely, we have the following proposition.
Proposition 2.2 ([Mur88],[Mur90]). Any singular invariant

Slide 5  hyperfunction on V is given as a linear combination of some negative-order
coefficients of Laurent expansions of P%4(x) at various poles and for some
deCcrtl,

Proof. The prehomogeneous vector space
(G, V) := (GLx(R), Sym,(R))

satisfies sufficient conditions stated in [Mur88] and [Mur90]. One is the finite-orbit condition
and the other is that the dimension of the space of relatively invariant hyperfunctions
coincides with the number of open orbits. O
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The vector space V' decomposes into & finite number of G-orbits;

vi= |] & (11)
0<i<n
0<5<n—i
where
8 := {z € Sym,(R); sgn(z) = (n —i — j, )} (12)

with integers 0 <i<nand 0<j<n—i A G-orbitin S is called a
singular orbit. The subset S; := {x € V; rank(z) = n — i} is the set of
elements of rank (n — ). It is easily seen that S :=| ], ;.,, S; and

o 7]
S; = LIOSan—i Si.

Each singular orbit is a stratum which not only is a G-orbit but is an
SL, (R)-orbit. The strata {S?};<;<n0<j<n—s; have the following closure
inclusion relation

si>siiusi,, (13)

where S7 means the closure of the stratum S7.

25
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The support of a singular invariant hyperfunction is a closed set consisting of a union
of some strata S]. Since the support is a closed G-invariant subset, we can express the
support of a singular invariant hyperfunction as a closure of a union of the highest rank
strata, which is easily rewritten by a union of singular orbits.

We naturally ask the following questions.
Problem 2.1. What are the principal parts of the Laurent expansion of
Slide 8 P%4(z) at poles ? What are their exact orders of poles ? What are the

supports of negative-order coefficients of a Laurent expansion of P&4l(zx) at
poles ?
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In order to determine the exact order of Pl%:4l(z) at s = so, we introduce
the coefficient vectors

d® (5] := (d[s0], AP [so, - . ., &) [s0]) € ((CH1)*)nhH

vey Uy

with £ =0,1,...,n. Here, (C**1)* means the dual vector space of C"*+1.
Each element of dt®) [s0] is a linear form on @ € C"*1,i.e., a linear map from
C to Cnt1,

d®[so] : C™*1 3 & — (dF[s0], @) € C.
We denote

(@ [s0l, 8) = (AP fs0), @, (AP so), .., (4P 0], 8)) € C 1,

Definition 2.1 (Coefficient vectors d®[se]). We define the coefficient
vectors d®[so] for (k= 0,1,...,n) by induction on k in the following way.

1. First, we set ‘
dO[s0] := (dS” [s0], 41 [so), - - -, 4 [so])
such that (dgo) [so0], @) :=a; for i =0,1,...,n.
2. Next, we define dtV[so] and d®|so] by
dW[so] := (d§P[so], & fsol, - -, 421 [s0]) € ((C™H1)7)",

with d${so] := d5” [so] + €lsold}}y [so], and

d®[so] := (P fs0l, @[50}, .. . diflz[solj € ((Cty)n1,

27



with dgz) [s0] := dgo) [s0] + dﬁ)z [so]. Here,

50 , (if so is a half-integer),
€[so] :=
° (=1)%+1 (if sp is an integer).

3. Lastly, by induction on k, we define all the coefficient vectors di®)[s,]

fork=0,1,...,n by
Slide 11

d@ D [s0] := (a7 [so], &PV [s0), - - ., AP [50]) € ((CmHY)*)n—2,
with d*V[so] 1= d§*V[so] — a5 V[s0], and
d ) [so] := (d$V[so], P [s0], - - -, A2y s0]) € ((CPH1)*)n—2+1,

with a{2[so] := d 2 [s0] + diZr5 2 [so).

Using the above mentioned vectors dt*) [s0}, we can determine the exact

" orders of Pl%4l(z) at poles.
Theorem 2.3. The ezact order of the poles of P\%(x) is computed by the
Sollowing algorithm.

1. Ats=-2mdl(m =1, 2,...), the coefficient vectors d®) [ 2m1] gre
defined in Definition 2.1. The ezact order Pl%3l(z) at
= —2mtl(m = 1,2,...) is given in terms of the coefficient vector

Slide 12
d@k)[_?";il]'

o If1<m< %, then P&:3l(x) has a possible pole of order less than m.
— If (d®[-2mtl) Gy — 0, then Pl&:)(z) is holomorphic.
— If (d9[-2mtL) &) = 0 and (dP[-2BEL], G) # 0, then Pl®l(x)
has a pole of order 1.
— Generully, for integersp in 1< p <m, if <d(2p+2)[_@], a@ =0
and (d®)[—2m1) Gy £ 0, then P®4(z) has a pole of order p.

28



— Lastly, if (d®m)[-2mt1) &) £ 0 , then P%s)(z) has a pole of
order m.

o Ifm> %, then Pl&:sl(x) has a possible pole of order less than

o =l (if n is odd),
2 , (if n is even).

Slide 13 -

e — If (dW[-2mt1) &) = 0, then PI#I(z) is holomorphic.

— If (dW[-2mt1] g) = 0 and (0D [-2tL), @) # 0, then Pl&4l(z)
has a pole of order 1.

— Generully, for integers p in 1 < p </, if (d2P+D[-2mtl] g) —
and (d®P)[—2mt1] &) # 0, then P'%%)(z) has a pole of order p.

— Lastly, P\ (x) has a pole of order n’ if (d"~D[-2m+1] G) £ 0
(n is odd) or (d™[—2mt1] Gy £ 0 (n is even).

2. Ats=-m(m=12,...), the coefficient vectors d®)[—m] are defined
in Definition 2.1 with [-m] = (=1)"™*+1. We obtain the ezact order at
s=-—m(m=12,...) in terms of the coefficient vectors d@*+1)[—m)].

o If1<m < g, then P'®3(z) has a possible pole of order less than m.

— If (d®[-m], @) = 0, then P13(x) is holomorphic.

— If (d®[-m],d) = 0 and (dV[-m], @) #£ 0 , then Plésl(z) has a
pole of order 1.

— Generully, for integers p in 1< p < m, if (d2P+D[—m|,d) =0
and (d?P=V[—m),&@) # 0, then P4 (z) has a pole of order p.

— Lastly, if (d?™=D[—m], @) # 0 , then P\&3(z) has a pole of order
m.

Slide 14
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o Ifm > %, then Pl&2l(z) has a possible pole of order less than

2

2 , (if n is even).

, ol (if n is odd),
n =
2

— If (dW[=m)], &) = 0, then P®4l(x) is holomorphic.
Slide 15 — If (d®[-m), d) = 0 and (dV[-m),d) # 0 , then P1&3(z) has a
pole of order 1.
— Generully, for integers p in 1 < p <n', if (d2P+D[—m],d) =0
and (d®*~D[—m|,d) # 0, then P1%4(x) has a pole of order p.
— Lastly, P'%3l(z) has a pole of order n' if (J(") [-m],@) #0 (n is
odd) or (d"~V[—m),d) # 0 (n is even).

The exact support of P& (z) is given in the following theorem.
Theorem 2.4 (Support of the singular invariant hyperfunctions).
Let

kE+1

oy (14

Pad@) = 3 PP g) s+

—oc0<j<oo

be the Laurent expansion of P1&:¥(z) at s = —&L. The support of the
Slide 16 o
coefficients P * (z) is contained in S if j <0.

G, 3m+tl
1. The support of PE’; 2 ](:v) for (j=1,2,...) is contained in the
closure S_h. More precisely, it is given by

Supp(P'% 5 () = ( U Sp). (1)

pe{0<p<n—2j;(dy? [~ 25t 5)£0}
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2. The support of Pg!_m] (z) for (j = 1,2,...) is contained in the closure
Saj—1. More precisely, it is given by

SUPP(PLEJ?_m] () =( U ng—1)- (16)

PE{0<p<n—2j+1;(d$¥ ™V [~m], )70}

Example 2.1.

1 Y0 o(—1)}|P(x)|? is holomorphic at s = =2k + 1(k = 1,2,...).
S o |P()|¢ is holomorphic at s = —2k(k = 1,2,...).

2. |P(z)|8 has poles of order just given by (9).

Remark 2.1. Solving the relations given in Theorem 2.3, we can construct
infinitely many SL,, (R)-invariant hyperfunctions whose support coincides
with the closure of one orbit S{ .
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we have constructed a suitable basis of the space of singular invariant hyperfunctions
on the space of the n x n real symmetric matrices V := Sym,,(R), and we have given their
exact support. Next we shall deal with the same problem on other similar spaces — the
space of complex, quaternion and octanion Hermitian matrices.

Let V := Her,(C) be the space of n x n Hermitian matrices over the
complex field C, and let GL,(C) (reap. SL,(C)) be the general (resp.
special) linear group over C. Then the real algebraic group G := GL,,(C)
operates on the vector space V' by

g:r+—g-x-tg, (17)

with ¢ € V and g € G. Here, g means the complex conjugate matrix of g

Slide 19
© and %g is the transposition of g.

In the same way, by putting V := Her, (H) to be the space of n x n
Hermitian matrices over the Hamilton’s quaternion field H, and by putting
GL,,(H) (reap. SLy,(H)) to be the general (resp. special) linear group over
H, we can consider the same situation. The group G := GL,,(H) acts on V
in the same manner as (17) where § means the quaternion conjugate
matrix of g.
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We consider the complex case (resp. the quaternion case).

Let P(z) := det(z). Then P(z) is an irreducible polynomial on V, and is
relatively invariant with respect to the action of G corresponding to the
character |det(g)|? ,i.e., P(g-z) = |det(g)[?P(z). The non-singular subset
V — 8 decomposes into (n + 1) open G-orbits

Vi :={z € Her,(C);sgn = (2(n —1),24)}. (18)
in the complex case, and
V,;:={z € Her,(C);sgn = (4(n —1i),47)}. (19)

in the quaternion case, with i =0, 1,...,n. Here, sgn(z) for € Her,(C)
(resp. z € Her,(C)) stands for the signature of the quadratic form
¢z(?) ;=% .-z 7 on ¥ € C” (resp. ¥ € C").

We let for a complex number s € C,

.| 1P@PF if zevy,
|P(2)]; -—{ 0 fodV, (20)

We consider a linear combination of |P(z)|?

Pd(z) := 3 0| P(@)]s, (21)
i=0 .

with s € C and @ := (ao, a3,-..,a,) € C**L. Then Pi&sl(z) is a
hyperfunction with a meromorphic parameter s € C.



Theorem 2.5.
(In the complex case.)

1. P3l(z) is holomorphic with respect to s € C except for the poles at
s=-kwithk=1,2,....

2. The possibly highest order of P1&3l(x) at s = —k is given by

Slide 22
{k (k=1,2....,n—1),

(22)
n ,(k=nn+1...,).
(In the quaternion case.)

1. P@sl(z) is holomorphic with respect to s € C except for the poles at
s=—kwithk=12,....

2. The possibly highest order of Pl®3l(z) at s = —k is given by

Slide 23 {L%ﬂj y(k=12...,2n-1), (23)

n ,(k=2n,2n4+1....,).

34



We define the the coefficient vectors d®)[so] in the same way as the case of symmetric
matrix space.

d® [s0) := (dS[so], 4P [so], - - -, A [s0]) € ((CH)")n—k

with £ = 0,1,...,n. Here, (C**!)* means the dual vector space of C**1. Each element of
d®)[so] is a linear form on @ € C**! i.e., a linear map from C to C"*1,

d®[so] : C**1 3 & +— (dF)[s0),3) € C.
We denote

(@ [so], @) = (S [s0], @), (d® [s0], @), - - - , (AL [so], @)) € CPHH1,

Definition 2.2 (Coeflicient vectors d®[s0]). We define the coefficient
vectors d(® [so] (k =0,1,...,n) by induction on k in the following way.
Here, for an integer sy, we set

efso] := (~1)%+?
_ 1. First, we set
Slide 24 d9[so] = (d [so], di” [sol, .- o))
such that (dgo) [so],8) :=a; for i =0,1,...,n.
2. Next, we define d\V[so] by
dWso] := (4§ lsol, 45 [sol, - -, s so]) € (€)™,

with d$” [so] := d [so] + €lsold{Ys [so]-
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3. Lastly, by induction on k, we define all the coefficient. vectors d(®[so]
fork=0,1,...,n by

(i(k) [30] = (dgk) [SO]a dgk) [50], - d;k_)k[sol) c ((Cn+1)*)n_k+17

with dg-k) [80] = d;k—l)[SO] -+ E[So]d§-’i—11) [SQ].

Using the above mentioned vectors d(*)[so], we can determine the exact
orders of Pl&4l(z) at poles.

" Theorem 2.6. The exact order of the poles of Pl&(z) is computed by the

following algorithm.

Ats=-m (m=1,2,...), the coefficient vectors @) are defined in the
way as Definition 2.2.

1. (In the complez case.) The eract order Pl&:sl(x) at
s=-m (m=12,...) is computed by the following algorithm.

e If1<m < n, then P& (x) has a possible pole of order less than m.
— If (dM[-m), @) = 0, then PI&s(z) is holomorphic.
- If (d®[-m), @) = 0 and (@V[-m)],d) # 0 , then PI&3(z) has a
pole of order 1.
— Generually, for integersp in 1 < p <m, if (J("“)[—m], d) =0 and
(dP)[-m), ) # 0 , then P15l (z) has a pole of order p.

36



— Lastly, if (d™[-m],&) # 0, then P1&*(x) has a pole of order m.
o If m > n, then P'%%(z) has a possible pole of order less than n.
— If (dD[-m)],@) = 0, then P\%3(x) is holomorphic.
— If (d®[-m), @) = 0 and (dV[-m],d) # 0 , then P®(z) has a
pole of order 1. :
— Generally, for integersp in 1 < p < n, if (dtp"'l)[—m],ii) =0 and
(@P)[—m)], @) # 0, then P1%%(z) has a pole of order p.

Slide 27 .
e — Lastly, P1%%(z) has a pole of order n if (d™[—m],d) # 0.

2. (In the quaternion case.) The ezact order Pl&*(z) at
s=-m (m=12,...) is computed by the following algorithm.

e If1<m<2n—1, then P%%l(z) has a possible pole of order less
than |4

— If (dD[—m), @) = 0, then P@4(z) is holomorphic.

— If (d®[-m], @) = 0 and (dV[-m],d) # 0, then Pl@*l(z) has a
pole of order 1. '

— Generully, for integersp in 1< p < |EL|, if (@P+D[—m),d) =0
and (dP[—m],@) # 0, then P14 (x) has a pole of order p.

— Lastly, if (&u‘"%ﬁ])[——m],&') #0, then Pl&5l(x) has a pole of
order |1,

Slide 28 e If m > 2n, then Pl&3l(x) has a possible pole of order less than n.

— If (dW[-m], @) = 0, then P'®sl(z) is holomorphic.

— If (dP[-m], @) = 0 and (dV[-m],d) # 0, then Pl%*l(z) has a
pole of order 1.

— Generally, for integers p in 1< p <n, if (dP+D[—m],d) = 0 and
(d®[—m), @) # 0 , then P®s\(z) has a pole of order p.

— Lastly, P1%%(z) has a pole of order n if (d™[—m],d) # 0.
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vi= || ¢ (24)
0<i<n
0<G<n—i
where
] := {z € Hern(C); sgn(z) = (2(n —i - j),2j)} (25)
in the complex case, or
S := {z € Her,(H); sgn(z) = (4(n —i - j),4j)} (26)

in the quaternion case, with integers 0 <i<nand 0<j<n —1i.

38

The subset S; := {z € V; rank(z) = n — i} is the set of elements of rank (n — ).
It is easily seen that S := | |,;<,S; and S; = | |oc;<,_;Si- Each singular orbit is a
stratum which not only is a G-orbit but is an SLy,(C)-orbit in the complex case and but is
an SL, (H)-orbit in the quaternion case. The strata S (1 <i<n,0< j < n — 1) have the
closure inclusion relation

s ._1 .
S > Siyi USi

(27)

The support of a singular invariant hyperfunction is a closed set consisting of a union
of some strata Sj. Since the support is a closed G-invariant subset, we can express the
support of a singular invariant hyperfunction as a closure of a union of the highest rank
strata, which is easily rewritten by a union of singular orbits. The exact support of the
Laurent coefficients of P&l (z) is given by the following theorem.
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Theorem 2.7 (Support of the singular invariant hyperfunctions).
Let

PEd(zy =S~ PIET(g)(s +m) (28)
—00< j< 00
be the Laurent expansion of Pl (x) at s = —m. The support of the
coefficients P}a’_ml(z) is contained in S if j < 0. At
Slide 30 S=-m (m=12,...), the coefficient vectors ® are defined in the way
as Definition 2.2 with e = +1 when m is odd, or with €e = —1 when m is
even. In both the complex case and the quaternion case, the support of
ng_ml (x) (j =1,2,...) is contained in the closure S;. More precisely, it
is given by

Supp(P% ™ (z)) = ( U S). (29)

pe{0<p<n—j:(dd’ [-ml,&)7#0}
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