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Abstract

Let $L$ be a first order language. Let $D$ be an infinite L-structure
and $F$ a definably closed subset of $D$ . Then Th$(D, F)$ is called small
if it has a model $(D_{1}, F_{1})$ such that $\mathrm{A}\mathrm{u}\mathrm{t}(\mathrm{a}\mathrm{c}1(F1)/F_{1})$ is small. In this
note, we prove the following:

Theorem: Suppose that Th$(D, F)$ is a small theory with the
definable irreducibility property. Then
$\mathrm{A}\mathrm{u}\mathrm{t}(\mathrm{a}\mathrm{C}1(F)/F)\cong \mathrm{A}\mathrm{u}\mathrm{t}(\mathrm{a}\mathrm{c}1(F1)/F_{1})$ for every model $(D_{1}, F_{1})$ of
Th$(D, F)$ .

As a corollary we show the following:

Corollary: Let $F$ be a perfect field. Then the absolute Galois group
of $F$ is small if and only if the absolute Galois group of $F_{1}$ is
isomorphic to that of $F$ for any $F_{1}$ elementarily equivalent to $F$ .

$0$ . Introduction

Let $L$ be a first order language. Let $D$ be an infinite $L \frac{-}{}\mathrm{s}\mathrm{t}\mathrm{r}\mathrm{u}\mathrm{c}\mathrm{t}\mathrm{u}\mathrm{r}\mathrm{e}$ and
$F$ a definably closed subset of $D$ . By $\mathrm{A}\mathrm{u}\mathrm{t}(\mathrm{a}\mathrm{C}1(F)/F)$ we mean a set of
permutations of $\mathrm{a}\mathrm{c}1(F)$ induced by elementary maps which fix $F$ pointwise.

Let us observe the case where $F$ is a pseudo-finite field (see, e.g., [1]) and
$D$ is an algebraically closed extension of $F$ . It is seen that $F$ is a perfect
field, and so it is definably closed. Then $\mathrm{A}\mathrm{u}\mathrm{t}(\mathrm{a}\mathrm{C}1(F)/F)$ coincides with the
absolute Galois group of $F$ . It is also known that the absolute Galois group
is isomorphic to the profinite completion of the group of integers Z. In this
case, Th$(D, F)$ satisfies the following condition:
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$(^{*})\mathrm{A}\mathrm{u}\mathrm{t}(\mathrm{a}\mathrm{c}1(F)/F)\cong \mathrm{A}\mathrm{u}\mathrm{t}(\mathrm{a}\mathrm{c}1(F1)/F_{1})$ for every model $(D_{1}, F_{1})$ of
Th$(D, F)$ .

In this note we want to give a criterion for Th$(D, F)$ to satisfy $(^{*})$ . To
state our results, we need some preparations.

In case $D$ is an algebraically closed field we can consider $\mathrm{A}\mathrm{u}\mathrm{t}(\mathrm{a}\mathrm{C}1(F)/F)$

as a profinite group. In a general context we can do as well: Let $A$ be a
definably closed subset of $D$ such that $F\subset A\subset \mathrm{a}\mathrm{c}1(F)$ . Then we say that
$A$ is normal over $F$ if it is invariant under $\mathrm{A}\mathrm{u}\mathrm{t}(\mathrm{a}\mathrm{C}1(F)/F)$ . And we say that
$A$ is finitely generated over $F$ if $A=\mathrm{d}\mathrm{c}1(\overline{a}F)$ for some $\overline{a}\in \mathrm{a}\mathrm{c}1(F)$ . Let $A$

be a family of the subsets of $\mathrm{a}\mathrm{c}1(F)$ which are finitely generated and normal
over $F$ . In the obvious way, $\mathrm{A}\mathrm{u}\mathrm{t}(\mathrm{a}\mathrm{c}\mathrm{l}(F)/F)$ can be identified with a profinite
group:

Aut $(\mathrm{a}\mathrm{c}\mathrm{l}(F)/F)\cong \mathrm{p}\mathrm{r}\mathrm{o}\mathrm{i}\mathrm{l}\mathrm{i}\mathrm{m}\mathrm{A}\mathrm{u}A\in A(\mathrm{t}A/F)$

Through this isomorphism, the Krull topology is induced on Aut $(\mathrm{a}\mathrm{c}1(F)/F)$ .
A profinite group $G$ is said to be small if for any finite groups $H$ there are
only finitely many continuous homomorphisms of $G$ into $H$ (see [1, p.185]).
In particular the profinite completion of $\mathrm{Z}$ is small.

Here we define Th$(D, F)$ to be small if it has a model $(D_{1}, F_{1})$ such that
$\mathrm{A}\mathrm{u}\mathrm{t}(\mathrm{a}\mathrm{c}1(F1)/F_{1})$ is small. (Our definition is related to that of Hrushovski.
See Remark 2.5). Does Th$(D, F)$ satisfy the condition $(^{*})$ if it is small? The
answer is No. In general Th$(D, F)$ does not necessarily satisfy $(^{*})$ , even if it
has a model $(D_{1}, F_{1})$ such that $\mathrm{A}\mathrm{u}\mathrm{t}(\mathrm{a}\mathrm{c}1(F1)/F_{1})$ is finite. We introduce some
property on Th$(D, F)$ , the definable irreducibility property, and prove that a
small theory with the definable irreducibility property satisfies the condition
$(^{*})$ (Theorem 3.1). As a corollary we give a characterization of a perfect field
with a small absolute Galois group (Corollary 3.3).

Notation . We only assume basic knowledge of model theory. For the rest
of the paper we fix an infinite $L \frac{-}{}\mathrm{s}\mathrm{t}\mathrm{r}\mathrm{u}\mathrm{c}\mathrm{t}\mathrm{u}\mathrm{r}\mathrm{e}$ $D$ and a definably closed subset
$F$ of $D$ . The type of $a$ over $A$ is denoted by $\mathrm{t}\mathrm{p}(a/A)$ . We say that $p$ is
an algebraic type if it has a finite number of realizations. An element $a$ is
algebraic over $A$ if the type $\mathrm{t}\mathrm{p}(a/A)$ is an algebraic type. The set of all
algebraic elements over $A$ is denoted by $\mathrm{a}\mathrm{c}1(A)$ . If $a$ is the unique realization
of $\mathrm{t}\mathrm{p}(a/A)$ then we say that $a$ is definable over $A$ . The set of all definable
elements over $A$ is denoted by $\mathrm{d}\mathrm{c}1(A)$ . For any $A\subset B,$ $\mathrm{A}\mathrm{u}\mathrm{t}(B/A)$ means the
set of permutations of $B$ induced by elementary maps which fix $A$ pointwise.
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Let Th$(D, F)$ be a theory in a language $L\cup\{P\}$ , where $P$ is a new unary
predicate whose interpretation in $(D, F)$ is F. $L\cup\{P\}$ is denoted by $L^{*}$ and
Th$(D, F)$ by $\tau*$ .

1. The Definable lrreducibility Property

1.1. Definition (i) Let $A$ be a set. Then we say that $\phi(\overline{x}\overline{a})\in L(A)$ is
$A$ -irreducible if it is algebraic and isolated over $A$ .
(ii) Let $(D_{1}, F_{1})$ be a model of $\tau*$ and $\phi(\overline{x}\overline{a})$ an $F_{1}$-irreducible formula with
exactly $n$ realizations. Then we say that $\phi(\overline{x}\overline{a})$ has the definable irreducibility
property (DIP) if there is an $L^{*}$-formula $\theta(\overline{y})$ such that for any model $(D_{2}, F_{2})$

of $\tau*$ and any $\mathrm{r}\mathrm{e}\mathrm{a}\mathrm{l}\mathrm{i}_{\mathrm{Z}\mathrm{a}}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\overline{b}$ of $\theta$ in $F_{2},$ $\phi(\overline{x}\overline{b})$ is an $F_{2}$-irreducible formula with
$n$ realizations. We denote such a $\theta(\overline{y})$ by $\theta_{\phi}^{n}(\overline{y})$ .
(iii) We say that $\tau*$ has the DIP if any $F_{1}$-irreducible formula has the DIP
for any model $(D_{1}, F_{1})$ of $\tau*$ .

1.2 Example . Let $A$ be a countable set and $E$ an equivalence relation
on $A$ with infinitely many four element classes. Let $\{A_{n} : n<\omega\}$ be an
enumeration of the classes of $E$ . For each $n<\omega$ , let $U_{n}$ and $V_{n}$ be subsets
of $A$ such that $A_{n}=U_{n}\cup V_{n}$ and $|U_{n}|=|V_{n}|=2$ . Let $\pi$ : $Aarrow A/E$ be a
projection and $F=\{\pi(a) : a\in A\}$ . Let $D=(A\cup F, E, \pi, \{U_{n}\}_{n<\omega}, \{V_{n}\}_{n<\omega})$ .
Clearly $\mathrm{d}\mathrm{c}1(F)=F$ . Then $\tau*=\mathrm{T}\mathrm{h}(D, F)$ does not have the DIP: Let
$\phi(xy)=‘(\pi(x)=y$”. For every $b\in F,$ $\phi(xb)$ is not $F$-irreducible. On the
other hand, for a saturated model $(D_{1}, F_{1})$ of $\tau*$ , we can take an element
$c\in F_{1}$ such that $\phi(xc)$ is $F_{1}$-irreducible. Then $\phi(xc)$ does not have the DIP.

1.3. Lemma . If $D$ is an algebraically closed Field, then $\tau*h$as the DIP.

Proof. Take any model $(D_{1}, F_{1})$ of $\tau*$ . Note that $F_{1}$ is a perfect field
since it is definably closed. And take an $F_{1}$-irreducible formula $\phi(\overline{x}\overline{a})$ . Let
$\phi(\overline{x}\overline{a})$ have $n$ realizations. Pick a realization $\overline{e}$ of $\phi(\overline{x}\overline{a})$ . By the primitive
element theorem we can get an element $d$ such that $\mathrm{d}\mathrm{c}1(dF1)=\mathrm{d}\mathrm{c}1(\overline{e}F1)$ .
Take an $F_{1}$-irreducible $\mathrm{f}_{\mathrm{o}\mathrm{r}\mathrm{m}}\mathrm{t}\mathrm{l}\mathrm{l}\mathrm{a}\psi(x\overline{b})\in \mathrm{t}\mathrm{p}(d/F_{1})$. Let $\psi(x\overline{b})$ have exactly $m$

realizations.

First we show that $\psi(x\overline{b})$ has the DIP. By elimination of quantifiers, $\psi(x\overline{b})$

may be identified with a polynomial equation $‘(p(x, \overline{b})=0$” of degree $m$ . Let
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$X$ be the set of the general polynomials of degree $<m$ . Then we can define
$\theta_{\psi}^{m}(\overline{z})$ by

$p_{1},p_{2}\in X\wedge\neg\exists\overline{z}1,\overline{z}2\in P\forall x[p(x,\overline{z})=p1(X,\overline{z}_{1})p_{2}(X,\overline{Z}2)]$

Hence $\psi(x\overline{b})$ has the DIP.
We must show that $\phi(x\overline{a})$ has the DIP. Now $\overline{e}$ and $d$ are inter-definable

over $F_{1}$ , and so we can take an $L^{*}$-formula $\alpha(\overline{x}x)$ which satisfies

1. $(D_{1}, F_{1})|=\alpha(\overline{e}d))$
.

2. For any model $(D_{2}, F_{2})$ of $\tau*,$ $(D_{2}, F_{2})\models\alpha(\overline{e}’d’)$ implies $\mathrm{d}\mathrm{c}1(\overline{e}’F2)=$

$\mathrm{d}\mathrm{c}1(d’F_{2})$ .

Then set $\theta(\overline{y})$ by

$\exists^{=n}\overline{x}\phi(\overline{x}\overline{y})\wedge\exists\overline{z}\in P\forall\overline{x}$ [ $\phi(\overline{x}\overline{y})$ A $\theta_{\psi}^{m}(\overline{z})arrow\exists x(\psi(X\overline{Z})\wedge\alpha(\overline{x}x))$ ].

The formula $\theta(\overline{y})$ is consistent since it is realized by $\overline{a}$ . It is easily seen
that $\theta(\overline{y})=\theta_{\phi}^{n}(\overline{y})$ . Hence $\phi(x\overline{a})$ has the DIP. This completes the proof of the
lemma.

2. Theories with a Small Galois Group

2.1. Definition . We say that $\tau*$ has a small Galois group (or for short,
$\tau*$ is small) if it has a model $(D_{1}, F_{1})$ such that $\mathrm{A}\mathrm{u}\mathrm{t}(\mathrm{a}\mathrm{c}1(F1)/F_{1})$ is small.

2.2. Example . Let $A$ be an infinite set and $E$ an equivalence relation on
$A$ with infinitely many two element classes. Let $\pi$ : $Aarrow A/E$ be a projection
and $F=\{\pi(a) : a\in A\}$ . Let $D=(A\cup F, E, \pi)$ . It is clear that $\mathrm{d}\mathrm{c}1(F)=F$.
Take any model $(D_{1}, F_{1})$ of $\tau*$ and let $\kappa=|D_{1}|$ . Then it can be seen that
$\mathrm{A}\mathrm{u}\mathrm{t}(\mathrm{a}\mathrm{c}1(F1)/F_{1})$ is isomorphic to $(\mathrm{Z}/2\mathrm{Z})^{\kappa}$ . Hence Th$(D, F)$ is not small.

2.3. Lemma . Let $\tau*$ be a theory with the DIP. Let $(D_{1}, F_{1})$ and $(D_{2}, F_{2})$

be models of $\tau*$ . $S\mathrm{u}$ppose that $A\subset \mathrm{a}\mathrm{c}1(F_{1})$ is finitely generated and normal
over $F_{1}$ . Then there is a $B\subset \mathrm{a}\mathrm{c}1(F_{2})$ which is finitely generated and normal
over $F_{2}$ such that $\mathrm{A}\mathrm{u}\mathrm{t}(A/F_{1})\cong \mathrm{A}\mathrm{u}\mathrm{t}(B/F_{2})$ .
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Proof. Since $A$ is finitely generated over $F_{1}$ , there is a tuple $\overline{a}$ with $A=$

$\mathrm{d}\mathrm{c}1(\overline{a}F1)$ . Let $\{\overline{a}_{1}, \ldots,\overline{a}_{n}\}$ be a set of all conjugates of $\overline{a}$ over $F_{1}$ . Note that $\overline{a}_{i}’ \mathrm{s}$

are inter-definable over $F_{1}$ , since $A$ is normal over $F_{1}$ . Take an irreducible
formula $\phi(\overline{x}_{1\cdots n}\overline{X}\overline{c})\in \mathrm{t}\mathrm{p}(\overline{a}_{1}\ldots\overline{a}_{n}/F_{1})$ . Let $\phi(\overline{x}_{1\cdots n}\overline{X}\overline{c})$ have $m$ realizations.
By the DIP we can get an $L^{*}$-formula $\theta_{\phi}^{m}(\overline{y})$ . For each $g\in \mathrm{A}\mathrm{u}\mathrm{t}(\mathrm{a}\mathrm{c}1(F1)/F_{1})$

define $\sigma_{g}\in S_{n}$ by

$\sigma_{g}(i)=j\Leftrightarrow g(\overline{a}_{i})=\overline{a}_{j}(^{\forall_{i}}, j\leq n)$

Let $X=\{\sigma_{g}\in S_{n} : g\in \mathrm{A}\mathrm{u}\mathrm{t}(A/F_{1})\}$ . Clearly $X\cong \mathrm{A}\mathrm{u}\mathrm{t}(A/F_{1})$ . Set a
formula $\Sigma(\overline{y})$ by

1. $\theta_{\phi}^{m}(\overline{y})\wedge P(\overline{y})$ and

2. $\wedge\sigma\in x\forall\overline{x}_{1}\ldots\forall\overline{x}n[\phi(\overline{x}1\cdots\overline{X}n\overline{y})arrow\phi(\overline{X}_{\sigma(1)}\ldots\overline{X}_{\sigma}(n)\overline{y})]$ .

Then $\Sigma(\overline{y})$ is consistent since it is realized by $\overline{c}$ . So we can pick a realization
$\overline{d}$ of $\Sigma(\overline{y})$ in $(D_{2}, F_{2})$ . By 1, $\phi(\overline{x}_{1\cdots n}\overline{x}\overline{d})$ is an $F_{2}$-irreducible formula with
$m$ realizations. Take a $\mathrm{r}\mathrm{e}\mathrm{a}\mathrm{l}\mathrm{i}_{\mathrm{Z}}\mathrm{a}\mathrm{t}\mathrm{i}_{0}\mathrm{n}\overline{b}_{1}\ldots\overline{b}n$ of $\phi(\overline{x}_{1\cdots n}\overline{x}\overline{d})$ . Let $B=\mathrm{d}\mathrm{c}1(\overline{b}_{1}F_{2})$ .
Clearly $B$ is finitely generated over $F_{2}$ . Since $\phi(\overline{x}_{1\cdots n}\overline{x}\overline{d})$ is $F_{2}$-irreducible,

$\overline{b}_{i}’ \mathrm{s}$ are inter-definable over $F_{2}$ , and so $B$ is normal over $F_{2}$ . By 2 we have
$X=\mathrm{A}\sim \mathrm{t}\mathrm{u}(B/F_{2})$ . Hence $\mathrm{A}\mathrm{u}\mathrm{t}(A/F_{1})\cong \mathrm{A}\mathrm{u}\mathrm{t}(B/F_{2})$ .

2.4. Lemma If $\tau*$ is a small theory with the $DIP_{J}$ then Aut $(\mathrm{a}\mathrm{c}1(F1)/F_{1})$

is small for every model $(D_{1}, F_{1})$ of $\tau*$ .

Proof. Assume otherwise. Then there is a model $(D_{1}, F_{1})$ of $\tau*$ such that
$\mathrm{A}\mathrm{u}\mathrm{t}(\mathrm{a}\mathrm{c}1(F1)/F_{1})$ is not small. So, for some $n<\omega$ there are infinitely many
$A_{i}’ \mathrm{s}$ such that $|\mathrm{A}\mathrm{u}\mathrm{t}(A_{i}/F_{1})|\leq n$ . On the other hand, by our assumption, we
can take a model $(D_{2}, F_{2})$ of $\tau*$ such that Aut $(\mathrm{a}\mathrm{c}1(F2)/F_{2})$ is small. However,
using 2.3 we get infinitely many $B_{i}’ \mathrm{s}$ such that $|\mathrm{A}\mathrm{u}\mathrm{t}(Bi/F_{2})|\leq n$ . This
contradicts the smallness of $\mathrm{A}\mathrm{u}\mathrm{t}(\mathrm{a}\mathrm{c}1(F2)/F_{2})$ .

2.5. Remark . In [2] and [3], Hrushovski has defined $\tau*$ to be bounded if
$\mathrm{A}\mathrm{u}\mathrm{t}(8\mathrm{C}1(F1)/F_{1})$ is small for every model $(D_{1}, F_{1})$ of $\tau*$ (under the stronger
assumption than ours). So 2.4 states that every small theory with the DIP
is bounded. On the other hand there is a small, unbounded theory (and
therefore it does not have the DIP): Let $A$ be a countable set and $E$ an
equivalence relation on $A$ with infinitely many two element classes. Let
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$\{U_{i}\}_{i<}\mathcal{O}$ be an enumeration of all classes of $E$ . For each $i<j<\omega$ , let
$f_{ij}$ : $U_{i}arrow U_{j}$ be a bijection. Let $\pi$ : $Aarrow A/E$ be a projection and
$F=\{\pi(a) : a\in A\}$ . Set $D=(A\cup F,$ $E,$ $\pi,$ $\{U_{i}\}_{i<\omega},$ $\{f_{ij}\}_{i}<j<(v)$ . Then,
for each model $(D_{1}, F_{1})$ of Th$(D, F)$ we have

$\mathrm{A}\mathrm{u}\mathrm{t}(\mathrm{a}\mathrm{c}1(F1)/F_{1})\cong(\mathrm{Z}/2\mathrm{Z})^{\kappa+1}$ ,

where $\kappa=|F_{1}-F|$ . So $\mathrm{A}\mathrm{u}\mathrm{t}(\mathrm{a}\mathrm{c}1(F1)/F_{1})$ is small if $\kappa$ is finite. Otherwise it
is not small.

3. Theorem and Corollary

In this section, we prove that a small theory with the DIP satisfies the
condition $(^{*})$ in the introduction. As a corollary we give a characterization
of a perfect field with a small absolute Galois group.

3.1. Theorem . Let $D$ be an inffiite struct $\mathrm{u}re$ and $F$ a deffiably closed
subset of D. Suppose that Th$(D, F)$ is a small theory with the deffia$ble$

irreducibility property. Then $\mathrm{A}\mathrm{u}\mathrm{t}(\mathrm{a}\mathrm{c}1(F1)/F_{1})\cong \mathrm{A}\mathrm{u}\mathrm{t}(\mathrm{a}\mathrm{C}1(F)/F)$ for every
model $(D_{1}, F_{1})$ of Th$(D, F)$ .

Proof. Take any models $(D_{1}, F_{1})$ and $(D_{2}, F_{2})$ of Th$(D, F)$ . Let $G=$
$\mathrm{A}\mathrm{u}\mathrm{t}(\mathrm{a}\mathrm{c}1(F1)/F_{1})$ and $H=\mathrm{A}\mathrm{u}\mathrm{t}(\mathrm{a}\mathrm{c}1(F2)/F_{2})$ . We will show that $G\cong H$ . Let
$A,$ $B$ be families of all subsets which are finitely generated and normal over
$F_{1},$ $F_{2}$ respectively. For each $n<\omega$ let

$A_{n}=\mathrm{d}\mathrm{C}1(\cup\{A\in A:|\mathrm{A}\mathrm{u}\mathrm{t}(A/F_{1})|\leq n\})$ ;

$B_{n}=\mathrm{d}\mathrm{c}1(\cup\{B\in B:|\mathrm{A}\mathrm{u}\mathrm{t}(B/F_{2})|\leq n\})$ ;

$G_{n}=\mathrm{A}\mathrm{u}\mathrm{t}(A_{n}/F_{1});H_{n}=\mathrm{A}\mathrm{u}\mathrm{t}(B_{n}/F_{2})$ .

By 2.4, $G$ and $H$ are small. So, for each $n<\omega,$ $A_{n}$ and $B_{n}$ are finitely
generated and hence $G_{n}$ and $H_{n}$ are finite groups.

First we see that $G_{n}\cong H_{n}$ for each $n<\omega$ . Fix any $n<\omega$ . By 2.3 we can
take an element $B\in B$ such that $\mathrm{A}\mathrm{u}\mathrm{t}(B/F_{2})\cong G_{n}$ . Then we have $B\subset B_{n}$ .
Hence there is a homomorphism of $G_{n}$ onto $H_{n}$ . By the similar argument, we
obtain a homomorphism of $H_{n}$ onto $G_{n}$ . Hence $G_{n}$ and $H_{n}$ are isomorphic.

Next find isomorphisms $\Phi_{n}$ : $C\tau_{n}arrow H_{n}(n<\omega)$ satisfying
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$n<m<\omega\Rightarrow\pi_{mn}^{H}\circ\Phi_{m}=\Phi n\circ\pi^{G}mn$
’

where $\pi_{mn}^{G}$ : $C_{\tau_{m}}arrow G_{n}$ and $\pi_{mn}^{H}$ : $H_{m}arrow H_{n}$ are canonical projections. In
fact we can get such isomorphisms, since the number of isomorphisms of $G_{n}$

with $H_{n}$ is at most finite. Using the sequence $(\Phi_{n})_{n<\omega}$ , we can define an
isomorphism of $G$ with $H$ in a natural way.
3.2. Remarks (i) The theory of the example in 2.5 is small, but does
not satisfy the condition $(^{*})$ . This shows that the DIP is necessary for the
above theorem.
(ii) Let $\{U_{i}\}_{i<\omega}$ be a disjoint family of two element sets, and let $A= \bigcup_{i<\{v}Ui$ .
Let $F$ be an arbitrary set which is distinct from $A$ . Put $D=(A\cup F, \{U_{i}\}_{i<\omega})$ .
Then it is clear that Th$(D, F)$ has the DIP. For each model $(D_{1}, F_{1})$ of
Th$(D, F)$ , we have $\mathrm{A}\mathrm{u}\mathrm{t}(\mathrm{a}\mathrm{c}1(F1)/F_{1})\cong(\mathrm{Z}/2\mathrm{Z})^{\omega}$ . Hence Th$(D, F)$ satisfies
the condition $(^{*})$ , but is not small.

3.3. Corollary . Let $F$ be a perfect Field. Then the following are $e\mathrm{q}$uiva-
lent:
(i) The absolu $t\mathrm{e}$ Galois group of $F$ is small;
(ii) If $F_{1}$ is elementarily equivalent to $F$ , then the absolute Galois $\mathrm{g}\mathrm{r}o$ up of

$F_{1}$ is isomorphic to that of $F$ .

Proof. Let $D$ be the algebraic closure of $F$ . Let $\tau*=\mathrm{T}\mathrm{h}(D, F)$ . By 1.3
$\tau*$ has the DIP. Note that if a field $F_{1}$ is elementarily equivalent to $F$ then
there is a structure $D_{1}$ such that $(D_{1}, F_{1})$ is a model of Th$(D, F)$ . So, by 3.1
we obtain the implication $(\mathrm{i})arrow(\mathrm{i}\mathrm{i})$ . We must show $(\ddot{\mathrm{u}})arrow(\mathrm{i})$ . Suppose that
$\mathrm{A}\mathrm{u}\mathrm{t}(D/F)$ is not small. Then, for some $n<\omega$ there is an infinite set $\{A_{i}\}_{i<\kappa}$

of the finitely generated normal extensions of $F$ such that $|\mathrm{A}\mathrm{u}\mathrm{t}(A_{i}/F)|=n$

for each $i<\kappa$ . For each $i<_{-}\kappa$ let $d_{i}$ be a primitive element such that
$A_{i}=\mathrm{d}\mathrm{c}1(d_{i}F)$ . Let $p(x,\overline{y})$ be a general polynomial of degree $n$ . Then there
is a set $\{\overline{a}_{i}\}_{i<\kappa}$ of $n$-tuples from $F$ such that $d_{i}$ is a solution of $p(x,\overline{a}_{i})$ for
each $i<\kappa$ . Take any $\lambda>\kappa$ . By compactness there are a model $(D_{1}, F_{1})$ of
$\tau*$ , a set $\{\overline{b}_{i}\}_{i<\lambda}$ of $n$-tuples from $F_{1}$ and a set $\{e_{i}\}_{i<\lambda}$ of elements of $D_{1}$ with
the following property:

1. $p(x, \overline{b}_{i})$ is an $F_{1}$-irreducible polynomial with a solution $e_{i_{7}}$ for each $i<\lambda,\cdot$
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2. The solutions of $p(x, \overline{b}_{i})$ are inter-definable over $F_{1}$ , for each $i<\lambda$ ;

3. $\mathrm{d}\mathrm{c}1(e_{i}F1)\neq \mathrm{d}\mathrm{c}1(e_{j}F_{1})$ , for each $i,$ $j<\lambda$ with $i\neq j$ .

For each $i<\lambda$ let $B_{i}=\mathrm{d}\mathrm{c}1(e_{i}F1)$ . By 1, 2 and 3, $\{B_{i}\}_{i<\lambda}$ is the
family of the distinct finitely generated normal extensions of $F_{1}$ such that
$|\mathrm{A}\mathrm{u}\mathrm{t}(Bi/F_{1})|=n$ for each $i<\lambda$ . Hence the $\mathrm{a}\mathrm{b}\sim$solute Galois group of $F_{1}$ is
not isomorphic to that of $F$ . This completes the proof of the corollary.
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