On theories having a small Galois group

筑波大学 数学系 池田宏一郎 (Ikeda Koichiro)*

Abstract

Let L be a first order language. Let D be an infinite L-structure and F a definably closed subset of D. Then Th(D, F) is called small if it has a model (D_1, F_1) such that $\text{Aut}(\text{acl}(F_1)/F_1)$ is small. In this note, we prove the following:

Theorem: Suppose that $\operatorname{Th}(D, F)$ is a small theory with the definable irreducibility property. Then $\operatorname{Aut}(\operatorname{acl}(F)/F) \cong \operatorname{Aut}(\operatorname{acl}(F_1)/F_1)$ for every model (D_1, F_1) of $\operatorname{Th}(D, F)$.

As a corollary we show the following:

Corollary: Let F be a perfect field. Then the absolute Galois group of F is small if and only if the absolute Galois group of F_1 is isomorphic to that of F for any F_1 elementarily equivalent to F.

0. Introduction

Let L be a first order language. Let D be an infinite L-structure and F a definably closed subset of D. By $\operatorname{Aut}(\operatorname{acl}(F)/F)$ we mean a set of permutations of $\operatorname{acl}(F)$ induced by elementary maps which fix F pointwise.

Let us observe the case where F is a pseudo-finite field (see, e.g., [1]) and D is an algebraically closed extension of F. It is seen that F is a perfect field, and so it is definably closed. Then $\operatorname{Aut}(\operatorname{acl}(F)/F)$ coincides with the absolute Galois group of F. It is also known that the absolute Galois group is isomorphic to the profinite completion of the group of integers \mathbb{Z} . In this case, $\operatorname{Th}(D, F)$ satisfies the following condition:

*Supported by JSPS Research Fellowships for Young Scientists

(*) $\operatorname{Aut}(\operatorname{acl}(F)/F) \cong \operatorname{Aut}(\operatorname{acl}(F_1)/F_1)$ for every model (D_1, F_1) of $\operatorname{Th}(D, F)$.

In this note we want to give a criterion for Th(D, F) to satisfy (*). To state our results, we need some preparations.

In case D is an algebraically closed field we can consider $\operatorname{Aut}(\operatorname{acl}(F)/F)$ as a profinite group. In a general context we can do as well: Let A be a definably closed subset of D such that $F \subset A \subset \operatorname{acl}(F)$. Then we say that A is normal over F if it is invariant under $\operatorname{Aut}(\operatorname{acl}(F)/F)$. And we say that A is finitely generated over F if $A = \operatorname{dcl}(\bar{a}F)$ for some $\bar{a} \in \operatorname{acl}(F)$. Let Abe a family of the subsets of $\operatorname{acl}(F)$ which are finitely generated and normal over F. In the obvious way, $\operatorname{Aut}(\operatorname{acl}(F)/F)$ can be identified with a profinite group:

$$\operatorname{Aut}(\operatorname{acl}(F)/F) \cong \operatorname{projlim}_{A \in \mathcal{A}} \operatorname{Aut}(A/F)$$

Through this isomorphism, the Krull topology is induced on $\operatorname{Aut}(\operatorname{acl}(F)/F)$. A profinite group G is said to be *small* if for any finite groups H there are only finitely many continuous homomorphisms of G into H (see [1, p.185]). In particular the profinite completion of \mathbb{Z} is small.

Here we define $\operatorname{Th}(D, F)$ to be *small* if it has a model (D_1, F_1) such that $\operatorname{Aut}(\operatorname{acl}(F_1)/F_1)$ is small. (Our definition is related to that of Hrushovski. See Remark 2.5). Does $\operatorname{Th}(D, F)$ satisfy the condition (*) if it is small? The answer is No. In general $\operatorname{Th}(D, F)$ does not necessarily satisfy (*), even if it has a model (D_1, F_1) such that $\operatorname{Aut}(\operatorname{acl}(F_1)/F_1)$ is finite. We introduce some property on $\operatorname{Th}(D, F)$, the definable irreducibility property, and prove that a small theory with the definable irreducibility property satisfies the condition (*) (Theorem 3.1). As a corollary we give a characterization of a perfect field with a small absolute Galois group (Corollary 3.3).

Notation. We only assume basic knowledge of model theory. For the rest of the paper we fix an infinite L-structure D and a definably closed subset F of D. The type of a over A is denoted by tp(a/A). We say that p is an algebraic type if it has a finite number of realizations. An element a is algebraic over A if the type tp(a/A) is an algebraic type. The set of all algebraic elements over A is denoted by acl(A). If a is the unique realization of tp(a/A) then we say that a is definable over A. The set of all definable elements over A is denoted by dcl(A). For any $A \subset B$, Aut(B/A) means the set of permutations of B induced by elementary maps which fix A pointwise.

Let $\operatorname{Th}(D, F)$ be a theory in a language $L \cup \{P\}$, where P is a new unary predicate whose interpretation in (D, F) is F. $L \cup \{P\}$ is denoted by L^* and $\operatorname{Th}(D, F)$ by T^* .

1. The Definable Irreducibility Property

1.1. Definition . (i) Let A be a set. Then we say that $\phi(\bar{x}\bar{a}) \in L(A)$ is A-irreducible if it is algebraic and isolated over A.

(ii) Let (D_1, F_1) be a model of T^* and $\phi(\bar{x}\bar{a})$ an F_1 -irreducible formula with exactly *n* realizations. Then we say that $\phi(\bar{x}\bar{a})$ has the definable irreducibility property (DIP) if there is an L^* -formula $\theta(\bar{y})$ such that for any model (D_2, F_2) of T^* and any realization \bar{b} of θ in F_2 , $\phi(\bar{x}\bar{b})$ is an F_2 -irreducible formula with *n* realizations. We denote such a $\theta(\bar{y})$ by $\theta_{\phi}^n(\bar{y})$.

(iii) We say that T^* has the DIP if any F_1 -irreducible formula has the DIP for any model (D_1, F_1) of T^* .

1.2 Example. Let A be a countable set and E an equivalence relation on A with infinitely many four element classes. Let $\{A_n : n < \omega\}$ be an enumeration of the classes of E. For each $n < \omega$, let U_n and V_n be subsets of A such that $A_n = U_n \cup V_n$ and $|U_n| = |V_n| = 2$. Let $\pi : A \to A/E$ be a projection and $F = \{\pi(a) : a \in A\}$. Let $D = (A \cup F, E, \pi, \{U_n\}_{n < \omega}, \{V_n\}_{n < \omega})$. Clearly dcl(F) = F. Then $T^* = \text{Th}(D, F)$ does not have the DIP: Let $\phi(xy) = ``\pi(x) = y$ ''. For every $b \in F$, $\phi(xb)$ is not F-irreducible. On the other hand, for a saturated model (D_1, F_1) of T^* , we can take an element $c \in F_1$ such that $\phi(xc)$ is F_1 -irreducible. Then $\phi(xc)$ does not have the DIP.

1.3. Lemma . If D is an algebraically closed field, then T^* has the DIP.

Proof. Take any model (D_1, F_1) of T^* . Note that F_1 is a perfect field since it is definably closed. And take an F_1 -irreducible formula $\phi(\bar{x}\bar{a})$. Let $\phi(\bar{x}\bar{a})$ have *n* realizations. Pick a realization \bar{e} of $\phi(\bar{x}\bar{a})$. By the primitive element theorem we can get an element *d* such that $dcl(dF_1) = dcl(\bar{e}F_1)$. Take an F_1 -irreducible formula $\psi(x\bar{b}) \in tp(d/F_1)$. Let $\psi(x\bar{b})$ have exactly *m* realizations.

First we show that $\psi(xb)$ has the DIP. By elimination of quantifiers, $\psi(x\bar{b})$ may be identified with a polynomial equation " $p(x, \bar{b}) = 0$ " of degree m. Let

X be the set of the general polynomials of degree < m. Then we can define $\theta_{\psi}^{m}(\bar{z})$ by

$$igwedge_{1,p_2\in X}
eg \exists ar{z}_1,ar{z}_2\in Porall x[p(x,ar{z})=p_1(x,ar{z}_1)p_2(x,ar{z}_2)]$$

Hence $\psi(x\bar{b})$ has the DIP.

We must show that $\phi(x\bar{a})$ has the DIP. Now \bar{e} and d are inter-definable over F_1 , and so we can take an L^* -formula $\alpha(\bar{x}x)$ which satisfies

1. $(D_1, F_1) \models \alpha(\bar{e}d);$

p

2. For any model (D_2, F_2) of T^* , $(D_2, F_2) \models \alpha(\overline{e'd'})$ implies $dcl(\overline{e'F_2}) = dcl(d'F_2)$.

Then set $\theta(\bar{y})$ by

$$\exists^{=n} \bar{x} \phi(\bar{x}\bar{y}) \land \exists \bar{z} \in P \forall \bar{x} [\phi(\bar{x}\bar{y}) \land \theta^m_{\psi}(\bar{z}) \to \exists x(\psi(x\bar{z}) \land \alpha(\bar{x}x))].$$

The formula $\theta(\bar{y})$ is consistent since it is realized by \bar{a} . It is easily seen that $\theta(\bar{y}) = \theta_{\phi}^{n}(\bar{y})$. Hence $\phi(x\bar{a})$ has the DIP. This completes the proof of the lemma.

2. Theories with a Small Galois Group

2.1. Definition. We say that T^* has a *small Galois group* (or for short, T^* is small) if it has a model (D_1, F_1) such that $\operatorname{Aut}(\operatorname{acl}(F_1)/F_1)$ is small.

2.2. Example . Let A be an infinite set and E an equivalence relation on A with infinitely many two element classes. Let $\pi : A \to A/E$ be a projection and $F = \{\pi(a) : a \in A\}$. Let $D = (A \cup F, E, \pi)$. It is clear that dcl(F) = F. Take any model (D_1, F_1) of T^* and let $\kappa = |D_1|$. Then it can be seen that $Aut(acl(F_1)/F_1)$ is isomorphic to $(\mathbb{Z}/2\mathbb{Z})^{\kappa}$. Hence Th(D, F) is not small.

2.3. Lemma . Let T^* be a theory with the DIP. Let (D_1, F_1) and (D_2, F_2) be models of T^* . Suppose that $A \subset \operatorname{acl}(F_1)$ is finitely generated and normal over F_1 . Then there is a $B \subset \operatorname{acl}(F_2)$ which is finitely generated and normal over F_2 such that $\operatorname{Aut}(A/F_1) \cong \operatorname{Aut}(B/F_2)$.

Proof. Since A is finitely generated over F_1 , there is a tuple \bar{a} with $A = \operatorname{dcl}(\bar{a}F_1)$. Let $\{\bar{a}_1, ..., \bar{a}_n\}$ be a set of all conjugates of \bar{a} over F_1 . Note that \bar{a}_i 's are inter-definable over F_1 , since A is normal over F_1 . Take an irreducible formula $\phi(\bar{x}_1...\bar{x}_n\bar{c}) \in \operatorname{tp}(\bar{a}_1...\bar{a}_n/F_1)$. Let $\phi(\bar{x}_1...\bar{x}_n\bar{c})$ have m realizations. By the DIP we can get an L^* -formula $\theta_{\phi}^m(\bar{y})$. For each $g \in \operatorname{Aut}(\operatorname{acl}(F_1)/F_1)$ define $\sigma_g \in S_n$ by

$$\sigma_g(i) = j \Leftrightarrow g(\bar{a}_i) = \bar{a}_j ({}^{\forall}i, j \leq n)$$

Let $X = \{\sigma_g \in S_n : g \in Aut(A/F_1)\}$. Clearly $X \cong Aut(A/F_1)$. Set a formula $\Sigma(\bar{y})$ by

- 1. $\theta^m_{\phi}(\bar{y}) \wedge P(\bar{y})$ and
- 2. $\bigwedge_{\sigma \in X} \forall \bar{x}_1 \dots \forall \bar{x}_n [\phi(\bar{x}_1 \dots \bar{x}_n \bar{y}) \to \phi(\bar{x}_{\sigma(1)} \dots \bar{x}_{\sigma(n)} \bar{y})].$

Then $\Sigma(\bar{y})$ is consistent since it is realized by \bar{c} . So we can pick a realization \bar{d} of $\Sigma(\bar{y})$ in (D_2, F_2) . By 1, $\phi(\bar{x}_1...\bar{x}_n\bar{d})$ is an F_2 -irreducible formula with m realizations. Take a realization $\bar{b}_1...\bar{b}_n$ of $\phi(\bar{x}_1...\bar{x}_n\bar{d})$. Let $B = \operatorname{dcl}(\bar{b}_1F_2)$. Clearly B is finitely generated over F_2 . Since $\phi(\bar{x}_1...\bar{x}_n\bar{d})$ is F_2 -irreducible, \bar{b}_i 's are inter-definable over F_2 , and so B is normal over F_2 . By 2 we have $X \cong \operatorname{Aut}(B/F_2)$. Hence $\operatorname{Aut}(A/F_1) \cong \operatorname{Aut}(B/F_2)$.

2.4. Lemma . If T^* is a small theory with the DIP, then $Aut(acl(F_1)/F_1)$ is small for every model (D_1, F_1) of T^* .

Proof. Assume otherwise. Then there is a model (D_1, F_1) of T^* such that $\operatorname{Aut}(\operatorname{acl}(F_1)/F_1)$ is not small. So, for some $n < \omega$ there are infinitely many A_i 's such that $|\operatorname{Aut}(A_i/F_1)| \leq n$. On the other hand, by our assumption, we can take a model (D_2, F_2) of T^* such that $\operatorname{Aut}(\operatorname{acl}(F_2)/F_2)$ is small. However, using 2.3 we get infinitely many B_i 's such that $|\operatorname{Aut}(B_i/F_2)| \leq n$. This contradicts the smallness of $\operatorname{Aut}(\operatorname{acl}(F_2)/F_2)$.

2.5. Remark . In [2] and [3], Hrushovski has defined T^* to be *bounded* if Aut(acl(F_1)/ F_1) is small for every model (D_1, F_1) of T^* (under the stronger assumption than ours). So 2.4 states that every small theory with the DIP is bounded. On the other hand there is a small, unbounded theory (and therefore it does not have the DIP): Let A be a countable set and E an equivalence relation on A with infinitely many two element classes. Let

 $\{U_i\}_{i<\omega}$ be an enumeration of all classes of E. For each $i < j < \omega$, let $f_{ij} : U_i \to U_j$ be a bijection. Let $\pi : A \to A/E$ be a projection and $F = \{\pi(a) : a \in A\}$. Set $D = (A \cup F, E, \pi, \{U_i\}_{i<\omega}, \{f_{ij}\}_{i<j<\omega})$. Then, for each model (D_1, F_1) of Th(D, F) we have

$$\operatorname{Aut}(\operatorname{acl}(F_1)/F_1) \cong (\mathbb{Z}/2\mathbb{Z})^{\kappa+1},$$

where $\kappa = |F_1 - F|$. So Aut $(\operatorname{acl}(F_1)/F_1)$ is small if κ is finite. Otherwise it is not small.

3. Theorem and Corollary

In this section, we prove that a small theory with the DIP satisfies the condition (*) in the introduction. As a corollary we give a characterization of a perfect field with a small absolute Galois group.

3.1. Theorem . Let D be an infinite structure and F a definably closed subset of D. Suppose that $\operatorname{Th}(D, F)$ is a small theory with the definable irreducibility property. Then $\operatorname{Aut}(\operatorname{acl}(F_1)/F_1) \cong \operatorname{Aut}(\operatorname{acl}(F)/F)$ for every model (D_1, F_1) of $\operatorname{Th}(D, F)$.

Proof. Take any models (D_1, F_1) and (D_2, F_2) of Th(D, F). Let $G = \text{Aut}(\operatorname{acl}(F_1)/F_1)$ and $H = \operatorname{Aut}(\operatorname{acl}(F_2)/F_2)$. We will show that $G \cong H$. Let \mathcal{A}, \mathcal{B} be families of all subsets which are finitely generated and normal over F_1, F_2 respectively. For each $n < \omega$ let

$$A_{n} = \operatorname{dcl}(\bigcup \{A \in \mathcal{A} : |\operatorname{Aut}(A/F_{1})| \leq n\});$$

$$B_{n} = \operatorname{dcl}(\bigcup \{B \in \mathcal{B} : |\operatorname{Aut}(B/F_{2})| \leq n\});$$

$$G_{n} = \operatorname{Aut}(A_{n}/F_{1}); H_{n} = \operatorname{Aut}(B_{n}/F_{2}).$$

By 2.4, G and H are small. So, for each $n < \omega$, A_n and B_n are finitely generated and hence G_n and H_n are finite groups.

First we see that $G_n \cong H_n$ for each $n < \omega$. Fix any $n < \omega$. By 2.3 we can take an element $B \in \mathcal{B}$ such that $\operatorname{Aut}(B/F_2) \cong G_n$. Then we have $B \subset B_n$. Hence there is a homomorphism of G_n onto H_n . By the similar argument, we obtain a homomorphism of H_n onto G_n . Hence G_n and H_n are isomorphic.

Next find isomorphisms $\Phi_n : G_n \to H_n$ $(n < \omega)$ satisfying

$$n < m < \omega \Rightarrow \pi_{mn}^H \circ \Phi_m = \Phi_n \circ \pi_{mn}^G,$$

where $\pi_{mn}^G: G_m \to G_n$ and $\pi_{mn}^H: H_m \to H_n$ are canonical projections. In fact we can get such isomorphisms, since the number of isomorphisms of G_n with H_n is at most finite. Using the sequence $(\Phi_n)_{n < \omega}$, we can define an isomorphism of G with H in a natural way.

3.2. Remarks . (i) The theory of the example in 2.5 is small, but does not satisfy the condition (*). This shows that the DIP is necessary for the above theorem.

(ii) Let $\{U_i\}_{i < \omega}$ be a disjoint family of two element sets, and let $A = \bigcup_{i < \omega} U_i$. Let F be an arbitrary set which is distinct from A. Put $D = (A \cup F, \{U_i\}_{i < \omega})$. Then it is clear that $\operatorname{Th}(D, F)$ has the DIP. For each model (D_1, F_1) of $\operatorname{Th}(D, F)$, we have $\operatorname{Aut}(\operatorname{acl}(F_1)/F_1) \cong (\mathbb{Z}/2\mathbb{Z})^{\omega}$. Hence $\operatorname{Th}(D, F)$ satisfies the condition (*), but is not small.

3.3. Corollary . Let F be a perfect field. Then the following are equivalent:

(i) The absolute Galois group of F is small;

(ii) If F_1 is elementarily equivalent to F, then the absolute Galois group of F_1 is isomorphic to that of F.

Proof . Let D be the algebraic closure of F. Let $T^* = \text{Th}(D, F)$. By 1.3 T^* has the DIP. Note that if a field F_1 is elementarily equivalent to F then there is a structure D_1 such that (D_1, F_1) is a model of Th(D, F). So, by 3.1 we obtain the implication (i) \rightarrow (ii). We must show (ii) \rightarrow (i). Suppose that Aut(D/F) is not small. Then, for some $n < \omega$ there is an infinite set $\{A_i\}_{i < \kappa}$ of the finitely generated normal extensions of F such that $|\text{Aut}(A_i/F)| = n$ for each $i < \kappa$. For each $i < \kappa$ let d_i be a primitive element such that $A_i = \text{dcl}(d_i F)$. Let $p(x, \bar{y})$ be a general polynomial of degree n. Then there is a set $\{\bar{a}_i\}_{i < \kappa}$ of n-tuples from F such that d_i is a solution of $p(x, \bar{a}_i)$ for each $i < \kappa$. Take any $\lambda > \kappa$. By compactness there are a model (D_1, F_1) of T^* , a set $\{\bar{b}_i\}_{i < \lambda}$ of n-tuples from F_1 and a set $\{e_i\}_{i < \lambda}$ of elements of D_1 with the following property:

1. $p(x, b_i)$ is an F_1 -irreducible polynomial with a solution e_i , for each $i < \lambda$;

- 2. The solutions of $p(x, \bar{b}_i)$ are inter-definable over F_1 , for each $i < \lambda$;
- 3. $\operatorname{dcl}(e_iF_1) \neq \operatorname{dcl}(e_jF_1)$, for each $i, j < \lambda$ with $i \neq j$.

For each $i < \lambda$ let $B_i = dcl(e_iF_1)$. By 1, 2 and 3, $\{B_i\}_{i < \lambda}$ is the family of the distinct finitely generated normal extensions of F_1 such that $|Aut(B_i/F_1)| = n$ for each $i < \lambda$. Hence the absolute Galois group of F_1 is not isomorphic to that of F. This completes the proof of the corollary.

Reference

[1] M. Fried and M. Jarden, *Field Arithmetic*, Springer Verlag, Heidelberg, 1986.

[2] E. Hrushovski, Pseudo-finite Field and Related Structures, preprint
[3] E. Hrushovski and A. Pillay, Groups Definable in Local Fields and Pseudo-finite Fields, Israel Journal of Mathematics, vol 85 (1994), 203-262.

Institute of Mathematics University of Tsukuba Tsukuba, Ibaraki 305 JAPAN E-mail: ikeda@sakura.cc.tsukuba.ac.jp