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Abstract

We study the theory of the holonomic deformation for the linear
differential equation of the A3 type and show that the holonomic defor-
mation of the equation is represented by the Hamiltonian system with
the polynomial Hamiltonian. We also give the particular solutions of
the polynomial Hamiltonian system.

0 Introduction.

In this paper, we consider following linear differential equation with irregu-
lar singular point, z = oo and three non logarithmic singular points, z =

/\17 /\27 /\37
d’y dy |
(0.1) 7a? +P1(~’0)3;+P2(-T)y =0,
defined on the Riemann scheme P!, such that
pi(e) = =20t = Yjsjai — S-S,
(0.2) () (k) T

p2(z) = —(2a + 1)2° —22Hm3'1+z al

) ® =M

We suppose that 2a + 1 is not an integer through out this paper, This
equation has an irregularity at = co of the Poincaré rank 5, and three reg-
ular regular points £ = Ax (k = 1,2,3). We make the following assumption:
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(A) None of z = A\ (k = 1,2,3) is logarithmic singularity.
The aim of this paper is to study the holonomic deformation of (0.1)-(0.2)
under the assumption (A). The main results of this paper are as follows :

Main theorem. Under the assumption (A), the holonomic deforma-
tion of the equation (0.4) is governed by the completely integrable Hamiltonian
system of partial differential equations :

N _ OH;
ds; 0 .
' 63, v

The linear equation (0.1)~(0.2) is a particular case of an equation of the
form (0.1), such that

g ] g
) pr(e) = —20H — 3" jt i > 1
(0.3) =1 Sl
pa(z) = —(2a+ 1)a% =23 Hyao~ + 3" —H*
5=1 e iRy
with the following Riemann scheme:
T = A .' T =00 ‘
©9 | o "0 00 0 -0 a+i | (kB=L-9)
2 L0 bty o b —a+— '

Here the symbol in.(0.4) means that, at the irregular point.z = oo, the:
equation (0.1)~(0.2) admits a system of forma,l solutions of the form

20:
- n
yl —.’L' Zhlnx ’

¢ n>0 : ‘ '
(0-5) 2a-1 3 :
Y= 2 exp{——w + ZS z' + 133 93} Z hynz™™.

n>0

Note that the Poincaré rank at z = 0o of the linear equation (0.1)-(0.3)
is g+2. The principal parts of the formal solutions are given by the primitive



function of the polynomial representing the versal deformation of the simple
singularity of the A, type, so we call the linear equation (0.1)-(0.3) as the
equation of A type.

When considering the holonomlc deformatlon of equation of the A; type,
we obtain the Hamiltonian structure '

(Alﬂul’Hl)tl)'

which determines the Hamiltonian system, equivalent to the second Painlevé
equation, see [1].

When ¢ = 2, it is known [2] that the holonomic deformation is governed
by the Han’ultoman system with respect to the canonical variables:

(A1s Agy p1, g, Hy,y Ha, 1y, 15).
On the other hand, in the case g > 3, the quantities H = (Hy,-- -, H,) and

t = (t1,--+,t,) do not compose the Hamiltonian structure. In fact, even in

the case g = 3, we have to determine the variables s = (s3,3,,53) such that
3,

(0.6) s1 =1+ 1 83 =13, s3 = t3,

and then obtain the Hamiltonian structure

()\1, A2, Az, fi1, pi2, pi3, Ha, Hy, H3, 84, 83, 33)-

We are studying in the present paper the holonomic deformation of equa-

tion of the A3 type. As to the case of g > 4, we will study in the future.

1 Holonomic deformation of linear equatlons

of the second order.

In this section, we recall the theory of the holonomic deformation of linear
differential equation of the form:

d2
(1. 1) : 4z’ +P1($a3) +p2(m S)y =0,

viewing s = (sl, -+, 8,) as the deformatlon vanables
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Proposition 1.1. the equation (1.1) has a fundamental system: of so-
lutions whose monodromy and Stokes maultipliers are independent of the pa-
rameter s, if and only if there exist rational functions of z, A;(x), Bj(z),
such that the following system of partial differential equations is completely
integrable.

0? 0

_a’_:z +p1($y3)a_y' +p2($75)y = 07
1.2 z

8s,- = Pi\ry i\t al'

Proposition 1.2, The conditions of the complete integrability of (1.2)
are given by: :

0A; 0A; 04, 0A; .
(1.3) 35, i + A; 9z = s + Ai,c’)xJ (1,7 = 1,cdots, g).

OPA; 0 aP S :
(1.4) Ai5m 25 (AZP)”A’(‘) =0 (G=1-9).
where
10
(1.5) P(z,s) = —ps(z,s) + 171(m )+ 5 2 9z >-p1(, ).

If we make the change of the unknown function:
y = ®(z)z, V

: 1 = .
o(z) = exp(—§/ pi(z,t)dz).

then (1.1) is transformed to an equation of the form:

(1.6)

' ' d*z :
(1.7) proh P(z,s)z.
Proposition 1.3.: The holonomic deformation of (1.1) is reduced to

that of (1.7).
A linear equation of the form (1.7) is called the SL-type equatlon
Finally the holonomic deformation of (1.1) is reduced to the existence _Qf
rational functions A;(z), satisfying the system (1.3)-(1.4) of partial differ-
ential equations. We will call (1.2) as the extended system of (1.1) and the
functions A;(z) as the deformation functions.
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2 Deformation function A;(x).

In the following of this paper, we consider the holonomic deformation of
linear equations of the form:

d? d
(2.1) e Z + pi(z, S)dz + pa(z,3)y =0,
4 A | 3 2 1
pl(:l,') = -—2.’1) —_ Z]szc —_ 183 —_ Z ;—:‘A—,
(2.2) () (k) k
pale) = —(2a+ 1)a® — 23 Hia* I 4 3 - al

() O =M

under the assumption (A). For the limiting pages, here we only can give the
results, omit their proofs.
Firstly we determine the deformation functions.

Proposition 2.1. The function Aj(z) (5 =.1,2,3) are giveh as follows:

() = 2im1(®)
(23) : AJ( ) . A(.’I?) )
where ‘ , .
Qj-1(z) = Zq(’) ()27, Azy=T](z - ).

i=1
The explicit form of q(J)(s) (4 =1,23i=0,---,7 — 1) will be given in
Section 4 s ’ ‘
In order to prove this prop081t10n we shall first study the smgulanty of
Aj(z).
Lemma 2.1. For any fized s, each A;(x) is holomorphic on C\{)A, Az, A3}.

Lemma 2.2. For k=1,2,3, x = A is a pole of the first order of A;(x).
Lemma 2.3. A;(z) admits a zero of order 4 — j at z = oo. '



3 Equations of the SL-type.

In this section, we will investigate the equation of the SL-type:
d*z
- (8.1) da’?

\ 1 10
P(z,8) = —pa(z,s) + Zp%(m,s) + E%pl(x,s).

= P(z,s)z,

P(z,s) can be written in the following form:

3 3
P(z,s) =28+ 2y Fja' + 2 K;z®7

(3.2) ' . j=0 33 j=1 X

> Ak+ZE($—A@)2’

=T k=1

where, we have following relations:

F3 = 383, Fg = 282, ‘ vFl = 8 + 33%, Fo = 2a + 33233.

3 3, .1, 13
Ky=Hy+ >s3(s1+ 582) + 282+ =D Ay,
4 2 2 k=1

4
3 1 3, 13,
(3.3) Ky =Hy+ Zs3+ zsa(s1+ 5s3) + 5.0 AL,
4 2 4 2o
1 3,2, 1,8 &
K3=H3+32+_(31+—53) +_E/\k+—33ZAk.
' 8 4 2 k=1 4 k=1
‘ 13 1 13 i1 3
4 = —_—— _ 'iA‘l—l,___2_ 4-
(‘3 ) Ve = HE— 5 1=}1';;k =N 2 ; 18iAk g3 Ak
For thé simplicity of presentation, we put:
(3.5) ‘
1 . , . 3
Ni==— = X), N*=(-1)"to5.1(M), Az) = [(z = N),
=13k i=1

where o;(\;) denotes the j-th elementary symmetric polynomials of two
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variables, \; (j = 1,2, 3; # k).
Proposition 3.1.  The Hamiltonian functions H; (j = 1,2,3) are given by

1 : .
(3.6) Hj=3 Y [NeN*pf — Ui = NeN*(2a + 1)A3),
(k)
where
. 3 3. NyN* 4 NN
Ujk = NkN]k(Z)\z + 333)2 + 2$2Ak + 81 + -4—3:23) — Z k ;) +)\ l .
o I=1;#k L= 2k

Proposition 3.2.  In the linear equation (3.1)-(3.2), K; (j = 1,2,3) are
written as follows:

13 ' 3 sz o
(37) Kj = = Z(NkNJkl/z bt z Nl Ve — NkN]k‘/k),
2 k=1 I=1;#k Ak - AI
where
‘ 8 )\s‘iF)\j + 3 i 1
Vi = Ap + X At 7 VB WYL
=0 ’ 4 1=1;#k) (e = Ar)?
Now we define K; (j=1, 2, 3) by
1, 1, 3 9, 1 .
Kj=Kj—5(ss+s185+ 58)8n — gsasabin — 782653 (1 =1,2,3),

where 6;; is the Kronecker’s delta.
Proposition 3.3.  The transformation
(s, \p, H) = (s, \, 1, K)  (j,k=1,2,3)

is canonical. where A = (A, A3,23), o = (p1, pi2, pa), H = (Hy, Hy, Hs),
V= (V1,1/2,1/3.), —K = (71,7(2,?3), and S = (81,82,83).



4 The A;3(z) system.

In this section, we will prove Main Theorem. By means of Propositions 1.2,
1.3 and 3.3, it suffices to establish the following theorem:

Theorem 4.1. The conditions (1.3), (1.4) of the complete integrability
are equivalent to the following completely integrable Hamiltonian system of
partial differential equations: o

6)\k _ 87{_1 al/k _ 6?1

ES_; - 6Vk %; - a)\k

(K) (k,j =1,2,3).

Lemma 4.1.

1

1
Ay(z) = 2*("3 - Ul)m,

1

As(z) = %(ﬁ — oz + a?)m.

where o; denotes the j-th elementary symmetric polynomials of three vari-

ables, A1, A2, As.

l 1
2A(z)"

Lemma 4.2. (K ) is complete integrable.

5 The polynomial Hamiltonian structure.

Theorem 5.1.  For the Hamiltonian system (H), define the changes of
the variables .

5.1 7;=(-1Y"l9;, H;=R; (j=1,23).
J

51 I —(Az24+23) A3 /1
(52) 2 = 1 —(/\1 + )\3) A1A3 P21
K3 1 —(A+2A) M P3

The changes (5.1)and (5.2) take (H) to the system:

(R) Bﬁk _ 6R,- Opk _ _8Rj
63,- o apk Bs,- - BE;C

27



with the polynomial Hamiltonian of the form:

- — — - ]_ —
(5.3) E =505 + S0 4+ £O50 4 (a + 5)5.

where ‘

. pi p1p2 p .
=10, MW=|pp|, =|p]|, R=
pg, P1P3 P3

. 011 Qi g3
s _ _1
——‘2‘ Qg1 Q22 Q23 |,
Qa3p Q32 Q33
where

a5 = 25]2 + 252 + 333,

“any = 201Fs + 203+ 2sg, -
_ 3,
a3 = 20103+ 51 + 153
a1 = 203+ 20102 + 2s2,
3
Qoy = 205° + 3830 — 25951 + 81 + ~s2,

4
3
Qg3 = 23233 + 35363 — (81 + 183)51 +1,
a3 = 20103+ 81 + 13;2;,

3
gy = 265,03 +?38353 - (31 + ng)ﬁ} + 27‘

3
azs = 203% 4 28,03 — (81 + ng)ﬁz — 01,
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Next we define Fy, E,, E3 by

R, E, q 0
Ry | =| E; +(a+§) s3 |-
R; Es; %32

The Hamiltonian system (R) is equivalent to the system:

6Ek_‘_9_]3_i )Q_p_’“_ _BEJ_ A
(E) 63]’ - a/’k’ 63j - 85};: (]’k e 1a2a3)

Furthermore we define the change of the variables as follows:

El : ¢,
Oy =@ — 13,
(6.4) 1

T3 = g3 + ~taqy — =t
T3 QS+23‘11 5l2

5 1 ,
p1 = p1 — taps,

2
p2 = p?v
P3 = P3y

(6.5)

s1 =1 —~ Zt?«ia
sg = 1g,
83 = t37

Li,

iyl
I

1.
(6.7) , Ly =Ly~ 5ps,

- B |
Ly=Ls+ Et_sLl — P2 + 5‘11173-



By simple computation, we see that the change of the variables defined by
(6.4), (6.5), (6.6), (6.7) is a canonical transformation of the Hamiltonian
system (E). which takes the Hamiltonian system (FE) to the Hamiltonian
system (L):

L _:_‘7, -——:——] ,k=1,2,3-
1) o = om0 O U )
with the polynomial Hamiltonian:
(6.9) I = P@BO) 4 PN L PO O 4 (4 + %)f/_
where
. Ly . pi\ - P1p2 | . D1
L=|L|, PO=|p]|, PO=|pps|, PO=|p |,
Ls P} hps p3
1 1
(2) 0 2 1 1 2@ 1 1
Y =10 —¢ 20192 + gtsqr + 593 — 3t2 ;
3 30— il 30— 30195 — 1@ + Yo — 3taqs + 32

. 0 —q 1
YW=\ 1 ¢ — 3ts —q |,

-0t @@ttt — 3t —q
YO =—((vy) (,j=123),

1
Yii = ¢+ q+ =t

2
1 1
Yo = qug2a— *2't3¢h +q:+ Etz’
Yis = lt lt + lt
13 = 143 2 2q1 2 392 2 1y

1 1
Yoo = e — §t3<h +q¢:+ §t2’

30



31

1 1 1
22 q; — tagn 3 392 + gt — 7t
1 1 1 1
Yoz = qugz+ (Ztg - §t1)fh - §t2fI2 - 5t2t3’
Ya = tags — stags + ot
31 = 143 2 241 5 3492 2 1
1 1 1 1
Ya = qugs+ (Zt‘z’ - ‘2't1)(11 - §t2Q2 - '2‘t2t3,
1 1 1 14
2 2 3
= —151 — —t — -t —t5.
Ya3 Q3‘+223Q1 21(12 .4.2+83

Y =-— q2 .
q3

6 Particular solution of system (L).

Theorem 6.1.  Suppose that a = —1 in (L).
1) The Hamiltonian system (L) admits a solution of the form:

(61) (qla 92,93, plapi, P3) = (ql (t)a Q2(t)v Q$(t), 0, O, 0)

0 .
(6.2) g(t) = 5 logu  (1=1,2,3).
) J

2)  u(t) is a general solution of the following system of partial differential
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equations:
Pu _ Ou 1t y
o~ oty 27
Pu 1, 0u  Ou ‘o
6t18t2 - 2 33t1 6t3 2
0%u t Ou + 1t Ou 1t
= = —t3— — =tu
(6.3) 0ot 279t  2°0t, 2
) 0%u Oou 4 1t Ou (1t 1t2)
—_— = — —_— u
a2~ ot 2 38t2 271 4T
0%u 1 Oou 1, 0Ou 1
—_— = (=t - =t
Toat 31 )at T3l T ath
0%u 1, Ou 1, Ou 1 1
— = —cttzg—+ i — + ~ (2 — =t3)u.
12 2236t1+218t2+4(2 5ta)u
Lemma 6.2.  If a = —3, the Hamiltonian system (L) admits a particular

solution of the form:

(qls a2, QSvpl,p2>p3) = (ql(t")v q2(t), q3(t)7 0, 0, 0)

with ¢;(t) (7 = 1,2,3) determined by following equations.
94k
ot;

Proposition 6.3. For the system (63)
(1) The dimension of solution space over C is 4.
(2)... The base of the solution of (6.3) is given by

= —-Y;’k(t,Q) (k’] = 172a 3)

2
ui(t)=/TAeXP[_-5_)\5—t3/\3—-t2)\2 (t + t3)A t2t3]d)\ (i =1,2,3,4).

where r; are paths in the complez plane described in Figure 1.
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