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1 Introduction

Let Q be a complete separable metrizable space. Let G be a non-
trivial, closed, multiplicati@ subgroup of R, the set of positive real
numbers. That is, either G = R or there exists A > 1 such that
G = {\";n € Z}. Assume that (R, G) acts on Q, that is,

(1) For any w € Q,t € R and A € G, w+t and A\w are defined and
belong to 2 so that the mappings (w,t) — w +t and (w,A) — Iw
are continuous.

(2) -4+ 0=1-=idg, and

(3) for any w € Q, s,t € R and A € G, it holds that

(wHt)+s=w+(t+3), Anw)=(Aw, Aw-+t)=Iw+ At

Let (R,G) act on Q. A continuous function F' : @ x R — R is

called a cocycle on ( if
Flw,t+ 8) = F(w,t) + F(w+1t,s)

holds for any w € Q and s,t € R. A cocycle F’ on € is called to be

a-G-homogeneous if
F(Aw, AXt) = A*F(w,t)

for any w € 2, A € G and t € R, where a is a given real number with
0 < a < 1. It is simply called to be a-homogeneous if G = R,.
We remark that the notion of homogeneuos cocycle is equivalent to

the notion of cocycle with the scaling property in [5].
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Example 1 Let Q = R and (R,R,) act on R in the usual sense.
Then, a cocycle F' on Q is a coboundary, that is, there exists a

continuous function ¢ : @ — R such that
Flw,t) = p(w +1) — p(w)

for any w € Q and t € R. Moreover, if F' is a-homogeneous, then

the above @ satisfies that

_J Aw|*+C (w>0)
pw) *{ Bl +C (w<0).

Example 2 Let Q) be the space of all continuous functionw : R — R
with w(0) = 0 with the compact open topology. For anyw € Q,t € R
and A € Ry, we define w+1t € Q and hw € Q by

(wHt)(s) =w(t+s)—w(t) and (Aw)(s) = Aw(Als)
for any s € R. Then, (R,R.) acts on Q. Let
- Fw,t) = w(t)

forany w € Q andt € R. Then, F' is a a-homogeneous cocycle. Let

i be an (R, R, )-invariant probability Borel measure on Q, that is,
dp(w +t) = dp(w) and dp(Ilw) = du(w)

foranyt € R and A € Ry. Then, F(w,t) is considered as a stochas-
tic process on the probability space (Q, u) with the time parameter
t € R. This process has stationary increments and is a-selfsimilar.

The Wienner process is one of them for a = 1/2.
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We are interessted in  on which (R,G) acts and which is R-
minimal. That is,

(4) Q is compact, and it holds that
{w+t;teR} =0

for any w € Q

We call Q to be R-strictly ergodic if in addition,
(5) there exists a unique R-invariant probability Borel measure p
on {2, that is,

du(w +t) = du(w)

for any t € R.
In this case, u is also G-invariant, that is,
(6)

dp(Aw) = du(w)

for any A € G.
We remark that a cocycle on R-minimal € is a minimal cocycle in

the sense of [5] and vice versa.

Theorem 1 ([5]) Let (R, G) act on Q. Assume that Q) is R-minimal.
Then, for a nonzero a-G-homogeneous cocycle F, we have the follow-
ing results.

(1) There exists a constant C such that
IF(wat) - F(LU,S)I < C't - Sla

for any w € Q and s,t € R. That is, the functions F(w,t) on t for

w € Q are uniformly a-H’older continuous.



(it) For any w € Q and t € R,

1
limsup —|F(w,t + s) — F(w,t)| > 0
slo = 8%

holds. That is, for any w € Q the function F(w,-) is nowhere locally
B-H'older continuous for any B > a. In special, F(w,-) is nowhere

differentiable.

There are two important aspects of ‘fractal’ functions; almost pe-
riodicity and self-similarity. Our notion of homogeneous cocycles on
minimal (2 is a formulation of ‘fractal’ functions from these points of
view. We are also interested in self-similar processes with strictly er-
godic, stationary increments which come from homogeneous cocycles
on strictly ergodic 2. Rudin-Shapiro process defined in [2] is one of
them for o = 7 and G = {2";n € Z} if it is restricted on an ergodic
component.

We will construct such € and homogeneous cocycles on it. All

results in this article will be published in [6].

2 Colored tiling

Let R be the set of nonempty rectangles (a, b] x [c, d) in R? such that
(7)

et=d-c

Let ¥ be a finite set with at least 2 elements, which will be called
the set of colors.
A mapping w: dom(w) — X is called a colored tiling if dom(w) C

R and Ugegom(w) S gives a partition of R2. For S € dom(w), we call
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w(S) the color on the tile S. In addition, if S = (a, ] X [c,d), then
the point (b, c¢) € R? is called the corner of S. For z € R?, we define
&(z) = w(S) for the tile S with z € S € dom(w). Let Q) be
the set of all colored tilings with the colors ¥. It is considered as a
topological space in the sense that w, € Q(X) converges to w € Q)
as n — oo if for evefy bounded region of R?, the picture drawn by
wy converges to that of w on it. This implies that for any bounded
set K in R2, lim,_ px(w|wy) = 0, where
(8)
ok =g af, Nr=yl=0
&(x)=im (v)

For w € Q(X),t € R and A € R,, we define w +t € Q(X) and
Aw € Q(X) as follows: |
For S := (a,b] x [c,d) and S’ := (a,b] X [c—t,d—t), S’ € dom(w + )
if and only if S € dom(w), and in this case (w + t)(S") = (w)(S5).
Also, for S := (a,b] x [¢,d) and S’ := (a —log A, b —log A] x [Ac, Ad),
S' € dom(\w) if and only if S € dom(w), and in this case (Aw)(S’) =
w(S).

Then, it is easy to see that (R, R, ) acts on Q(X). We are interested

in compact metrizable subsets of (X) which are invariant under the

action of (R, G). for some G.

Example 3 Let ¥ = {0,1} and

By :={ weQZ); for any S := (a,b] x [¢,d) € dom(w)
it holds that b = a + log2 € (log2)Z and
S; i= (b,b+log2] x [c+ £(d —¢),c+ H2(d - ¢))
€ dom(w) with w(S;) =i for i =0,1}.
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Then, (R, {2™;n € Z}) acts an By. We can consider By as the set of

2-sided, 2-adic expansions in the sense that w € By is identified with

Sicz w(ilog2,0)27
= Yicow(ilog2,0)27" & > ow(ilog2,0)27"

where the convergence is in Zy @ [0, 1] with the identification of x® 1

with (¥ + 1) & 0 for any x € Z,.

A substitution ¢ on a set ¥ is a mapping ¥ — XF, where Tt =
U2, ¥". For £ € TF, we denote L(§) = n if £ € ¥™ and £ =
&1+ €n-1. We can extend ¢ to be a homomorphism ¥t — X7t as

follows:
©(€) = p(&o)p(&1) - - p(én-1)

for £ € £". We can define ¢?, 3, - - - as the compositions of ¢ : &t —
zT.

A weighted substitution (¢,7) on ¥ is a mapping ¥ — I x
(0,1)* such that L(p(0)) = L(n(o)) and Xm0y M(0): = 1 for any
o € X. Note that ¢ is a substitution on ¥. We call n the weight on
. We define n" : ¥ — (0,1)* (n =2,3,...) inductively by

1" (o) = n(o)m™  (@(0):);

for any ¢ € ¥ and 4, j, k with

0<i< L(p(0)),0 <j < L" He(o):) k= L™ p(o)n))+3

h<i

In this sense, (¢™,n") is also a weighted substitution for n = 2,3, - --.
A substitution ¢ on ¥ is called to be mixing if there exists a
positive integer n such that for any 0,0’ € X there exists ¢ with

0 <i< L(p™(0)) and ¢"(0); = o’
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For a weighted substitution (¢, n) on ¥, we always assume that
(9)  the substitution ¢ is mixing.
We define the base set B(p,7) as the closed, multiplicative subgroup

of R, generated by the set

{ gMo); o€, n=0,1,---, and
0 < i < L(¢™(0)) such that ¢"(0); = o}.

It is called to be continuous if B(p,n) = R, otherwise, discret(?.

Let (¢,n) be a weighted substitution on a ﬁnite set X with ¥ 22
with G : B(y,n). Then, there exists >a function g Y —-R, Suchy
that - -
(10)

9(p(0):)G = g(o)n(0):G

for any 0 € £ and 0 < i< 'L(p(c)). Note that if G = R.,
then we can take g = 1. In the discrete case, we can define g by
g{0) := n™(0y); for some n and i such that ¢"(00); = o, where gy is

a fixed element in . For another ¢ satisfying (10), there exists a

constant C' > 0 such that ¢’(¢0)G = Cy¢(0)G for anyv cEX.

Let Q(¢, 7, g)" be the set of all elements w in (%) such that
(i) if (a,b] x [c,d) € dom(w), then e® = d—c € g(w((a,b] x [c, d)))G,
and | '
‘(ii) if (a,b] x [¢,d) € dom(w) and w((a,b] x [c,d)) = o, then for
i=0,1,---,L{p(a)) = 1, S; € dom(w) and w(S;) = ¢(0);, where

i—1 g
Si = (b,b—logn(o)i] x [c+ (d—¢) ;)77(‘7)3'7 c+(d—c) Z%n(a)j)-



We call the tile S; as above a child of the tile S, and S the mother
of S;. Let Q(¢,m,9)" be the set of all w € Q(p,7,9)' such that for
any N, there exists (a,b] x [¢,d) € dom(w) with (¢,d] D [-N;N].
Finally, we define Q(p,n,9) to be the closure of Q(p,n,9)". Then,
(R, Q) acts on Q(p,n,g). We denote Q(p,n,1) simply by Q(p,n) in

the continuous case.

Theorem 2 For any weighted substitution (p,n) satisfying (9) and
g with (10), Q(p,n,9) is R—stm’ctly ergodic. Moreover, the toplogical
entropy of the R-action on Q(p,n,g) is 0.

We prove only that there exists a unique R-invariant probability
Borel measure on Q = Q(¢,n,g). Since 2 is a nonempty compact
metrizable space and the R-action is continuous, there exists an R-
invariant probability Borel measure u on it. We prove that u is the
unique measure as this.

Let 0,0’ € ©. We define a random variable X,,/(y) on the proba-

bility space y € [0,1) with the Lebesgue measure:

Xaa’(y) - - 1Og Wn(U)i,

where n is the minimum positive integer, if it exists, such that there
exists i with 0 <4 < L(p™(0)) satisfying that ¢"(c); = ¢’ and
Y 1Mo); <y < Y o)
0<j<i 0<j<i
Then, X,, exists with probability 1. Let Fj,, be the distribution of

the random variable X,,.
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Let S := (a,b] x [¢,d) be a tile in w € Q(p,n, g) with w(S) = o'
For u > b, let E be the number of the tiles in w with color ¢ having
the corner belonging to [u,u + du) x [c,d), where du stands for an
arbitrary small positive number and we neglect all the terms with

o(du). Then we have

(11)

Ee” / ' Fyp % Fyi™*(dx),

d—c ‘= u-b<e<u-btdu

where ”” implies the convolution of the distributions. It is well

known by the renewal theory [1] that the above value converges to

([ 2Foo(da))~ du

as u — oo if G =Ry and to

([ @Fvo(dw)) ™ log A

as u — oo satisfying that e ™ € ¢(0)G if G = {A\";n € Z} with
A>1

For o € ¥ and a Borel subset U of R?, let II(o, U) be the subset of
w € Q(p,n, g) consisting of w which has a tile S such that w(S) =o
and S has the corner belonging to U. Let dudv := [u,u + du) X
[v,v + dv) and ¢ € ¥ satisfy that e™ € g(c)G. Since p is R-
invariant, u(Il(o, dudv)) = u(ll(e, dudv + .(O,y))) for any y € R. By
integrating this equality with dy from 0 to N and applying Fubini’s
theorem we have
(12)

u(I1(o, dudv) = ¥ [ B(w)du(w),
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where we denote by E(w) the number of the tiles in w with color o
having the corner belonging to [u,u + du) x [0, N).

For any ¢ > 0, take L > 0 such that the the value in (11) for any
o' € ¥ with u — b > L is close to A within ¢, where

(13)

4= { UzFp(dr)"tdu i G=Ry
T (JzFsldz))tlogh if G={\"neZ} (A>1).

For any w € Q(p,n,g9) and y € R, let S(y) be the tile in w such that
S(y) intersects with R x {y} and is contained in (—oo,u — L] X R
but none of its children satisfies these conditions. Then, the vertical
size of S(y) is at most eL~%+% where
Up = max — logn(o);.
0<i<L{p(0))
Let S1, -+, S be the set of all distinct S(y)’s for y € [0, N) such that
the orthogonal projection to the vertical axis of S(y) is contained in
[0, N). Then, the projections of S;’s are disjoint and we take N large
enough so that their union covers large enough part of the inteval
[0,N). Let S; be the projection of S; and E;(w) be the number of the
tiles in w with color o having the corner belonging to [u, u + du) x S;.
Then, by the assumption on L, (11) and (13), we have |E;(w)e™ —
1Si|A| < |S;|e, where |S;| is the size of S;. By adding the inequalities,
we have |E(w)e ™ — NA| < 2Ne. Thus, by integrating it with du(w),
we have
(14)
| / E(w)du(w)e™ — NA| < 2Ne.
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Conbining (12) and (14), we have

|1(Il(o, dudv))e™ — Adv| < 2edv.

Since € > 0 was arbitrary, we have
(15)

(f xF,,(dz)) te¥dudv if G =Ry,
p(Il(o, dudv) = { le-vegoia(f Fye(dz))te* log Adv
ifG={\neZ} (A>1)

Thus, p is determined and is unique, which completes the proof.

Example 4 (Fibonacci expansion) Let £ = {0,1}. Let (p,n) be

the weighted substitution on X such that

0—(0,A71)
1

1,272
1—(0,A"H)(1

(1,A7
(1,A72),
where A = lﬁ?@ and we arranged (p(0)s, n(c):)) in the olrder of i after
"o —". Then, B(g,n) = {\";n € Z}. For g =1, (10) is satisfied.
Let Q = Q(p,n,1). Then, by Theorem 2, Q is R-strictly ergodic.
Let 1 be the unique R-invariant probability Borei measure on (). By

(15), 1 satisfies that

w(I1(0, dudv)) =

) ~le¥ log Adv
u(T(1, dudv)) =

~letlog Adv
for any u,v € R with e™ € G, where

A =Xllogh+ A 33log\+---
= (2XA = 1)logA,

B =X%2log A+ A"44log A+ - -
= (A + 2)logA.
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Thus, we have

w(II(0, dudv)) = 2=Letdv
w(II(1, dudv)) = §+3 e“dv

for any u,v € R with e™ € G.

Example 5 Let § = i + 3§ Let (¢,m) be the weighted substitution
on {0,1} such that

0= 00013 ~B)(L}-A(0.6)
1—(1,6)(0,5 - 8)(0,5-8

Note that Og( ﬁﬂ) is irrational and B(p,n) = R4. Let Q = Q(p,n).

Then, by Theorem 2, Q is R-strictly ergodic. Let pu be the unique

R-invariant probability Borel measure on Q. Then, p is also R4 -

invariant. By (15), u satisfies that
u(T1(0, dudv)) = p(Ti(1, dudv)) = A~ e“dudv

for any u,v € R with

A =2p(—logB) + ¥220(26)"(1 — 26)*(—nlog 5 — 2log(3 — B))
= —4flogf — 2(1 — 2B)log(3 — B)).

This example will be discussed later.

3 Homogeneous cocycle

Let (¢,7n) be a weighted substitution on a finite set ¥ with X > 2
satisfying (9). Let G = B(p,n) and g satisfy (10). For 0 < a < 1,
let M, = M,(p,n) be the matrix (mye(® )y orex such that

(16)

0<i<L{yp(a))
wlo)y=a’



We assume that
(17) 1 is an eigen value of M, with a nonzero eigen column vector

= (§o)oes:-
Define £ : Q(p,1,9) x R2 - ¥ and S : U, n,9) x R? = R by

{(w,x,y) = {o(s,y) and
S(w,z,y) = |5]if (z,y) € § € dom(w),

where |S| is the vertical size of S. We finally define F' : Q(y,7, g) X
R — R by

(18)
Flw,t) = limy o0 F(a:,wl t), where
F(z,w,t) = f§&w,z,y)S(w,z,y)* 'dy

Theorem 3 F' is a nonzero a-G-homogeneous cocycle on Q(p,n,g).

(We omit the proof.)

Corollary 1 If G in Theorem 3 is continuous, then F' defines a self-
similar process with strictly ergodic, stationary increments having 0

entropy.

Example 6 Let us take Q = Q(¢,n) in Example 5. Then, for the

matriz My in (16), we have

Then £ = ( _i ) is an eigen vector of M 1 corresponding to the
eigen value 1. Let F be the cocycle on 0 defined in (18) for this €.

Then, F is a self-similar process with stationary increments of order

1

5 which has 0 entropy.
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4 Remarks

To represent a nonlinear f-expansion, we need a space of colored

tilings with curved tiles S of the shape
S = {(x,y);a(y) <z < b(y) and ¢ <y < d},

where ¢ < d are real numbers and a,b are smooth functions on [c, d)
such that a(y) < b(y) for any y € [c,d) and fcd Wdy = 1. Tt is
discussed in [4] in a somewhat different form.

The cocycle in Example 6 has the least possible complexity among
the nonzero, a-homogeneous, minimal cocycles [5].

The transformation group {A-;A € G} on the probability space
(Q, u) with the unique R-invariant probability measure p can be
proved to be ergodic. Therefore, by Theorem 1 and the ergodic

theorem, for any a-G-homogeneous cocycle F on €2,

1/a
O — lim /]Fwt+s)s F(w,t)| %.g

with probability 1, where

C = [IF(@,D]"edu(w).

Using this, we can prove Itd’s formula for the case o = 1/2:

f(F(w,B)) — f(F(w, A))
IZ F(F(w,s))dW (w,s) + £ [£ f"(F(w,s))ds

with probability 1, where the “martingale part” W(w, s) is defined in
a weak sense [3]. Therefore, 1/2-homogeneous cocycles on a Q(p,n)

may well be called deterministic Brownian motions.
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