Deterministic Brownian Motions

大阪中大理 釜江村自用(Teturo Kamae)

1 Introduction

Let Ω be a complete separable metrizable space. Let G be a non-trivial, closed, multiplicative subgroup of \mathbf{R}_+ , the set of positive real numbers. That is, either $G = \mathbf{R}_+$ or there exists $\lambda > 1$ such that $G = \{\lambda^n; n \in \mathbf{Z}\}$. Assume that (\mathbf{R}, G) acts on Ω , that is,

- (1) For any $\omega \in \Omega$, $t \in \mathbf{R}$ and $\lambda \in G$, $\omega + t$ and $\lambda \omega$ are defined and belong to Ω so that the mappings $(\omega, t) \mapsto \omega + t$ and $(\omega, \lambda) \mapsto \lambda \omega$ are continuous.
- $(2) \cdot + 0 = 1 \cdot = \mathrm{id}_{\Omega}$, and
- (3) for any $\omega \in \Omega$, $s, t \in \mathbf{R}$ and $\lambda \in G$, it holds that

$$(\omega + t) + s = \omega + (t + s), \quad \lambda(\eta\omega) = (\lambda\eta)\omega, \quad \lambda(\omega + t) = \lambda\omega + \lambda t.$$

Let (\mathbf{R}, G) act on Ω . A continuous function $F : \Omega \times \mathbf{R} \to \mathbf{R}$ is called a **cocycle** on Ω if

$$F(\omega, t+s) = F(\omega, t) + F(\omega + t, s)$$

holds for any $\omega \in \Omega$ and $s,t \in \mathbf{R}$. A cocycle F on Ω is called to be $\alpha\text{-}G\text{-}\mathbf{homogeneous}$ if

$$F(\lambda\omega,\lambda t) = \lambda^{\alpha}F(\omega,t)$$

for any $\omega \in \Omega$, $\lambda \in G$ and $t \in \mathbf{R}$, where α is a given real number with $0 < \alpha < 1$. It is simply called to be α -homogeneous if $G = \mathbf{R}_+$. We remark that the notion of homogeneous cocycle is equivalent to the notion of cocycle with the scaling property in [5].

Example 1 Let $\Omega = \mathbf{R}$ and $(\mathbf{R}, \mathbf{R}_+)$ act on \mathbf{R} in the usual sense. Then, a cocycle F on Ω is a coboundary, that is, there exists a continuous function $\varphi : \Omega \to \mathbf{R}$ such that

$$F(\omega, t) = \varphi(\omega + t) - \varphi(\omega)$$

for any $\omega \in \Omega$ and $t \in \mathbf{R}$. Moreover, if F is α -homogeneous, then the above φ satisfies that

$$\varphi(\omega) = \begin{cases} A|\omega|^{\alpha} + C & (\omega \ge 0) \\ B|\omega|^{\alpha} + C & (\omega < 0). \end{cases}$$

Example 2 Let Ω be the space of all continuous function $\omega : \mathbf{R} \to \mathbf{R}$ with $\omega(0) = 0$ with the compact open topology. For any $\omega \in \Omega$, $t \in \mathbf{R}$ and $\lambda \in \mathbf{R}_+$, we define $\omega + t \in \Omega$ and $\lambda \omega \in \Omega$ by

$$(\omega + t)(s) = \omega(t + s) - \omega(t)$$
 and $(\lambda \omega)(s) = \lambda^{\alpha} \omega(\lambda^{-1} s)$

for any $s \in \mathbf{R}$. Then, $(\mathbf{R}, \mathbf{R}_+)$ acts on Ω . Let

$$F(\omega, t) = \omega(t)$$

for any $\omega \in \Omega$ and $t \in \mathbf{R}$. Then, F is a α -homogeneous cocycle. Let μ be an $(\mathbf{R}, \mathbf{R}_+)$ -invariant probability Borel measure on Ω , that is,

$$d\mu(\omega + t) = d\mu(\omega)$$
 and $d\mu(\lambda\omega) = d\mu(\omega)$

for any $t \in \mathbf{R}$ and $\lambda \in \mathbf{R}_+$. Then, $F(\omega, t)$ is considered as a stochastic process on the probability space (Ω, μ) with the time parameter $t \in \mathbf{R}$. This process has stationary increments and is α -selfsimilar. The Wienner process is one of them for $\alpha = 1/2$.

We are interessted in Ω on which (\mathbf{R}, G) acts and which is **R**-minimal. That is,

(4) Ω is compact, and it holds that

$$\overline{\{\omega + t; t \in \mathbf{R}\}} = \Omega$$

for any $\omega \in \Omega$

We call Ω to be **R-strictly ergodic** if in addition,

(5) there exists a unique **R-invariant** probability Borel measure μ on Ω , that is,

$$d\mu(\omega + t) = d\mu(\omega)$$

for any $t \in \mathbf{R}$.

In this case, μ is also G-invariant, that is,

(6)

$$d\mu(\lambda\omega) = d\mu(\omega)$$

for any $\lambda \in G$.

We remark that a cocycle on **R**-minimal Ω is a minimal cocycle in the sense of [5] and vice versa.

Theorem 1 ([5]) Let (\mathbf{R}, G) act on Ω . Assume that Ω is \mathbf{R} -minimal. Then, for a nonzero α -G-homogeneous cocycle F, we have the following results.

(i) There exists a constant C such that

$$|F(\omega, t) - F(\omega, s)| \le C|t - s|^{\alpha}$$

for any $\omega \in \Omega$ and $s, t \in \mathbf{R}$. That is, the functions $F(\omega, t)$ on t for $\omega \in \Omega$ are uniformly α -H'older continuous.

(ii) For any $\omega \in \Omega$ and $t \in \mathbf{R}$,

$$\limsup_{s\downarrow 0} \frac{1}{s^{\alpha}} |F(\omega, t+s) - F(\omega, t)| > 0$$

holds. That is, for any $\omega \in \Omega$ the function $F(\omega, \cdot)$ is nowhere locally β -H'older continuous for any $\beta > \alpha$. In special, $F(\omega, \cdot)$ is nowhere differentiable.

There are two important aspects of 'fractal' functions; almost periodicity and self-similarity. Our notion of homogeneous cocycles on minimal Ω is a formulation of 'fractal' functions from these points of view. We are also interested in self-similar processes with strictly ergodic, stationary increments which come from homogeneous cocycles on strictly ergodic Ω . Rudin-Shapiro process defined in [2] is one of them for $\alpha = \frac{1}{2}$ and $G = \{2^n; n \in \mathbf{Z}\}$ if it is restricted on an ergodic component.

We will construct such Ω and homogeneous cocycles on it. All results in this article will be published in [6].

2 Colored tiling

Let \mathcal{R} be the set of nonempty rectangles $(a, b] \times [c, d)$ in \mathbb{R}^2 such that
(7)

$$e^{-b} = d - c.$$

Let Σ be a finite set with at least 2 elements, which will be called the set of **colors**.

A mapping $\omega : dom(\omega) \to \Sigma$ is called a **colored tiling** if $dom(\omega) \subset \mathcal{R}$ and $\bigcup_{S \in dom(\omega)} S$ gives a partition of \mathbf{R}^2 . For $S \in dom(\omega)$, we call

 $\omega(S)$ the **color** on the **tile** S. In addition, if $S=(a,b]\times [c,d)$, then the point $(b,c)\in \mathbf{R}^2$ is called the **corner** of S. For $x\in \mathbf{R}^2$, we define $\tilde{\omega}(x):=\omega(S)$ for the tile S with $x\in S\in dom(\omega)$. Let $\Omega(\Sigma)$ be the set of all colored tilings with the colors Σ . It is considered as a topological space in the sense that $\omega_n\in\Omega(\Sigma)$ converges to $\omega\in\Omega(\Sigma)$ as $n\to\infty$ if for every bounded region of \mathbf{R}^2 , the **picture** drawn by ω_n converges to that of ω on it. This implies that for any bounded set K in \mathbf{R}^2 , $\lim_{n\to\infty}\rho_K(\omega|\omega_n)=0$, where

$$\rho_K(\omega|\omega_n) := \sup_{x \in K} \inf_{\substack{y \in \mathbf{R}^2 \\ \tilde{\omega}(x) = \tilde{\omega}_n(y)}} ||x - y|| = 0.$$

For $\omega \in \Omega(\Sigma)$, $t \in \mathbf{R}$ and $\lambda \in \mathbf{R}_+$, we define $\omega + t \in \Omega(\Sigma)$ and $\lambda \omega \in \Omega(\Sigma)$ as follows:

For $S := (a, b] \times [c, d)$ and $S' := (a, b] \times [c - t, d - t)$, $S' \in dom(\omega + t)$ if and only if $S \in dom(\omega)$, and in this case $(\omega + t)(S') = (\omega)(S)$. Also, for $S := (a, b] \times [c, d)$ and $S' := (a - \log \lambda, b - \log \lambda] \times [\lambda c, \lambda d)$, $S' \in dom(\lambda \omega)$ if and only if $S \in dom(\omega)$, and in this case $(\lambda \omega)(S') = \omega(S)$.

Then, it is easy to see that $(\mathbf{R}, \mathbf{R}_+)$ acts on $\Omega(\Sigma)$. We are interested in compact metrizable subsets of $\Omega(\Sigma)$ which are invariant under the action of (\mathbf{R}, G) . for some G.

Example 3 Let $\Sigma = \{0,1\}$ and

(8)

$$B_2 := \{ \omega \in \Omega(\Sigma); \text{ for any } S := (a, b] \times [c, d) \in dom(\omega) \\ \text{ it holds that } b = a + \log 2 \in (\log 2) \mathbf{Z} \text{ and} \\ S_i := (b, b + \log 2] \times [c + \frac{i}{2}(d - c), c + \frac{i+1}{2}(d - c)) \\ \in dom(\omega) \text{ with } \omega(S_i) = i \text{ for } i = 0, 1 \}.$$

Then, $(\mathbf{R}, \{2^n; n \in \mathbf{Z}\})$ acts an B_2 . We can consider B_2 as the set of 2-sided, 2-adic expansions in the sense that $\omega \in B_2$ is identified with

$$\sum_{i \in \mathbf{Z}} \tilde{\omega}(i \log 2, 0) 2^{-i}$$

$$= \sum_{i \le 0} \tilde{\omega}(i \log 2, 0) 2^{-i} \oplus \sum_{i > 0} \tilde{\omega}(i \log 2, 0) 2^{-i}$$

where the convergence is in $\mathbf{Z}_2 \oplus [0,1]$ with the identification of $x \oplus 1$ with $(x+1) \oplus 0$ for any $x \in \mathbf{Z}_2$.

A substitution φ on a set Σ is a mapping $\Sigma \to \Sigma^+$, where $\Sigma^+ = \bigcup_{n=1}^{\infty} \Sigma^n$. For $\xi \in \Sigma^+$, we denote $L(\xi) := n$ if $\xi \in \Sigma^n$ and $\xi = \xi_0 \xi_1 \cdots \xi_{n-1}$. We can extend φ to be a homomorphism $\Sigma^+ \to \Sigma^+$ as follows:

$$\varphi(\xi) := \varphi(\xi_0)\varphi(\xi_1)\cdots\varphi(\xi_{n-1})$$

for $\xi \in \Sigma^n$. We can define $\varphi^2, \varphi^3, \cdots$ as the compositions of $\varphi : \Sigma^+ \to \Sigma^+$.

A weighted substitution (φ, η) on Σ is a mapping $\Sigma \to \Sigma^+ \times (0, 1)^+$ such that $L(\varphi(\sigma)) = L(\eta(\sigma))$ and $\sum_{i < L(\eta(\sigma))} \eta(\sigma)_i = 1$ for any $\sigma \in \Sigma$. Note that φ is a substitution on Σ . We call η the weight on φ . We define $\eta^n : \Sigma \to (0, 1)^+$ (n = 2, 3, ...) inductively by

$$\eta^n(\sigma)_k = \eta(\sigma)_i \eta^{n-1} (\varphi(\sigma)_i)_j$$

for any $\sigma \in \Sigma$ and i, j, k with

$$0 \le i < L(\varphi(\sigma)), 0 \le j < L(\varphi^{n-1}(\varphi(\sigma)_i)), k = \sum_{h \le i} L(\varphi^{n-1}(\varphi(\sigma)_h)) + j$$

In this sense, (φ^n, η^n) is also a weighted substitution for $n = 2, 3, \cdots$

A substitution φ on Σ is called to be **mixing** if there exists a positive integer n such that for any $\sigma, \sigma' \in \Sigma$ there exists i with $0 \le i < L(\varphi^n(\sigma))$ and $\varphi^n(\sigma)_i = \sigma'$.

For a weighted substitution (φ, η) on Σ , we always assume that

(9) the substitution φ is mixing.

We define the **base set** $B(\varphi, \eta)$ as the closed, multiplicative subgroup of \mathbf{R}_+ generated by the set

$$\{ \begin{array}{ll} \eta^n(\sigma)_i; & \sigma \in \Sigma, \ n = 0, 1, \cdots, \text{ and} \\ 0 \leq i < L(\varphi^n(\sigma)) \text{ such that } \varphi^n(\sigma)_i = \sigma \}. \end{array}$$

It is called to be **continuous** if $B(\varphi, \eta) = \mathbf{R}_+$, otherwise, **discrete**.

Let (φ, η) be a weighted substitution on a finite set Σ with $\sharp \Sigma \geq 2$ with $G := B(\varphi, \eta)$. Then, there exists a function $g : \Sigma \to \mathbf{R}_+$ such that

(10)

$$g(arphi(\sigma)_i)G=g(\sigma)\eta(\sigma)_iG$$

n de la primario del como de la compansión de la granda de

for any $\sigma \in \Sigma$ and $0 \leq i < L(\varphi(\sigma))$. Note that if $G = \mathbf{R}_+$, then we can take $g \equiv 1$. In the discrete case, we can define g by $g(\sigma) := \eta^n(\sigma_0)_i$ for some n and i such that $\varphi^n(\sigma_0)_i = \sigma$, where σ_0 is a fixed element in Σ . For another g' satisfying (10), there exists a constant C > 0 such that $g'(\sigma)G = Cg(\sigma)G$ for any $\sigma \in \Sigma$.

Let $\Omega(\varphi, \eta, g)'$ be the set of all elements ω in $\Omega(\Sigma)$ such that (i) if $(a, b] \times [c, d) \in dom(\omega)$, then $e^{-b} = d - c \in g(\omega((a, b] \times [c, d)))G$, and

(ii) if $(a, b] \times [c, d) \in dom(\omega)$ and $\omega((a, b] \times [c, d)) = \sigma$, then for $i = 0, 1, \dots, L(\varphi(\sigma)) - 1$, $S_i \in dom(\omega)$ and $\omega(S_i) = \varphi(\sigma)_i$, where

$$S_i := (b, b - \log \eta(\sigma)_i] \times [c + (d - c) \sum_{j=0}^{i-1} \eta(\sigma)_j, c + (d - c) \sum_{j=0}^{i} \eta(\sigma)_j).$$

We call the tile S_i as above a **child** of the tile S, and S the **mother** of S_i . Let $\Omega(\varphi, \eta, g)''$ be the set of all $\omega \in \Omega(\varphi, \eta, g)'$ such that for any N, there exists $(a, b] \times [c, d) \in dom(\omega)$ with $(c, d] \supset [-N, N]$. Finally, we define $\Omega(\varphi, \eta, g)$ to be the closure of $\Omega(\varphi, \eta, g)''$. Then, (\mathbf{R}, G) acts on $\Omega(\varphi, \eta, g)$. We denote $\Omega(\varphi, \eta, 1)$ simply by $\Omega(\varphi, \eta)$ in the continuous case.

Theorem 2 For any weighted substitution (φ, η) satisfying (9) and g with (10), $\Omega(\varphi, \eta, g)$ is **R**-strictly ergodic. Moreover, the toplogical entropy of the **R**-action on $\Omega(\varphi, \eta, g)$ is 0.

We prove only that there exists a unique \mathbf{R} -invariant probability Borel measure on $\Omega = \Omega(\varphi, \eta, g)$. Since Ω is a nonempty compact metrizable space and the \mathbf{R} -action is continuous, there exists an \mathbf{R} -invariant probability Borel measure μ on it. We prove that μ is the unique measure as this.

Let $\sigma, \sigma' \in \Sigma$. We define a random variable $X_{\sigma\sigma'}(y)$ on the probability space $y \in [0, 1)$ with the Lebesgue measure:

$$X_{\sigma\sigma'}(y) = -\log \eta^n(\sigma)_i,$$

where n is the minimum positive integer, if it exists, such that there exists i with $0 \le i < L(\varphi^n(\sigma))$ satisfying that $\varphi^n(\sigma)_i = \sigma'$ and

$$\sum_{0 \le j < i} \eta^n(\sigma)_j \le y < \sum_{0 \le j \le i} \eta^n(\sigma)_j.$$

Then, $X_{\sigma\sigma'}$ exists with probability 1. Let $F_{\sigma\sigma'}$ be the distribution of the random variable $X_{\sigma\sigma'}$.

Let $S := (a, b] \times [c, d)$ be a tile in $\omega \in \Omega(\varphi, \eta, g)$ with $\omega(S) = \sigma'$. For u > b, let E be the number of the tiles in ω with color σ having the corner belonging to $[u, u + du) \times [c, d)$, where du stands for an arbitrary small positive number and we neglect all the terms with o(du). Then we have

(11)
$$\frac{Ee^{-u}}{d-c} = \sum_{n=0}^{\infty} \int_{u-b \le x \le u-b+du} F_{\sigma'\sigma} * F_{\sigma\sigma}{}^{n*}(dx),$$

where "*" implies the convolution of the distributions. It is well known by the renewal theory [1] that the above value converges to

$$(\int x F_{\sigma\sigma}(dx))^{-1} du$$

as $u \to \infty$ if $G = \mathbf{R}_+$ and to

$$(\int x F_{\sigma\sigma}(dx))^{-1} \log \lambda$$

as $u \to \infty$ satisfying that $e^{-u} \in g(\sigma)G$ if $G = \{\lambda^n; n \in \mathbf{Z}\}$ with $\lambda > 1$.

For $\sigma \in \Sigma$ and a Borel subset U of \mathbf{R}^2 , let $\Pi(\sigma, U)$ be the subset of $\omega \in \Omega(\varphi, \eta, g)$ consisting of ω which has a tile S such that $\omega(S) = \sigma$ and S has the corner belonging to U. Let $dudv := [u, u + du) \times [v, v + dv)$ and $\sigma \in \Sigma$ satisfy that $e^{-u} \in g(\sigma)G$. Since μ is **R**-invariant, $\mu(\Pi(\sigma, dudv)) = \mu(\Pi(\sigma, dudv + (0, y)))$ for any $y \in \mathbf{R}$. By integrating this equality with dy from 0 to N and applying Fubini's theorem we have

(12)
$$\mu(\Pi(\sigma, dudv)) = \frac{dv}{N} \int E(\omega) d\mu(\omega),$$

where we denote by $E(\omega)$ the number of the tiles in ω with color σ having the corner belonging to $[u, u + du) \times [0, N)$.

For any $\epsilon > 0$, take L > 0 such that the value in (11) for any $\sigma' \in \Sigma$ with $u - b \ge L$ is close to A within ϵ , where (13)

$$A = \begin{cases} (\int x F_{\sigma\sigma}(dx))^{-1} du & \text{if } G = \mathbf{R}_+ \\ (\int x F_{\sigma\sigma}(dx))^{-1} \log \lambda & \text{if } G = \{\lambda^n; n \in \mathbf{Z}\} \end{cases} (\lambda > 1).$$

For any $\omega \in \Omega(\varphi, \eta, g)$ and $y \in \mathbf{R}$, let S(y) be the tile in ω such that S(y) intersects with $\mathbf{R} \times \{y\}$ and is contained in $(-\infty, u - L] \times \mathbf{R}$ but none of its children satisfies these conditions. Then, the vertical size of S(y) is at most e^{L-u+u_0} , where

$$u_0 := \max_{\substack{\sigma \in \Sigma \ 0 \le i < L(\varphi(\sigma))}} -\log \eta(\sigma)_i.$$

Let S_1, \dots, S_k be the set of all distinct S(y)'s for $y \in [0, N)$ such that the orthogonal projection to the vertical axis of S(y) is contained in [0, N). Then, the projections of S_i 's are disjoint and we take N large enough so that their union covers large enough part of the inteval [0, N). Let \tilde{S}_i be the projection of S_i and $E_i(\omega)$ be the number of the tiles in ω with color σ having the corner belonging to $[u, u + du) \times \tilde{S}_i$. Then, by the assumption on L, (11) and (13), we have $|E_i(\omega)e^{-u} - |\tilde{S}_i|A| < |\tilde{S}_i|\epsilon$, where $|\tilde{S}_i|$ is the size of \tilde{S}_i . By adding the inequalities, we have $|E(\omega)e^{-u} - NA| < 2N\epsilon$. Thus, by integrating it with $d\mu(\omega)$, we have

(14)
$$|\int E(\omega)d\mu(\omega)e^{-u} - NA| < 2N\epsilon.$$

Conbining (12) and (14), we have

$$|\mu(\Pi(\sigma, dudv))e^{-u} - Adv| < 2\epsilon dv.$$

Since $\epsilon > 0$ was arbitrary, we have

(15)

$$\mu(\Pi(\sigma, dudv)) = \begin{cases} (\int x F_{\sigma\sigma}(dx))^{-1} e^{u} du dv & \text{if } G = \mathbf{R}_{+} \\ 1_{e^{-u} \in g(\sigma)G} (\int x F_{\sigma\sigma}(dx))^{-1} e^{u} \log \lambda dv \\ & \text{if } G = \{\lambda^{n}; n \in \mathbf{Z}\} \quad (\lambda > 1). \end{cases}$$

Thus, μ is determined and is unique, which completes the proof.

Example 4 (Fibonacci expansion) Let $\Sigma = \{0, 1\}$. Let (φ, η) be the weighted substitution on Σ such that

$$0 \to (0, \lambda^{-1})(1, \lambda^{-2}) 1 \to (0, \lambda^{-1})(1, \lambda^{-2}),$$

where $\lambda = \frac{1+\sqrt{5}}{2}$ and we arranged $(\varphi(\sigma)_i, \eta(\sigma)_i)$ in the order of i after " $\sigma \to$ ". Then, $B(\varphi, \eta) = \{\lambda^n; n \in \mathbf{Z}\}$. For $g \equiv 1$, (10) is satisfied. Let $\Omega := \Omega(\varphi, \eta, 1)$. Then, by Theorem 2, Ω is \mathbf{R} -strictly ergodic. Let μ be the unique \mathbf{R} -invariant probability Borel measure on Ω . By (15), μ satisfies that

$$\mu(\Pi(0, dudv)) = A^{-1}e^u \log \lambda dv$$

$$\mu(\Pi(1, dudv)) = B^{-1}e^u \log \lambda dv$$

for any $u, v \in \mathbf{R}$ with $e^{-u} \in G$, where

$$A = \lambda^{-1} \log \lambda + \lambda^{-3} 3 \log \lambda + \cdots$$

= $(2\lambda - 1)log\lambda$,

$$B = \lambda^{-2} 2 \log \lambda + \lambda^{-4} 4 \log \lambda + \cdots$$

= $(\lambda + 2) \log \lambda$.

Thus, we have

$$\mu(\Pi(0, dudv)) = \frac{2\lambda - 1}{5} e^u dv$$

$$\mu(\Pi(1, dudv)) = \frac{-\lambda + 3}{5} e^u dv$$

for any $u, v \in \mathbf{R}$ with $e^{-u} \in G$.

Example 5 Let $\beta = \frac{1}{4} + \frac{\sqrt{3}}{8}$. Let (φ, η) be the weighted substitution on $\{0, 1\}$ such that

$$0 \to (0,\beta)(1,\frac{1}{2}-\beta)(1,\frac{1}{2}-\beta)(0,\beta) 1 \to (1,\beta)(0,\frac{1}{2}-\beta)(0,\frac{1}{2}-\beta)(1,\beta) .$$

Note that $\frac{\log(\frac{1}{2}-\beta)}{\log\beta}$ is irrational and $B(\varphi,\eta)=\mathbf{R}_+$. Let $\Omega=\Omega(\varphi,\eta)$. Then, by Theorem 2, Ω is \mathbf{R} -strictly ergodic. Let μ be the unique \mathbf{R} -invariant probability Borel measure on Ω . Then, μ is also \mathbf{R}_+ -invariant. By (15), μ satisfies that

$$\mu(\Pi(0, dudv)) = \mu(\Pi(1, dudv)) = A^{-1}e^{u}dudv$$

for any $u, v \in \mathbf{R}$ with

$$\begin{array}{ll} A &= 2\beta (-\log \beta) + \sum_{n=0}^{\infty} (2\beta)^n (1-2\beta)^2 (-n\log \beta - 2\log(\frac{1}{2}-\beta)) \\ &= -4\beta \log \beta - 2(1-2\beta)\log(\frac{1}{2}-\beta)). \end{array}$$

This example will be discussed later.

3 Homogeneous cocycle

Let (φ, η) be a weighted substitution on a finite set Σ with $\sharp \Sigma \geq 2$ satisfying (9). Let $G = B(\varphi, \eta)$ and g satisfy (10). For $0 < \alpha < 1$, let $M_{\alpha} = M_{\alpha}(\varphi, \eta)$ be the matrix $(m_{\sigma\sigma'}{}^{(\alpha)})_{\sigma,\sigma'\in\Sigma}$ such that (16)

$$m_{\sigma\sigma'}{}^{(lpha)} = \sum_{0 \leq i < L(arphi(\sigma)) top arphi(\sigma)_i = \sigma'} \eta(\sigma)_i{}^lpha$$

We assume that

(17) 1 is an eigen value of M_{α} with a nonzero eigen column vector $\xi = (\xi_{\sigma})_{\sigma \in \Sigma}$.

Define $\tilde{\xi}: \Omega(\varphi, \eta, g) \times \mathbf{R}^2 \to \Sigma$ and $\tilde{S}: \Omega(\varphi, \eta, g) \times \mathbf{R}^2 \to \mathbf{R}$ by

$$\tilde{\xi}(\omega, x, y) = \xi_{\tilde{\omega}(x, y)} \text{ and }
\tilde{S}(\omega, x, y) = |\tilde{S}| \text{ if } (x, y) \in S \in dom(\omega),$$

where $|\tilde{S}|$ is the vertical size of S. We finally define $F: \Omega(\varphi, \eta, g) \times \mathbf{R} \to \mathbf{R}$ by

(18)

$$F(\omega, t) = \lim_{x \to \infty} F(x, \omega, t)$$
, where $F(x, \omega, t) = \int_0^t \tilde{\xi}(\omega, x, y) \tilde{S}(\omega, x, y)^{\alpha - 1} dy$

Theorem 3 F is a nonzero α -G-homogeneous cocycle on $\Omega(\varphi, \eta, g)$.

(We omit the proof.)

Corollary 1 If G in Theorem 3 is continuous, then F defines a self-similar process with strictly ergodic, stationary increments having 0 entropy.

Example 6 Let us take $\Omega = \Omega(\varphi, \eta)$ in Example 5. Then, for the matrix $M_{\frac{1}{2}}$ in (16), we have

$$M_{rac{1}{2}} = \left(egin{array}{cc} rac{\sqrt{3}+1}{2} & rac{\sqrt{3}-1}{2} \ rac{\sqrt{3}-1}{2} & rac{\sqrt{3}+1}{2} \end{array}
ight).$$

Then $\xi = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ is an eigen vector of $M_{\frac{1}{2}}$ corresponding to the eigen value 1. Let F be the cocycle on Ω defined in (18) for this ξ . Then, F is a self-similar process with stationary increments of order $\frac{1}{2}$ which has 0 entropy.

4 Remarks

To represent a nonlinear f-expansion, we need a space of colored tilings with curved tiles S of the shape

$$S = \{(x, y); a(y) < x \le b(y) \text{ and } c \le y < d\},\$$

where c < d are real numbers and a, b are smooth functions on [c, d) such that a(y) < b(y) for any $y \in [c, d)$ and $\int_c^d e^{b(y)} dy = 1$. It is discussed in [4] in a somewhat different form.

The cocycle in Example 6 has the least possible complexity among the nonzero, α -homogeneous, minimal cocycles [5].

The transformation group $\{\lambda : \lambda \in G\}$ on the probability space (Ω, μ) with the unique **R**-invariant probability measure μ can be proved to be ergodic. Therefore, by Theorem 1 and the ergodic theorem, for any α -G-homogeneous cocycle F on Ω ,

$$C = \lim_{\epsilon \downarrow 0} \frac{1}{-\log \epsilon} \int_{\epsilon}^{1} \frac{|F(\omega, t+s) - F(\omega, t)|^{1/\alpha}}{s} \frac{ds}{s}$$

with probability 1, where

$$C = \int |F(\omega, 1)|^{1/\alpha} d\mu(\omega).$$

Using this, we can prove Itô's formula for the case $\alpha = 1/2$:

$$f(F(\omega, B)) - f(F(\omega, A))$$

$$= \int_A^B f'(F(\omega, s)) dW(\omega, s) + \frac{C}{2} \int_A^B f''(F(\omega, s)) ds$$

with probability 1, where the "martingale part" $W(\omega, s)$ is defined in a weak sense [3]. Therefore, 1/2-homogeneous cocycles on a $\Omega(\varphi, \eta)$ may well be called deterministic Brownian motions.

References

- [1] W. Feller, An Introduction to Probability Theory and Its Applications, Vol. II, John Wiley & Sons, 1966.
- [2] T. Kamae & M. Keane, A class of deterministic self-affine processes, Japan J. Applied Math. 7-2 (1990) pp.185-195.
- [3] T. Bedford & T. Kamae, Stieltjes integration and stochastic calculus with respect to self-affine functions, Japan J. Industrial Applied Math. 8-3 (1991) pp.445-459.
- [4] T. Kamae & S. Takahashi, Ergodic Theory and Fractals, Springer-Verlag in Tokyo, 1993 (in Japanese).
- [5] J-M. Dumont, T. Kamae & S. Takahashi, Minimal cocycles with the scaling property and substitutions, Israel J. Math. (to appear).
- [6] T. Kamae, Linear expansions, strictly ergodic homogeneous cocycles and fractals (to appear).