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Abstract

The integrability in the sense of Painlevé property is examined
in the long- and short- wave interaction equation. The equation de-
scribed in a coupled form of the NLS equation with the K-dV equation
has only two parameters in the normalized form. When the equation
is reduced to the ODE through the traveling wave transformation, it
is shown to pass the Painlevé test for three cases of the parameters.
On the other hand, for these parameters, when the test is directly ap-
plied to the original PDE, it is found that two cases except for one do
not pass the test without any restrictions. However, the test is found
not to be successful in the nearly integrable region. Furthermore, the
possibility of ‘finite time integrability’ is discussed for a special case
of the parameters.

1 Introduction.

In dispersive media, wave interactions play an important role in energy ex-
change among different two or more wave modes, if resonance conditions
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with respect to wave frequencies (and wave numbers) or wave velocities are
satisfied in these wave modes. The long- and short-wave interaction is one
of such interactions and thought of as a special case of the three-wave inter-
action. {1] That is to say, assuming a single long wave (Ak,w(Ak)) and two
short waves (k + Ak/2,w(k & Ak/2)), from the resonance condition of the

three-wave interaction given as

W(AK) = w(k + Ak/2) — w(k — Ak/2), (1)

we can approximately obtain the following resonance condition between long
and short waves:

Ak - (Bw/0K)|y ~ w(Ak), (2)

where £ = |k| and w < 1 is assumed for Ak (< k). The above condition is
found to be equivalent to ‘

Vp + Vg & U2 Or v, COS Y 2 vy, (3)

where the phase velocity of the long wave is given by v, = w(Ak)Ak/Ak?
and the group velocity of the short wave by v, = (Ow/0k)|,. Therefore,
if the above condition is satisfied, the interaction is possible between the
two waves propagating in the different direction by ¥. In particular, this
condition is simplified to v, ~ v, when both waves propagate in the same
direction (¢ = 0). ‘

Such a resonance condition can be satisfied in water waves, plasma waves
and others in dispersive media. [1]-[6] Although several nonlinear interaction
equations have been proposed for these waves, in this article, we deal with the
following equation, which is represented in a coupled form of the Nonlinear
Schrédinger (NLS) equation with the Korteweg-de Vries (K-dV) equation: (7]

1804+ S =S50, L+ aLly+ Bl = |5, (4)

where L and S denote, respectively, the real long wave and the complex
amplitude of the envelope of the short wave, while 2 and ¢ are spatial and
temporal coordinates in a frame of reference moving with the phase velocity
of the long wave or the group velocity of the short wave.

In the above equation, which is expressed in the normalized form with
only two parameters a and 3, the parameters and the alternative of the &
signs in front of S;; depend upon the individual properties of the waves and
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the media concerned: [7] the gravity and capillary waves in a single layer fluid
(o, B < 0 and + sign), the gravity waves in a two-layer fluid (8 < 0 and —
sign), the ion acoustic and electron plasma waves (o > 0, § < 0 and +sign)
and so on. However, since the case of — sign can be formally obtained if ¢,
L and 3 in eq.(4) are replaced by —t, —L and —/3, we will consider only the
case of + sign in the followings.

Depending upon the parameters o and 3, physical meanings and mathe-
matical properties of this equation can be said as follows: When both o and
B are equal to zero, eq.(4) represents the case when the magnitude of the
long wave is much less than that of the short wave (|L| < |S]). For this case,
the equation is proved to be integrable or to have the n-soliton solution by
means of the inverse scattering transform (IST) method. [8, 9] On the other
hand, when both « and S have finite values, the equation represents the case
for which the magnitudes of the long and short waves are of the same order
(|L] ~ |S]). In this case, not only analytic solitary wave (one-soliton) solu-
tions, but also a variety of numerical solitary wave solutions including ones
with oscillatory damped tails are found. [10] It is expected, however, that the
long time asymptotic wave behavior may become chaotic for general initial
waves or soliton interactions, since the equation for = 1 is shown to be
non-integrable through IST [11]. Additionally, in the Hirota bilinear form
for o = —64, the n-soliton solution has not been found for o, 8 # 0. [11, 12]
Nevertheless, for the nearly integrable case in the vicinity of @ = 8 =0, it 1s
numerically shown that the wave behavior is regular or irregular depending
upon initial conditions and values of the parameters. [10]

As is seen in the above, though eq.(4) is shown to be non-integrable for the
particular o and 3, the integrability has not yet been analytically surveyed
for all values of the parameters, in particular, in the nearly integrable region.
Therefore, in this article, the integrability of eq.(4) is examined in the (a, §)
parameter space by means of the Painlevé test, which is known as one of
the useful and practical techniques to test the integrability despite some
drawbacks. [13, 14] '

The organization of this article is as follows: In section 2, the results
of the test are shown for the reduced ordinary differential equation (ODE)
through a variable transformation (Painlevé ODE test). In addition, they
are confirmed by examining the surface of section for particular parameters.
In section 3, for the cases which pass the ODE test, the original partial
differential equation (PDE) is directly tested (Painlevé PDE test). And
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finally, in section 4, we remark the validity of the test in the nearly integrable
region and the possibility of the ‘finite time integrability’.

2 Painlevé ODE test.

For the Painlevé ODE test, we first reduce eq.(4) to the ODE through the

following traveling wave transformation:

= f(Qexpi(A/2)(z - V1), L=g((), ((=2z-X) ()

where A and V are constants. Substituting (5) into eq.(4) and integrating g
with respect to (, we can easily obtain the reduced ODE

fee + (A2)(V = A/2)f = fg, Baec+(af2)g* = Ag = f*=C?,  (6)

where we have imposed the boundary conditions: f — C (const.), f¢, fec,
9,9¢,9cc — 0 as |(| — oo, and A = 2V for C # 0.
Making use of the following variable transformation into eq.(6):

9= (2/8)"g, ¢ —(8/2)"4, (7
we can show that our system has Hénon-Heiles Hamiltonian
H=(1/2)[f} +9{) +I(f.9), (8)

where

I=(B/2)'2(M4)(V = M[2)f* = (2/8)' (A 4)g* = (f* = C*)g/2+ ag®/(68).

Since the Painlevé properties (P-properties) in the above system have been
examined by Chang et al. [15] for § > 0 and C = 0, it is expected that
our ODE has similar singular structures. In fact, it is found that eq.(6) has
similar P-properties. [10]

According to the procedure of the test by Ablowitz et al, [16] the solutions
of eq.(6) are expanded in the following Laurent series:

f=0C—¢) Zf;é—éo g=(C—C)” Zgg ¢ = Go). (9)
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Table 1: Painlevé ODE Test
a=1,b=2,ff=-2)g0=2
a=p=0 r = —1,4 (general solution)
P-property
a=2b=2,f=-T23,90=6

Casel |r =-3,-1,6,8 (singular solution)
P-property
a=—643 a=1,b=2 g0 =2, fo: arbitrary
Case I | 7 = —1,0,3,6 (general solution)
P-property
a :27C= 2afg = 18ﬂa go = 6
Casel | r=-1,2,3,6 (general solution)

P-property for V.- A/2+2/8=0(C =0) or
V=A=0(C+#0)

a=-—0 a=—4,b=2,g0 =12, fo: arbitrary

Case Il | r = —7,-1,0,6 (singular solution)

' P-property

where (, denotes an arbitrary movable singularity depending upon initial
conditions. Substituting the above expression into eq.(6) and equating coef-
ficients of powers of (, we can obtain the leading orders a and b for j = 0, and
the recursion relations with respect to f; and g; for 7 > 1. From the recur-
sion relations, we can see that the coefficients f; or/and g; become arbitrary
for particular values of j = r, which is called resonances. The resonances for
r = —1 and 0 are, respectively, corresponding to the arbitrariness of (o and
fo (and/or go), though negative resonances for r < —1 are ignored. 18] For
the P-property, these a, b and r are required, at least, to be integers, which
means that the solutions should be of the pole type or the single-valued.
Then, Table I shows that the candidates for the P-property are limited to
three significant cases of a and 3. It is found in this table that the case
a = 3 = 0 has only general solution, while the other cases have both gen-
eral and singular solutions in pairs. In these solutions, the general solution
means that the equation has equal arbitrary parameters to the order of the
equation, while the singular solution means that the solution has less arbi-
trariness than the order of the equation. However, in order for these three
candidates to have the P-property, the self-consistency of the resonance must
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be checked in the recursion relations. Resulting from this, it is finally found
that the Case I for @ = —f has the P-property under the restrictions that
either V—A/2+2/8=0for C =0o0r V=X =0 for C # 0, while the other
cases have P-property without any restrictions.

The results of the ODE test can be confirmed by examining the surfaces
of section for the Hénon-Heiles system (8) when > 0 and C = 0. Although
phase trajectories in this system move through the four-dimensional phase
space (f, f¢,9,9¢), we can construct the two- dimensional surface of section
(9,9¢), by slicing the phase space at f = 0 and taking the trajectories with
f¢ > 0 for the fixed total energy E(= H). In the followings, typical examples
of the surfaces of section are shown for both integrable and non-integrable
cases: Figure 1 shows the sections for the integrable case o = —683, where
o =-2,8=1/3,A = 2 and V = 1/2 are taken. Figures (a) and (b),
respectively, show the surfaces when E=0.0072 and 0.262. We can see that
the closed smooth curves are lying on the surface even if the energy increases,
which means that the trajectories move on the tori in the original phase
space even in the nonlinear regime. The situation on the regular motion of
the trajectories is similar when o = —f, if the condition V — A/2+2/8 =10
is satisfied. Figure 2 shows this case, where we take a = —4,8 =4, )\ = 2
~and V =1/2. As is seen in both Figs.(a) for E=0.036 and (b) for E=0.2186,
even if the energy increases, the smooth curves are retained on the surface,
which means that the motion of the trajectories is regular. However, if this
condition is not satisfied, the motion of the trajectories are irregular in the
nonlinear regime. This is shown in Fig.3, where a = —1/3,8 =1/3,A = 2
and V = 1/2. It is found from both Figs.(a) for E=3.79 and (b) for E=7.79
that the smooth curves are partly replaced by vaguely scattered points, when
the energy increases. Furthermore, in Fig.4 for o = 8, we can illustrate one
of the examples which do not pass the test and show the large regions of
chaotic motion, where we take « = 8 =1/3,A =2 and V = 1/2. Although
closed smooth curves are lying on the surface for sufficiently small energy
E=0.05 (Fig.(a)), when the energy increases to E=0.2 (Fig.(b)), the curves
become vague due to scattering points along them. Finally, when E=0.5, all
smooth curves disappear and random spread of points are found all over the
surface within the maximum energy shell (Fig.(c)).
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Figure 1: Surface of section for the integrable case = —603, where o =

2, 8=1/3,A=2and V = 1/2: (2)E=0.0072, (b)E=0.262.
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the integrable case o =

A2+2/B8 =0, where « = —4,8 = 4,A =2 and V = 1/2: (a) E=0.0036,
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(a)

Figure 3: Surface of section for the non-integrable case o = —f when V —

M2+2/8#0, where a = —1/3,8=1/3,A=2and V = 1/2: (a)E=3.79,

(b)E=7.79.
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Figure 4: Surface of section for the non-integrable case a = B, where a =

B=1/3,x=2and V =1/2: (a)E=0.005, (b)E=0.2, (c) E=0.5.




3 Painlevé PDE test.

It is known that the test in the reduced ODE gives only necessary conditions
for the original PDE to be completely integrable. [16] In other words, a given
PDE is not completely integrable when the ODE reduced from the PDE does
not have the P-property. Therefore, in this section, the integrability of the
original PDE is directly examined for the three cases that pass the ODE test
in the preceding section.

Let us apply the Painlevé PDE test, whose direct procedure was intro-
duced by Weiss et al. [17] In this test, a given partial differential equation is
said to have the P- property if the solutions are single-valued in the neigh-
borhood of the arbitrary and analytic (movable) singular manifold. Since
the singular manifold for the ODE reduces to the singularity with respect
to a single variable, the PDE test may be considered as a straightforward
extention of the ODE test with similar procedure. For convenience, rewriting
eq.(4) in the following form:

TU F Ugy = UW, — iU+ Vg = VW, Wy + qWWs + Pwerr = (wv)z, (10)

the solutions are set as

u=¢* Z‘ujq’)", v=2¢"" Zngbj, w= (b_cijgbj. (11)

j=0 i=0 1j=0
Making use of (11) into eq.(10), we can determine the leading order «, b and
c and the resonances r like in the ODE test, whose values are integers for the
same three cases of o and 3 as in Table I. The results of the PDE test are
shown in Table II, where the case « = 3 = 0 have only general solution, while
the other two cases have both singular and general solutions. [19] Checking

the recursion relations for the self-consistency of the resonances, it is finally
found that the case of @« = 8 = 0 and the Case II for o« = —f hold the

P-property without any restrictions. The latter case, however, is excluded in-

the present context, since the solutions u and v are regular to vanish closely
near the singular manifold ¢ = 0. Consequently, the significant solution is
only w which is nothing but that of the K-dV equation, where the resonances
occur forr = —1,4,6. On the other hand, the other cases have the P-property
through the traveling wave transformation like ¢ = 2 — ¢t (c:const.), that is
to say, the P-property is conditional. Thus, only the case of « = f = 0 i1s
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Table 2: Painlevé PDE Test

a=b=1,c=2,upvy = 2¢,¢: (uo or vo: arbitrary)
a=p3=0 wo = 2¢2, r = —1,0,2,3,4 (general solution)
P-property

a=b=2,c=2ugvy = =723, (uo or vo: arbitrary)
Case I | wo =642, r=-3,-1,0,4,5,6,8, (singular solution)
Conditional P-property

a=—643 v a=b=1,c=2,wy = 293, up and vo: arbitrary
Case Il | r =—1,0,0,3,3,4,6 (general solution)
Conditional P-property

a=b=2,c=2,upvo = 183¢% (uo or vo: arbitrary)

Case I | wo=6¢2, r=-1,0,2,3,4,5,6 (general solution)
Conditional P-property
a= -3 a=b=—4,c=2,wy = 12¢2, ug and vy: arbitrary

Case Il | r = —-7,-7,-1,0,0,4,6 (singular solution)
P-property

completely integrable, which is consistent with the result of IST method. (8, 9]

4  Concluding remarks.

We can see in Table II that the leading orders and some coefficients in the
expansions are coincident or adjustable between the completely integrable
case @ = B = 0 and the case for a = —683 (Case II). Although this suggests
that these two cases are closely related to each other, the test is found not to
be successful in the nearly integrable region o, 8 ~ 0 for a = —68, since the
singular manifold expansions become non-uniformly valid when B tends to
zero. This non-uniformity may be due to the small parameter 3 in the highest
order derivative term in eq.(4). Additionally, since there exists one-soliton
solutions which are uniformly valid for @ = —68 including o = 8 = 0, [10]
the usual singular manifold expansions (9) and (11) is not appropriate to
examine the integrability in this region.

On the other hand, in the general solution for @ = —68 (Case II), we
should remark that the compatibility condition that permits the P-property
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is found to be relaxed considerably for a finite time. That is to say, since the
significant compatibility condition for the P- property is written as

6, — 00, =0, (12)
through 0 = ¢;/¢., the general solution of the above wave equation

0 = O(z + th), - (13)

is analytic for a finite time depending upon initial conditions, where © de-
notes an arbitrary function. Therefore, for a certain class of ¢ which is given
by (13) through 6 = ¢;/¢,, the compatibility condition (12) can be satisfied
for a finite time during which the solution (13) is analytic and arbitrary.
This means that the equation holds the P-property for the finite time and is
expected to have multi-soliton solutions for the time. As a special case, it is
easily seen that the condition (12) is identically satisfied for an infinitely long
time under the traveling wave transformation ¢ = z — ¢t, which is confirmed
by the existence of one-soliton solution. {10] Thus, for « = —643, though one
soliton state is valid for an infinitely long time, the soliton interactions due
to multi-soliton state might be elastic for the finite time, that is to say, the
possibility of ‘finite time integrability’ is expected.
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