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序. 本稿は, Annetta Aramova, J\"urgen Herzog との共同研究である.
多項式環において, (斉次式, 特に) 単項式で生成されるイデァルがあったと
き, その極小自由分解を構成し, ベッチ数列を計算することは, Hilbert,

Macaulay の仕事に起源を有する伝統的な問題である. 単項式イデァルの理論
では, lexsegment および stable と呼ばれるイデアルの類が重要である.
1990年, Eliahou と Kervaire は stable イデア)の極小自由分解を具
体的に構成することに成功した. 更に, Gr\"obner 基底の理論と Eliahou-

Kervaire 分解を使って, 1993年, Bigatti と Hulett は, それぞれ独
立に, Hilbert 函数を固定したとき, ベッチ数列の上限は lexsegment イデ

アルで与えられることを示した. 他方, いわゆる squarefree な単項式が生
成するイデアルは, 昨今, 可換代数と組合せ論の両面から盛んに研究されてい
る. 本稿では, lexsegment および stable イデァノレの squarefree 類似の
考察を試みる.

Abstract

The squarefree analogue of lexsegment, strongly stable, and stable mono-
mial ideals is studied. First, based on a combinatorial technique, it is proved
that a minimal free resolution of a squarefree lexsegment ideal generated by
monomials of the same degree is linear. Secondly, by means of the computa-
tion of the Koszul homology, we construct the explicit minimal free resolution
of a squarefree stable ideal. On the other hand, a simple algebraic method
how to construct the squarefree lexsegment ideal with the same Hilbert func-
tion of a given ideal generated by squarefree monomials is discussed. We
conclude the present paper with a conjecture on the Betti numbers of an ideal
generated by squarefree monomials.
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Introduction

The ideals generated by squarefree monomials have been studied from view points
of both commutative algebra and combinatorics. Let $A=k[x_{1}, x_{2}, \ldots, X_{v}]$ be the
polynomial ring in $v$ variables over a field $k$ with the standard grading, i.e., each
$\deg x_{i}=1$ , and suppose that an ideal $I$ of $A$ is generated by squarefree monomials.
We are interested in a graded minimal free resolution

$0 arrow\bigoplus_{j\in \mathrm{Z}}A(-j)\beta_{h_{j}}arrow\varphi_{h}$ $... arrow\bigoplus_{j\in \mathrm{z}}\varphi_{2}A(-j)\beta_{1_{j}}arrow A\varphi_{1}\varphi_{0}arrow A/Iarrow 0$

of $A/I$ over $A$ . The above minimal free resolution is called $q$-linear if $\beta_{i_{j}}=0$ for each
$1\leq i\leq h$ and for each $j\neq q+i-1$ . Our original problem for organizing the present
paper is as follows: Given arbitrary integers $d,$ $q$ and $e$ with $q-1\leq e\leq d$ and
$q\geq 2$ , construct an ideal $I$ generated by squarefree monomials with $\dim A/I=d$

and depth $A/I=e$ such that $A/I$ has a $q$-linear resolution. To find a solution
of this problem, the concept of squarefree lexsegment ideals, which is the formal
analogue of lexsegment monomial ideals studied in, e.g., Bigatti [Big] and Hulett
[Hul], is introduced in Section 1. When $I$ is generated by squarefree monomials, a
topological formula to compute the Betti numbers $\beta_{i_{J}}$. is found by Hochster [Hoc].
By virtue of the formula, a minimal free resolution of $A/I$ over $A$ turns out to be q-
linear if $I$ is a squarefree lexsegment ideal of degree $q$ , see Theorem (1.4). Moreover,
the required solution to our original problem is obtained in Corollary (1.6). We refer
the reader to, e.g., $[\mathrm{B}\mathrm{r}\mathrm{u}-\mathrm{H}_{1}]$ , [Bru-H2], $[\mathrm{H}_{2}]$ and [T-H] for some related topics.

In the theory of monomial ideal, there is the following hierarchy of ideals: lexseg-
ment monomial $\mathrm{i}\mathrm{d}\mathrm{e}\mathrm{a}\mathrm{l}\mathrm{s}\Rightarrow \mathrm{s}\mathrm{t}\mathrm{r}\mathrm{o}\mathrm{n}\mathrm{g}\mathrm{l}\mathrm{y}$ stable monomial $\mathrm{i}\mathrm{d}\mathrm{e}\mathrm{a}\mathrm{l}\mathrm{s}\Rightarrow \mathrm{s}\mathrm{t}\mathrm{a}\mathrm{b}\mathrm{l}\mathrm{e}$ monomial ideals.
In Section 2, the squarefree analogue of stable ideals is defined and, based on the
technique developed in [A-H], the explicit minimal free resolution of a squarefree
stable ideal is construced, see Theorem (2.1) and Proposition (2.2). We find that
the new resolution has the same formal structures as the classical Eliahou-Kervaire
resolutions [E-K] of stable monomial ideals.

On the other hand, the main goal of Section 3 is to show that, given an ideal $I$

of $A$ generated by squarefree monomials, there exists a squarefree lexsegment ideal
$J$ such that $A/I$ and $A/J$ have the same Hilbert function (cf. Theorem (3.5)). This
result itself is well known in classical combinatorics and, in fact, is equivalent to the
essential (and difficult) part of the so-called the Kruskal-Katona theorem, which
give a complete characterization on the number of faces of simplicial complexes
(see, e.g., $[\mathrm{H}_{1}$ , p. 18]). The $\mathrm{b}$ enefit of our proof is to avoid tedious combinatorial
technique and is based on simple algebraic results. Of course, there exists a quite
short combinatorial proof of the Kruskal-Katona theorem, e.g., [Day], however, our
argument enables the reader to understand the “higher” algebra behind the Kruskal-
Katona theorem. We first define the squarefree analogue of strongly stable monomial
ideals and show that, for an ideal $I$ generated by squarefree monomials, there exists
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a squarefree strongly stable ideal $I’$ such that $A/I$ and $A/I’$ have the same Hilbert
function. This idea is borrowed from Kalai’s work ( $[\mathrm{K}\mathrm{a}1_{1}]$ and $[\mathrm{K}\mathrm{a}1_{2}]$ ) on algebraic
shifting with exterior algebras. We introduce instead the “indicator algebra” of an
ideal $I$ of $A$ generated by (squarefree) monomials, which is defiend to be the quotient
algebra $A/(I, x^{2},X^{2}12’\ldots , x_{v}^{2})$ . In the second step, based on the idea of Bigatti [Big],
given a squarefree strongly stable ideal $I’$ , we construct the squarefree lexsegment
ideal $J$ such that $A/I’$ and $A/J$ have the same Hilbert function.

In Section 4 we first give an explicit formula to compute the Betti numbers of the
indicator algebra of a squarefree strongly stable ideal. Let $I$ be an ideal generated by
squarefree monomials and $J$ the squarefree lexsegment ideal such that $A/I$ and $A/J$

have the same Hilbert function. Then it may be conjectured that each Betti number
$\beta_{i_{j}}$ of $A/I$ is less than or equal to that of $A/J$ , the squarefree analogue of Bigatti-
Hulett theorem on the upper bounds of Betti numbers of a given Hilbert function. It
also can be expected that each Betti number $\beta_{i_{j}}$ of the indicator algebra of $I$ is less
than or equal to that of $J$ . Even though we have not yet proved these conjectures,we
obtain some related results, see Theorem (4.4). We hope these conjetures will turn
out to be true in the near future.

After distributing the first version of this manuscript, we learned that resolutions
of similar ideals (called “

$\mathrm{l}\mathrm{e}\mathrm{x}$ -seg with holes” and “
$\mathrm{l}\mathrm{e}\mathrm{x}$-seg plus powers”) are studied

in [C-E] independently.
We refer the reader to, e.g., [Bru-Her], $[\mathrm{H}_{1}],$ $[\mathrm{H}o\mathrm{c}]$ and [Sta] for the detailed

information about combinatorial and algebraic background. Let $\mathrm{Z}$ denote the set of
integers and $\mathrm{N}$ the set of nonnegative integers. We write $\#(X)$ for the cardinality of
a finite set $X$ .

\S 1. Simplicial complexes with linear resolutions

A simplicial complex $\triangle$ on the vertex set $V=\{x_{1}, x_{2}, \ldots , x_{v}\}$ is a collection of
subsets of $V$ such that (i) $\{x_{i}\}\in\Delta$ for every $1\leq i\leq v$ and (ii) $\sigma\in\triangle,$ $\tau\subset\sigma\Rightarrow$

$\tau\in\triangle$ . Each element $\sigma$ of $\triangle$ is called a face of $\triangle$ . Set $d= \max\{\#(\sigma) ; \sigma\in\triangle\}$ and
define the dimension of $\triangle$ to be $\dim\Delta=d-1$ . Let $\tilde{H}_{i}(\triangle;k)$ denote the i-th reduced
simplicial $\mathrm{h}\mathrm{o}\mathrm{m}o$logy $\mathrm{g}\mathrm{r}\mathrm{o}\mathrm{u}\mathrm{p}.\mathrm{o}\mathrm{f}\triangle$ with the coefficient field $k$ . Note that $\tilde{H}_{-1}(\triangle;k)=0$

if $\triangle\neq\{\phi\}$ and

$\tilde{H}_{i}(\{\emptyset\};k)=\{$

$0$ if $i\geq 0$

$k$ if $i=-1$ .

Given a face $\sigma$ of $\triangle$ , we define the subcomplexes $1\mathrm{i}\mathrm{n}\mathrm{k}_{\Delta}(\sigma)$ and $\mathrm{s}\mathrm{t}\mathrm{a}\mathrm{r}_{\Delta}(\sigma)$ to be

$1 \mathrm{i}\mathrm{n}\mathrm{k}_{\Delta}(\sigma)=\{_{\mathcal{T}\in\triangle} ; \sigma\bigcap_{\mathcal{T}=}\emptyset, \sigma\cup\tau\in\triangle\}$ ;

$\mathrm{s}\mathrm{t}\mathrm{a}\mathrm{r}_{\Delta}(\sigma)=\{\tau\in\triangle ; \sigma\cup\tau\in\triangle\}$ .

Let $A=k[x_{1,2}x, \ldots, x_{v}]$ be the polynomial ring in $v$ variables over a field $k$ . Here,
we identify each $x_{i}\in V$ with the indeterminate $x_{i}$ of $A$ . Define $I_{\Delta}$ to be the ideal
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of $A$ generated by all squarefree monomials $Xi_{1}Xi_{2}\ldots Xi_{\mathrm{r}},$ $1\leq i_{1}<i_{2}<\cdots<i_{r}\leq v$ ,
with $\{x_{i_{1},i_{2}i_{r}}X, \cdots, x\}\not\in\triangle$ . We say that the quotient algebra $k[\triangle]:=A/I_{\Delta}$ is the
Stanley-Reisner ring of $\triangle$ over $k$ . The Krull-dimension of $k[\Delta]$ is $\dim k[\triangle]=d$

$(=\dim\Delta+1)$ . Let depth $k[\Delta]$ denote the depth of $k[\triangle]$ . We easily see that if $I$ is
an ideal of $A$ generated by squarefree monomials of degree $\geq 2$ , then there exists a
unique simplicial complex $\triangle$ on $V$ with $I–I_{\Delta}$ .

In what follows, we consider $A$ to be the graded algebra $A=\oplus_{n\geq 0}A_{n}$ with the
standard grading, i.e., each $\deg x_{i}=1$ , and may regard $k[\triangle]=\oplus_{n\geq 0}.(k[\triangle])_{n}$ as a
graded module over $A$ with the quotient grading. We write $A(j),$ $J\in \mathrm{Z}$ , for the
graded module $A(j)=\oplus_{n\in \mathrm{Z}}[A(j)]_{n}$ over $A$ with $[A(j)]_{n}:=A_{n+j}$ .

We study a graded minimal free resolution

$0 arrow\bigoplus_{j\in \mathrm{Z}}A(-j)\beta_{h_{j}}arrow\varphi_{h}$ $... arrow\bigoplus_{i\in \mathrm{z}}\varphi_{2}A(-j)^{\beta 1}jarrow A\varphi_{1}\varphiarrow k0[\triangle]arrow 0$
(1)

of $k[\triangle]$ over $A$ . Here $h$ ( $=v$ –depth $k[\triangle]$ ) is the homological dimension of $k[\triangle]$

over $A$ and $\beta_{i}=\beta_{i}^{A}(k[\triangle]):=\sum_{j\in \mathrm{Z}}\beta i_{j}$ is the i-th Betti number of $k[\triangle]$ over $A$ . It is
known [Hoc, Theorem (5.1)] that

$\beta_{i_{\mathrm{J}}}=\sum_{(W\subset V,\# W)=j}\dim k\tilde{H}_{j}-i-1(\triangle w;k)$
, (2)

where $\triangle_{W}$ is the simplicial complex

$\triangle w=\{\sigma\in\triangle ; \sigma\subset W\}$

on the vertex set $W$ . Thus, in particular, we have

$\beta_{i}A(k[\triangle])=\sum\dim_{k}\tilde{H}\#(W)-i-1(\triangle_{W}; kW\subset V)$
.

A minimal free resolution (1) is called $q$-linear if $\beta_{i_{j}}=0$ for each $1\leq i\leq h$

and for each $j\neq q+i-1$ . We say that $k[\triangle]$ has a $q$-linear resolution if a graded
minimal free resolution of $k[\triangle]$ over $A$ is $q$-linear. If $k[\triangle]=A/I_{\Delta}$ has a q-linear
resolution, then $I_{\Delta}$ is generated by square-free monomials of degree $q$ ; in particular,
depth $k[\triangle]\geq q-1$ (see Lemma (1.2) below).

The purpose of this section is, given arbitrary integers $d,$ $q$ and $e$ with $q-1\leq$

$e\leq d$ and $q\geq 2$ , to construct a simplicial complex $\triangle$ with $\dim k[\Delta]=d$ and
depth $k[\triangle]=e$ such that $k[\triangle]$ has a $q$-linear resolution.

We now introduce the concept of squarefree lexsegment ideals. Let
note the set of all squarefree monomials of degree $q\geq 1$ in the variables $V=$
$\{x_{1}, x_{2}, \ldots, X_{v}\}$ . We write $\leq_{1\mathrm{e}\mathrm{x}}$ for the lexicographic order on the finite set
i.e., if $S=x_{i_{1}}x_{i_{2}}\cdots x_{i_{q}}$ and $T=x_{j_{1}}x_{j_{2}}\cdots X_{j_{q}}$ are squarefree monomials belong-
ing to
then $S<_{1\mathrm{e}\mathrm{x}}T$ if $i_{1}=\gamma_{1},$

$\ldots,$ $\iota_{s}-1=\gamma_{s-1}$ and $i_{s}>j_{s}$ for some 1 $\leq s\leq q$ . A
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nonempty set $\mathcal{M}\subset$ is called a squarefree lexsegment set of degree $q$ if $T\in \mathcal{M}$ ,

$S\in$ and $T\leq_{1\mathrm{e}\mathrm{x}}S$ imply $S\in \mathcal{M}$ . For example, if $v=5$ and $q=3$ , then
$\{X_{1}X_{2}X3, X_{1}X2x4, x1x2x_{5,1}xX3x4, x_{1}X3x5, x_{1}X_{4\mathrm{s}}x, x_{2}x_{3}X_{4}\}$ is a squarefree lexsegment
set of degree $q$ . An ideal $I$ of $A=k[x_{1}, x_{2}, \ldots, X_{v}]$ is called a squarefree lexseg-
ment ideal of degree $q$ if $I$ is generated by the squarefree monomials belonging to a
squarefree lexsegment set of degree $q$ . More generally, we say that an ideal $I\subset A$

is squarefree lexsegment ideal if $I$ is generated by squarefree monomials and if, for
every $1\leq q\leq v$ ,

$T\in I\cap,$ $S\in$ and $T<_{1\mathrm{e}\mathrm{X}}s$ imply $S\in I$ .

It follows immediately that if $I\subset A$ is a squarefree lexsegment ideal of degree $q$

then $I$ is a squarefree lexsegment ideal.
First, we compute the Krull-dimension and the depth of the quotient algebra

$A/I$ of a squarefree lexsegment ideal $I$ of degree $q$ .

(1.1) PROPOSITION. Let an ideal I of $A=k[x_{1}, x_{2}, \ldots , x_{v}]$ be a squarefree

$leXsegmentit_{oa}squarefreeeXSegmentsdea_{l(}lofdegreeqwhiChisget\mathcal{M}\subset$

enerated by the $\mathit{8}quarefree$ monomials belonging
$Vq)$ . If $x_{\xi_{1}}x_{\xi 2}\cdots x_{\xi_{q}},$ $1\leq\xi_{1}<\xi_{2}<\cdots<\xi_{q}\leq v$ ,

is a unique minimal element (with respect $to<_{1\mathrm{e}\mathrm{x}}$ ) of $\mathcal{M}$ , then $\dim A/I=v-\xi_{1}$ .

Proof. First, we show that if $P=(xi_{1}, xi_{2}, \ldots, xi_{r}),$ $1\leq i_{1}<i_{2}<\cdots<i_{r}\leq v$ ,
is a prime ideal of $A$ with $I\subset P$ , then $r\geq\xi_{1}$ . We may assume that $\xi_{1}\geq 2$ .
Let $\mathcal{M}-\{x_{1}\}$ be the set of all squarefree monomials $T$ of $\mathcal{M}$ such that $x_{1}$ does
not divide $T$ . Then $\mathcal{M}-\{x_{1}\}$ is a squarefree lexsegment set of degree $q$ in the
variables $x_{2},$ $x_{3,.*}$ . , $x_{v}$ . Hence $I’=(I, x_{1})/(x_{1})$ is a squarefree lexsegment ideal of
$A’=k[x_{2,3,*}x. ., x_{v}]$ of degree $q$ and $P’=(P, x_{1})/(x_{1})$ is a prime ideal of $A’$ with
$I’\subset P’$ . Thus, by induction, we have $r\geq\xi_{1}-1$ if $i_{1}\geq 2$ ; and $r-1\geq\xi_{1}-1$ if
$i_{1}=1$ . Hence, $r.\geq\xi_{1}$ as desired.

Now, since the ideal $I$ is contained in the prime ideal $(x_{1}, x_{2,*\cdot.,X_{\xi 1}})$ of $A$ , the
minimal height of prime ideals $P$ with $I\subset P$ is $\xi_{1}$ . Hence, we have $\dim A/I=v-\xi_{1}$

as required. Q. E. D.

We give a standard technique to compute the depth of the Stanley-Reisner ring
of a simplicial compleJx. Let $\triangle$ be a simplicial complex of dimension $d-1$ . The i-th
skeleton $\triangle(i),$ $0\leq i\leq d-1$ , of a simplicial complex $\triangle$ is defined to be

$\triangle(i)=\{\sigma\in\triangle ; \#(\sigma)\leq i+1\}$ .

Thus, in particular, $\dim\triangle=i$ and $\triangle(d-1)=\triangle$ . The following Lemma (1.2) can be
found in, e.g., [Bru-Her, Exercise (5.1.23)].

(1.2) LEMMA. depth $k[ \triangle]=\max$ { $i+1$ ; $k[\triangle(i)]$ is Cohen-Macaulay}.
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A simplicial complex $\triangle$ is called pure if every maximal face of $\triangle$ has the same
cardinality. Note that $\triangle$ is pure if, e.g., $k[\triangle]$ is Cohen-Macaulay.

(1.3) PROPOSITION. If an ideal I of $A=k[x_{1}, X_{2}, \ldots, x_{v}]$ is a squarefree lexseg-
ment ideal of degree $q\geq 2$ with $x_{1}x_{2-1^{X}v}\ldots xq\in I$ , then depth $A/I=q-1$ .

Proof. Let $\Delta$ be the simplicial complex on the vertex set $V=\{x_{1}, x_{2}, \ldots, X_{v}\}$

with $I=I_{\Delta}$ . Since $I$ is generated by square-free monomials of degree $q$ , every subset
$\sigma$ of $V$ with $\#(\sigma)\leq q-1$ is a face of $\triangle$ . Hence, $k[\triangle(q-2)]$ is Cohen-Macaulay. Thus,
by Lemma (1.2), depth $A/I\geq q-1$ .

We now show that $\triangle^{\mathrm{t}^{i}}$ ) with $i\geq q-1$ is not pure unless $I$ is generated
by all squarefree monomials of degree $q$ . If $x_{v-q+1}xv-q+2\ldots xv\not\in I$ , then $\sigma=$

$\{x_{v-q+}1, x-vq+2, \ldots , x_{v}\}$ is a face of $\triangle^{\mathrm{t}^{i}}$ ) with $\#(\sigma)=q$ . On the other hand, since
$x_{1}x_{21}\ldots X_{q-}Xi\in I$ for every $q\leq j\leq v,$ $\tau=\{x_{1}, x_{2}, \ldots, x_{q-1}\}$ is a maximal face
of $\triangle^{\mathrm{t}^{i}}$ ) with $\#(\tau)=q-1$ . Hence $\Delta^{(i)}$ is not pure; in particular, $\triangle(i)$ is not Cohen-
Macaulay for every $i\geq q-1$ . Thus, again by Lemma (1.2), depth $A/I\leq q-1$ .
Hence, depth $A/I=q-1$ as required. Q. E. D.

We now come to the main theorem of this section.

(1.4) THEOREM. Suppose that an ideal I of $A=k[x_{1}, x_{2}, \ldots, X_{v}]$ is a squarefree
lexsegment ideal of degree $q\geq 2$ . Then, $A/I$ has a $q$-linear $re\mathit{8}oluti_{\mathit{0}}n$ .

Proof. Let $\triangle$ denote the simplicial complex on the vertex set $V=\{x_{1}, x_{2}, \ldots , x_{v}\}$

with $I=I_{\Delta}$ , and set $\triangle_{1}=\triangle_{V-\{x\}},$$\Delta_{2}1=\mathrm{s}\mathrm{t}\mathrm{a}\mathrm{r}_{\Delta}(\{X_{1}\})$ and $\triangle’=1\mathrm{i}\mathrm{n}\mathrm{k}_{\Delta}(\{x_{1}\})$ Then,
the ideal $I_{\Delta_{1}}$ of $A’=k[x_{2}, x_{3}, \ldots , x_{v}]$ is either a squarefree lexsegment ideal of
degree $q$ or $I_{\Delta_{1}}=(0)$ . Since the ideal $I_{\Delta’}$ of $A’=k[x_{2}, x_{3}, \ldots , x_{v}]$ is generated
by those squarefree monomials $x_{i_{1}}X_{i_{2}}\cdots x_{i_{q1}}-,2\leq i_{1}<i_{2}<\cdots<i_{q-1}\leq v$ , with
$x_{1}x_{i_{1}i}X2\ldots x_{i_{q1}}-\in I,$ $I_{\Delta’}$ is a squarefree lexsegment ideal of degree $q-1$ .

By virtue of Eq. (2), what we must prove is $\hat{H}_{i}(\triangle_{W;}k)=0$ for every subset $W$

of $V$ and for each $i\neq q-2$ . We employ the induction on $v$ and may assume that
$\tilde{H}_{i}((\triangle_{1})_{W;}k)=0$ and $\tilde{H}_{i-1}(\triangle’;Wk)=0$ for every subset $W$ of $V-\{x_{1}\}$ and for
each $i\neq q-2$ . Now, if $x_{1}\not\in W$ , then $\triangle_{W}=(\triangle_{1})_{W}$ . Thus $\tilde{H}_{i}(\triangle_{W}; k)=0$ for every
subset $W$ of $V-\{x_{1}\}$ and for each $i\neq q-2$ . Moreover, if $x_{1}\in W$ , then $(\triangle_{2})_{W}$ is
contractible; in particular, $\tilde{H}_{i}((\triangle_{2})_{W;k})=0$ for every $i$ . Thus, since $\triangle_{1}\cup\triangle_{2}=\triangle$

and $\triangle_{1}\cap\triangle_{2}=\triangle’$ , the reduced Mayer-Vietoris exact sequence

.. . $arrow\tilde{H}_{i}(\triangle^{J};k)arrow\tilde{H}_{i}(\triangle_{1;}k)\oplus\tilde{H}_{i}(\triangle_{2}; k)arrow\tilde{H}_{i}(\triangle;k)arrow\tilde{H}_{i-1}(\triangle’;k)arrow\cdots$

guarantees that

$\tilde{H}_{q-2}(\triangle w;k)\cong\tilde{H}(q-2(\triangle 1)W-\{x_{1}\};k)\oplus\tilde{H}_{q}-3(\triangle_{W}\prime k-\{x1\};)$ , (3)

and $\tilde{H}_{i}(\triangle_{W;}k)=0$ for each $i\neq q-2$ . Q. E. D.
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The above proof of theorem (1.4) enables us to compute the betti numbers of
$A/I$ over $A$ for a squarefree lexsegment ideal $I$ of degree $q$ . If $T=x_{i_{1}}X_{i_{2}i_{\Gamma}}\ldots X$ is a
squarefree monomial of $A=k[x_{1}, x_{2}, \ldots, X_{v}]$ with $1\leq i_{1}<i_{2}<\cdots<i_{r}\leq v$ , then
we define $m(T)$ to be $i_{r}$ , i.e., $m(T)$ is the greatest integer $i$ for which $x_{i}$ divides $T$ .

(1.5) COROLLARY. Let an ideal I of $A=k[x_{1}, x_{2}, . . i , x_{v}]$ be a squarefree lex8eg-
ment ideal of degree $q$ which is generated by the squarefree monomials belonging to
a squarefree lexsegment set $\mathcal{M}\subset$ . Then, the i-th Betti number of $A/I$ over $A$ is

$\beta_{i}^{A}(A/I)=\sum_{4T\in f}$ .

Proof. We inherit the same notation as in the proof of Theorem (1.4). Thanks
to Eq. (3) together with the fact that $\triangle_{W}=(\triangle_{1})_{W}$ if $x_{1}\not\in W$ , we have

$\beta_{i}^{A}(k[\triangle])=\beta_{i}A(k[\triangle_{1}])+\beta^{A}i-1(k[\triangle 1])+\beta_{i}A(k[\triangle’])$ (4)

by Eq. (2). Let $N\subset$ denote the set of all squarefree monomials $T\in \mathcal{M}$

such that $x_{1}$ does not divide $T$ . Thus $\lambda^{(}\subset$ is a squarefree lexsegment
set of degree $q$ and $I_{\Delta_{1}}$ is generated by the squarefree monomials belonging to the
squarefree lexsegment set $N$ . Again, we employ the induction on $v$ and may assume
that

$\beta_{i}A(k[\triangle_{1}])=T\in\sum\Lambda^{r}$ ;

$\beta_{i-1}^{A}(k[\triangle_{1}])=\sum_{\tau\in\Lambda\Gamma}$ .

Hence,

$\beta_{i}^{A}(k[\triangle 1])+\beta i-1(Ak[\triangle 1])=\sum\tau\in N$ . (5)

On the other hand, the ideal $I_{\Delta’}$ of $A’=k[x_{2}, X_{3}, \ldots, x_{v}]$ is a squarefree lexsegment
ideal of degree $q-1$ which is generated by those squarefree monomials $x_{i_{1}}X_{i_{2}}\cdots x_{i_{q1}}-$ ,
$2\leq i_{1}<i_{2}<\cdots<i_{q-1}\leq v$ , with $x_{1i_{1}i}xx2\ldots x_{i_{q1}}-\in I$ . Thus,

$\beta_{i}^{A}(k[\triangle’])=\sum_{\in\tau \mathcal{M}-N}$ . (6)

Now, the desired formula follows from Eqs. (4), (5) and (6). Q. E. D.

We conclude this section with the answer to our original problem for organizing
the present paper.
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(1.6) COROLLARY. Given arbitrary integers $d,$ $q$ and $e$ with $q-1\leq e\leq d$ and
$q\geq 2$ , there exists a simplicial complex $\triangle$ with $\dim k[\triangle]=d$ and depth $k[\triangle]=e$

such that $k[\triangle]$ has a $q$-linear resolution.

Proof. Thanks to Propositions (1.1) and (1.3), there exists a squarefree lexseg-
ment ideal $I’$ of degree $q$ in $A=k[x_{1}, x_{2}, . , , , x_{v}]$ (for some $v$ ) such that $\dim A/I’=$

$d-(e-q+1)$ and depth $A/I’=q-1$ . Let $B=A[y_{1}, \ldots, y_{e}-q+1]$ be the polyno-
mial ring over $k$ in $v+e-q+1$ variables and $I:=I’B$ . Then $\dim B/I=d$ and
$\mathrm{d}\mathrm{e}\mathrm{p}\mathrm{t}\mathrm{h}B/I=e$ . Now, Theorem (1.4) guarantees that $A/I’$ has a $q$-linear resolution,
thus $B/I$ has a $q$-linear resolution as required. Q. E. D.

\S 2. Squarefree stable ideals and their resolutions

We present the concept of squarefree stable ideals $I$ , which is the formal analogue
of stable ideals, of the polynomial ring $A=k[x_{1}, x_{2}, \ldots, X_{v}]$ in $v$ variables over a
field $k$ , and discuss their explicit free resolutions. In the theory of monomial ideals,
there is the following hierarc.hy of ideals:

lexsegment $\mathrm{i}\mathrm{d}\mathrm{e}\mathrm{a}\mathrm{l}\mathrm{s}\Rightarrow \mathrm{s}\mathrm{t}\mathrm{r}\mathrm{o}\mathrm{n}\mathrm{g}\mathrm{l}\mathrm{y}$ stable $\mathrm{i}\mathrm{d}\mathrm{e}\mathrm{a}\mathrm{l}\mathrm{s}\Rightarrow \mathrm{s}\mathrm{t}\mathrm{a}\mathrm{b}\mathrm{l}\mathrm{e}$ ideals

When the base field $k$ is of characteristic $0$ , the generic initial ideals are exactly the
strongly stable ideals. Combinatorially they are described as follows:

If $T\in I$ is a monomial, and $x_{i}$ divides $T$ , then $(x_{j}T)/x_{i}\in I$ for all $j\leq i$ .

The support of a monomial $T\in A$ is $\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(T)=$ { $i$ ; $x_{i}$ divides $T$ }. Let us denote
$m(T)= \max(T):=\max\{i;i\in \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(T)\}$ and $\min(T):=\min\{i;i\in \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(\tau)\}$ . A
stable ideal is defined by the following combinatorial property:

If $T\in I$ is a monomial, then $(x_{j}T)/x_{m(T)}\in I$ for all $j\leq m(T)$ .

If a monomial ideal $I$ is stable as above and, in addition, if $I$ is generated by
squarefree monomials, then $I$ is nothing but the ideals $(x_{1}, x_{2\cdot\cdot i},., X)$ for $1\leq i\leq v$ .

We now come to the definition of squarefree stable ideals. Let $I$ be an ideal of
$A=k[x_{1}, x_{2}, \ldots, X_{v}]$ which is generated by squarefree monomials. Then $I$ is called
a squarefree stable ideal if, for every squarefree monomial $T\in I$ , we have

$(x_{j}T)/x_{m(T)}\in I$ for each $j\leq m(T)$ such that $x_{j}$ does not divide $T$ .

The squarefree lexsegment ideals introduced in Section 1 are squarefree stable ideals.
Hence all results of this section can be applied as well to squarefree lexsegment ideals.

The main goal of this section is to construct the explicit free resolutions of
squarefree stable ideals, similar to the Eliahou-Kervaire resolutions of stable ideals.
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It will turn out that the new resolutions have the same formal structure as the
classical Eliahou-Kervaire resolutions. In order to describe our resolutions we need
to introduce some more notation.

Let as before $I\subset A$ be an ideal generated by squarefree monomials. We write
$G(I)$ for the unique minimal set of monomial generators of $I$ , and $Q(I)$ for the
(finite) set of all squarefree monomials in $I$ . In particular, $G(I)\subset Q(I)$ . Suppose
now that $I$ is squarefree stable. Then it is immediately seen that, for every $S\in Q(I)$ ,
there exists a unique pair $(T, T^{*})$ of squarefree monomials in $A$ such that $T\in G(I)$ ,
$S=TT^{*}$ and $\max(T)<\min(T^{*})$ . Thus, if we set $g(S)=T$ , then we obtain a map
$Q(I)arrow G(I)$ . Now, given $j\in\{1,2, \ldots, v\}$ with $j\not\in \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(T)$ and $T\in Q(I)$ , we set
$T_{j}=g(x_{j}T)$ and $y(T)_{j}=(x_{j}T)/T_{j}$ .

(2.1) THEOREM. Suppose that $I\subset A$ is a squarefree stable ideal. Th.en $A/I$ has
a minimal multigraded free A- resolution $(F, \partial)$ of the following form:

(a) Each $F_{i},$ $i>0$ , has a basis consisting of $f(\sigma;^{\tau})$ with $\sigma\subset\{1,2, .., , v\}$ and
$T\in G(I)$ such that $\#(\sigma)=i-1,$ $\max(\sigma)<m(T)$ and $\sigma\cap \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(T)=\emptyset$;

(b) If $\epsilon_{1},$ $\epsilon_{2},$

$\ldots,$
$\epsilon_{v}$ denotes the canonical basis of $\mathrm{Z}^{v}$ , then $f(\sigma;^{\tau})$ is homogeneous

of $multide\dot{g}ree\Sigma j\in\sigma j\epsilon+\Sigma_{j\in\sup \mathrm{p}(}\tau$) $\epsilon j$ ;

(c) The differentials of the resolution are given by

$\partial_{1}(f(\emptyset;T))=\tau$,

and by

$\partial_{i}(f(\sigma;T))=j\in\sum(-1)\alpha(\sigma,j)(-X_{j}f(\sigma-\{\sigma j\};T)+y(T)_{j}f(\sigma-\{j\};\tau j))$

for $i>1$ , where we set $\alpha(\sigma,j)=\#(\{i\in\sigma ; i<j\})$ .

The proof of Theorem (2.1) is carried out in two steps. In the first step we de-
termine cycles in the Koszul complex If $(x_{1}, X2, \ldots, x_{v}; A/I)$ whose homology classes
form a basis of the corresponding Koszul homology. This first step already gives us
all the information to prove the assertions (a) and (b) as above. In the second step
the differentials $\partial_{i}$ of $F$ are computed. This is done by using a technique developed
in [A-H] which allows us to compute the differentials once the cycles (determined
in step one) are known. This part of the proof is verbatim the same as that in
[A-H] where the maps in the Eliahou-Kervaire resolutions were determined by this
method. We omit its proof and refer the reader to [A-H] for the details.

We recall that $I\mathrm{t}_{i}’(X_{1}, x2, \ldots, x_{v};A/I)$ is a free $A/I$-module with basis $e_{\sigma},$
$\sigma\subset$

$\{1,2, \ldots, v\},$ $\#(\sigma)=i$ , where $e_{\sigma}=e_{j_{1}}$ A $e_{j_{2}}$ A. . . A $e_{j:}$ for $\sigma=\{j_{1},j_{2}, \ldots,j_{i}\}$ ,
$j_{1}<j_{2}<\ldots<j_{i}$ . The differential $d$ of $K$ is given by $d(e_{\sigma})=\Sigma_{t\sigma}\in(-1)\alpha(\sigma,t)x_{t}e_{\sigma-\{t\}}$ .
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We set $T’=T/x_{m(T)}$ for all $T\in G(I)$ . It is further convenient to denote the
image of a monomial $T\in A$ in any quotient ring of $A$ again by $T$ . We will keep this
convention throughout the present paper.

(2.2) PROPOSITION. Let $I\subset A$ be a squarefree stable ideal. Then, for every $i>0$ ,
a basi8 of the homology classes of $H_{i}(x_{1}, X_{2}, \ldots, x_{v};A/I)$ is given by the homology
classes of the cycles

$T’e_{\sigma}\wedge e_{m\langle)}\tau$ , $T\in G(I)$ , $\#(\sigma)=i-1$ , $\max(\sigma)<m(T)$ , $\sigma\cap \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(T)=\emptyset$ .

Proof. A minimal free $A$-resolution of $A/I$ is multigraded; in other words,
the differentials are homogeneous homomorphisms and, for each $i$ , we have $F_{i}=$

$\oplus_{j}A(-aij)$ with $a_{ij}\in \mathrm{Z}^{v}$ . Moreover, by virtue of [Hoc, Theorem (5.1)], all shifts
$a_{ij}$ are squarefree, i.e., $a_{ij}\in \mathrm{Z}^{v}$ is of the form $\Sigma_{t\in\tau}\epsilon_{t}$ , where $\tau$ is a subset of
$\{1, 2, \ldots, v\}$ , and where, as before, $\epsilon_{1},$ $\epsilon_{2},$

$\ldots,$
$\epsilon_{v}$ is the canonical basis of $\mathrm{Z}^{v}$ . Thus

it follows that $H_{i}(X_{1,2}x, \ldots, X_{v}):=H_{i}(x_{1}, X2, \ldots, x_{v};A/I)$ is multigraded k-vector
space with $H_{i}(x_{1}, X_{2}, \ldots, xv)_{a}=0$ if $a\in \mathrm{Z}^{v}$ is not squarefree. Hence, if we want to
compute the homology module $H_{i}(x_{1}, x2, \ldots, xv)$ , it suffices to consider its squarefree
multigraded components.

It is known (cf. [Bru-Her, Corollary (1.6.13)]) that, for each $0<j<v$ , there
exists an exact sequence whose $\mathrm{g}\underline{\mathrm{r}}-\mathrm{a}\mathrm{d}\mathrm{e}\mathrm{d}$ part for each $a\in \mathrm{Z}^{v}$ yields the long exact
sequence of vector spaces

$arrow H_{i}(x_{j+1}x_{j}, \ldots, X_{v})_{a}arrow H_{i}(x_{j}, \ldots, Xv)_{a}arrow H_{i-1}(xj+1, \ldots, x)va-\epsilon \mathrm{j}$

$arrow H_{i-1}(x_{j}xj+1, \ldots, X_{v})_{a}arrow H_{i-1}(Xj, . .a , Xv)aarrow\cdots$ .

We now show the following more precise result: For all $i>0$ , all $0<j\leq v$ and
all squarefree $a\in \mathrm{Z}^{v},$ $H_{i}(x_{j}, \ldots, X_{v};A/I)_{a}$ is generated by the homology classes of
the cycles

$T’e_{\sigma}\wedge e_{m(T)}$ , $T\in G(I)$ , $\#(\sigma)=i-1$

with

$j \leq\min(\sigma)$ , $\max(\sigma)<m(T)$ , $\sigma\cap \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(T)=\emptyset$ and $\sigma \mathrm{U}\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(\tau)=a$.

The proof is achieved by induction on $v-j$ . The assertion is obvious for $j=v$ .
We now suppose that $j<v$ . For such $j$ , but $i=1$ , the assertion is again obvious.
Hence we assume in addition that $i>1$ . We first claim that

$H_{i-1}(xj+1, \ldots, x_{v})_{a-\epsilon_{j}}arrow H_{i-1(}x_{J}Xj+1,$
$\ldots,$

$X_{v})_{a}$

is the zero map. Since $a\in \mathrm{Z}^{v}$ is squarefree, the components of $a$ are either $0$ or
1. If the j-th component of $a$ is $0$ , then $a-\epsilon_{j}$ has a negative component; hence
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$H_{i-1}(x_{j}+1, \ldots, X_{v})_{a-}\epsilon_{j}=0$ . Thus we may assume the j-th component of $a$ is 1. Then
$a-\epsilon_{j}$ is squarefree and, by induction hypothesis, $H_{i-1}(x_{j}+1, \ldots, X_{n})_{a-}\epsilon_{j}$ is generated
by the homology classes of cycles of the form $T’e_{\sigma}$ A $e_{m(T)}$ with $j\not\in \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(T)$ . Such
an element is mapped to the homology class of $T_{X_{j\sigma}}’e$ A $e_{m(T)}$

,

in $H_{i-1}(Xj+1, \ldots, X_{v})_{a}$ .
However, since $I$ is stable, we have $T’x_{j}=0$ as desired.

From these observations we deduce that we have short exact sequences

$0arrow H_{i}(xj+1, \ldots, X_{v})_{a}arrow H_{i}(x_{j}, \ldots, xv)_{a}arrow H_{i-1}(x_{j}\dagger 1, \ldots, Xv)a-\epsilon_{j}arrow 0$

for all $i>1$ . The first map $H_{i}(X_{j+1}, \ldots , x_{v})_{a}arrow H_{i}(x_{j}, \ldots, xv)_{a}$ of the above
exact sequence is simply induced by the natural inclusion map of the corresponding
Koszul complexes, while the second map $H_{i}(X_{j}, \ldots, Xv)_{a}arrow H_{i-1}(xj+1, \ldots, x)va-\epsilon j$ is
a connecting homomorphism. Given the homology class of a cycle $z=\tau’e_{\sigma}$ A $e_{m(T)}$

in $H_{i-1}(x_{j}+1, \ldots, x)va-\epsilon j$
’ it is easy to see that, up to a sign, the homology class of

the cycle $T’e_{j}$ A $e_{\sigma}$ A $e_{m\langle)}\tau$ in $H_{i}(X_{j}, \ldots, Xv)_{a}$ is mapped to $[z]$ . This guarantees all
of our assertions as required. Q. E. D.

Let us draw some immediate consequences of Proposition (2.2). Recall that the
i-th Betti number of a graded $A$-module $M$ is the nonnegative integer

$\beta_{i}^{A}(M)=\dim_{k}\mathrm{T}\mathrm{o}\mathrm{r}(iMAk,)$

and the Poincar\’e series of $M$ is the formal power series

$P_{M}^{A}( \lambda)=\sum_{=i0}\beta_{i}A(\infty M)\lambda^{i}$ .

(2.3) COROLLARY. Let $I\subset A$ be a squarefree stable ideal.

(a) $\beta_{i}(I)=\sum_{T\in G1I})(^{m(\tau)-\mathrm{d}(\tau)}i)\mathrm{e}\mathrm{g}$ for every $i\geq 0$ . In particular, all the Betti
numbers of I are independent of the base field $k$ .

(b) $P_{I}^{A}( \lambda)=\sum T\in^{c(}I)(1+\lambda)m(\tau)-\deg(\tau)$ .

(2.4) COROLLARY. Let $I\subset A$ be a squarefree stable ideal. Then

depth $A/I=v- \max\{m(T) ; T\in G(I)\}+\max\{\deg(T) ; T\in G(I)\}-1$ .

In particular, if $v= \max\{m(T) ; T\in G(I)\}$ (which one may $as\mathit{8}ume$ without loss
of generality), then depth $A/I= \max\{\deg(T) ; T\in G(I)\}-1$ .

The following Corollary (2.5) generalizes Theorem (1.4) of Section 1.

(2.5) COROLLARY. Let $I\subset A$ be a squarefree stable ideal and suppose that every
element of $G(I)$ is of degree $q$ . Then $A/I$ has a $q$-linear resolution.
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In the following Corollary (2.6) we describe another important numerical invari-
ant of graded modules for squarefree stable ideals. For a graded $A$-module $M$ , let
$t_{i}(M)$ denote the maximal integer $a\in \mathrm{Z}$ with $\mathrm{T}\mathrm{o}\mathrm{r}_{i}^{A}(k, M)_{a}\neq 0$ . We say that

$\mathrm{r}\mathrm{e}\mathrm{g}(M)=\max\{t_{i}(M)-i ; i\geq 0\}$

is the Castelnuovo-Mumford regularity of $M$ .

(2.6) COROLLARY. Let $I\subset A$ be a squarefree stable ideal. Then

$\mathrm{r}\mathrm{e}\mathrm{g}(I)=\max\{\deg(\tau);T\in G(I)\}$ .

In particular, if $v= \max\{m(T) ; T\in G(I)\}$ , then $\mathrm{r}\mathrm{e}\mathrm{g}(I)=\mathrm{d}\mathrm{e}\mathrm{p}\mathrm{t}\mathrm{h}A/I+1$ .

Just as for stable monomial ideals (cf. [Pee]) we have

(2.7) COROLLARY. Let $I\subset A$ be a squarefree stable ideal. Then $A/I$ is a Golod
ring, and the residue class field $k$ of $A/I$ has a resolution whose Poincar\’e series is
given by

$P_{k}^{A/I}( \lambda)=\frac{(1+\lambda)^{v}}{1-\Sigma_{T\in}G(I)(1+\lambda)m(\tau)-\deg(T)\lambda^{2}}$ .

Proof. It follows from Proposition (2.2) that the product of any two cycles in
$IC(X_{1}, x_{2}, , .. , x_{v};A/I)$ is zero. Thus $A/I$ is trivially a Golod ring (see [ $\mathrm{G}-\mathrm{L}$ , Corollary
(4.2.4) $])$ . The Poincar\’e series of a Golod ring is given by

$P_{k}^{A/I}( \lambda)=\frac{(1+\lambda)^{v}}{1-P_{I}^{A}(\lambda)\lambda^{2}}$.

Hence the required result follows from Corollary (2.3). Q. E. D.

\S 3. Strongly stable simplicial complexes and the
Kruskal-Katona theorem

Let $A=k[x_{1}, X_{2}, \ldots, x_{v}]$ be the polynomial ring in $v$ variables over a field $k$ and
$I$ an ideal of $A$ generated by squarefree monomials. The purpose of this section is
to show that there exists a squarefree lexsegment ideal $J$ of $A$ such that $A/I$ and
$A/J$ have the same Hilbert functions. A simplicial complex $\triangle$ is called a lexseg-
ment simplicial complex if the defining ideal $I_{\Delta}$ of its Stanley-Reisner ring $k[\triangle]$ is
a squarefree lexsegment ideal. In these terms the above result says that, given an
arbitrary simplicial complex $\triangle$ , there exists a unique lexsegment simplicial complex
$\triangle’$ with the same $f$-vector of $\triangle$ . This result itself is well known in classical combi-
natorics and, in fact, is equivalent to the essential (and difficult) part of so-called

42



the Kruskal-Katona theorem, which give a complete characterization of the number
of faces of simplicial complexes. See, e.g., [ $\mathrm{H}_{1}$ , Chapter II] for a brief introduction
about the Kruskal-Katona theorem. Our proof here is based on simple algebraic
arguments and avoids tedious combinatorial considerations. It also has the benefit
to show why, with respect to many properties, $\mathrm{l}\mathrm{e}\mathrm{x}$.segment $\mathrm{S}\mathrm{i}\mathrm{m}.\mathrm{p}\mathrm{l}\mathrm{i}_{\mathrm{C}}\mathrm{i}\mathrm{a}1$ complexes are
extremal.

The proof will be accomplished in two steps. In the first step, we ‘shift’ a general
simplicial complex to a strongly stable simplicial complex. This idea is borrowed
from Kalai ( $[\mathrm{K}\mathrm{a}1_{1}]$ and [Ka12]) who assigns to a simplicial complex a certain quo-
tient ring of the exterior algebra. Here we introduce instead the so-called indicator
algebra, which in characteristic 2 may as well be viewed as the quotient ring of
an exterior algebra. In fact, for the shifting argument we assume characteristic 2.
However, homologically we better understand the commutative indicator algebra.
In the second step, we compare the strongly stable simplicial complexes with the
lexsegment simplicial complexes by the similar technique as in Bigatti [Big].

We say that an ideal $I\subset A$ generated by squarefree monomials is a squarefree
strongly stable ideal if, for all squarefee monomials $T\in I$ , one has:

$(x_{j}T)/x_{i}\in I$ for all $i\in \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(T)$ and all $j\not\in \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(T)$ with $j<i$ .

In particular, any squarefree lexsegment ideal is squarefree strongly stable, and any
squarefree strongly stable ideal is squarefree stable, so that by the results of Section
2, we know the resolution of these ideals. We say that a simplicial complex $\triangle$ is
strongly stable if $I_{\Delta}$ is squarefree strongly stable.

We refer the reader to, e.g., [Bru-Her], $[\mathrm{H}_{1}]$ , [Hoc] and [Sta] for the definitions
and the detailed information about $f$-vectors and $h$ -vectors of simplicial complexes.

Let $\triangle$ be a simplicial complex on the vertex set $V=\{x_{1,2,\ldots,v}Xx\}$ . We define
the ideal $J_{\Delta}$ of $A=k[x_{1,2,\ldots,v}xX]$ to be

$J_{\Delta}=(I_{\Delta}, x_{1}^{22\ldots 2}, xX_{v})2$
”.

The algebraic object which we attach with $\triangle$ is the quotient algebra

$k\{\triangle\}=A/J_{\triangle}$

of $A$ , which we call the indicator algebra of a simplicial complex $\triangle$ . The name is
justified by the fact that $k\{\triangle\}$ is a multigraded $k$-algebra with $\dim_{k}k\{\triangle\}_{\alpha}\leq 1$ for
all $a\in \mathrm{N}^{v}$ , and $\dim_{k}k\{\triangle\}_{a}=1$ if and only if $a$ is squarefree with $\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(a)\in\triangle$.
Here we regard $\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(a)$ to be a subset of $V$ in the obvious way. One immediate
consequence of this observation is

(3.1) PROPOSITION. Let $\triangle$ be a simplicial complex of dimension $d-1$ with the f-
vector $f(\triangle)=(f_{0}, f_{1}, \ldots, fd-1)$ . Then the Hilbert series $F(k\{\triangle\}, \lambda)$ of the indicator
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algebra $k\{\Delta\}$ of $\Delta$ is

$F(k \{\triangle\}, \lambda)=i0\sum_{=}^{d}f_{i}-1\lambda^{i}$,

where, as usual, $f_{-1}=1$ . In particular, since the $h$-vector determines the f-vector,
and vice versa, it foflows that the Hilbert function of the Stanley-Reisner ring and
that of the indicator algebra of $\triangle$ determine each other.

In what follows we define a certain operation on the indicator algebra $k\{\triangle\}$ of
a simplicial complex. The output of this operation will be a new indicator algebra
$k\{\triangle’\}$ of a suitable simplicial complex $\triangle’$ . It will be clear from the construction
that $\triangle$ and $\triangle’$ have the same $f$-vector. But the new simplicial complex $\triangle^{J}$ is in
a certain sense, which will be explained later, closer to a strongly stable simplicial
complex than the original complex $\triangle$ .

On the set of all monomials in $A$ , we define the ‘deglex order’ as follows: Let
$S=x_{1}^{a_{1}}X_{2^{2}}\cdots X_{v^{v}}aa$ and $T=x_{1}^{b_{1}b}x_{2^{2}}\cdots X_{v^{v}}b$ be monomials in $A$ . Then $S<_{\mathrm{d}\mathrm{e}\mathrm{g}\mathrm{l}\mathrm{e}\mathrm{X}}T$ , if
the first non-zero component of

$( \sum_{i=1}^{v}bi-\sum_{i=1}^{v}a_{i}, b1-a_{1}, b2-a_{2}, \ldots, b-a_{v}v)$

is positive.
If $g\in A$ is a non-zero polynomial, then we denote by in $(g)$ the largest (with

respect to the deglex order) monomial occuring in $g$ . One calls in $(g)$ the initial
monomial of $g$ . If $I\subset A$ is an ideal, then we write in $(I)$ for the ideal generated
by all monomials in $(g)$ with $g\in I$ . The ideal in$(I)$ is called the initial ideal of $I$ .
Let $T_{1},$ $T_{2,\ldots,m}T$ be a set of monomial generators of in $(I)$ , and choose $g_{i}\in I$ with
in $(g_{i})=T_{i}$ for each $1\leq i\leq m$ . Then $g_{1},g_{2},$ $..,$ $,g_{m}$ is called a Gr\"obner basis of $I$ .

We quote a few simple facts from Gr\"obner bases theory which can be found in
standard references, e.g., [Eis], [Rob] or [Vas]. We restrict ourselves to graded ideals,
and write $\mu(I)$ for the minimal number of generators of $I$ .

(3.2) PROPOSITION. Let $I=\oplus_{n\geq 0^{I}n}$ be a graded ideal of $A$ .

(a) Any Gr\"obner basis of I is a basis of I. In particular, $\mu(I)\leq\mu(\mathrm{i}\mathrm{n}(I))$ .

(b) For all $n\in \mathrm{N}$ , the elements in $(g),$ $g\in I_{n}$ , generate the $k$-vector space in $(I)_{n}$ ,
and if in $(g_{1}),$ $\mathrm{i}\mathrm{n}(g2),$

$\ldots,$
$\mathrm{i}\mathrm{n}(g_{m})$ (with each $g_{i}\in I_{n}$ ) is a $k$-basis of in $(I)_{n}$ , then

$g_{1},$ $g2,$ $\ldots,$ $gm$ is a $k$-basis of $I_{n}$ . In particular, the Hilbert function of $A/I$ and
that of $A/\mathrm{i}\mathrm{n}(I)$ are the same.

We fix some $i$ and $j$ with $1\leq j<i\leq v$ and define an automorphism $\varphi$ : $Aarrow A$ ,
called an elementary automorphism, as follows:

$\varphi(x_{t})=\{$
$x_{t}$ if $t\neq i$

$x_{j}+x_{i}$ if $t=i$ .
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Let $k\{\triangle\}=A/J_{\Delta}$ be the indicator algebra of a simplicial complex $\triangle$ . If
$T=x_{i_{1}^{X}i_{2}}$ ... $x_{i_{n}}$ is a squarefree monomial in $J_{\Delta}$ , then we set $c(T)= \sum_{j=1}^{n}i_{j}$ , and
$c_{n}(J_{\Delta})= \sum_{T}c(\tau)$ where the sum is taken over all squarefree monomials $T\in J_{\Delta}$ of
degree $n$ .

(3.3) THEOREM. Let $k$ be a field of characteristic 2, $k\{\triangle\}=A/J_{\Delta}$ the indicator
algebra of a simplicial complex $\triangle$ , and $\varphi$ : $Aarrow A$ an elementary automorphism.

(a) $A/\mathrm{i}\mathrm{n}(\varphi(J\Delta))$ is again the indicator algebra of some simplicid complex $\triangle’$ .

(b) $\triangle$ and $\triangle’$ have the same f-vector.
(c) $c_{n}(J_{\Delta’})\leq c_{n}(J_{\Delta})$ for all $n$ .

(d) If $\Delta$ is not a strongly stable simplicial complex, then $\varphi$ can be $cho\mathit{8}en$ such that
$c_{n}(J_{\Delta’})<c_{n}(J_{\Delta})$ for some $n$ .

Proof. We assume that $\varphi$ maps $x_{i}$ to $x_{j}+x_{i},$ $j<i$ , and leaves all the other
variables unchanged.

(a) Since the characteristic of $k$ is 2, we have $\varphi(x_{i}^{2})=x_{j}^{2}+x_{i}^{2}$ . It follows that
$\varphi((x_{1}^{2}, x^{2}, \ldots, X^{2}2v))=(x_{1}^{2}, x_{2}^{2}, \ldots, X_{v})2$ , and hence any monomial in $A$ which is not
squarefree belongs to $\varphi(J_{\Delta})$ . We fix an integer $n\geq 0$ . Then it follows that $\varphi(J_{\Delta})_{n}$

has a $k$-basis consisting of the set of all monomials $\mathcal{L}_{n}$ of degree $n$ which are not
squarefree and of the set of elements $\varphi(T),$ $T\in \mathcal{M}_{n}$ , where $\dot{\mathcal{M}}_{n}$ is the set of all
squarefree monomials $T\in(J_{\Delta})_{n}$ .

Let $T\in \mathcal{M}_{n}$ ; then $\varphi(T)=T$ if $i\not\in \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(T)$ , and $\varphi(T)=(xjT/X_{i})+T$ if
$i\in \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(T)$ . We write $\mathcal{M}_{n}(1)$ for the set of all monomials $T\in \mathcal{M}_{n}$ such that either
$i\not\in \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(T)$ , or $i\in \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(T)$ and $j\in \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(T)$ , or $i\in \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(T)$ and $x_{j}T/x_{i}\in \mathcal{M}_{n}$ .
Then the monomials in $\mathcal{L}_{n}\cup \mathcal{M}_{n}(1)$ together with the binomials $(x_{j}T/x_{i})+T$ with
$T\in \mathcal{M}_{n}(2)$ form a $K$-basis of $\varphi(J_{\Delta})_{n}$ , where $\mathcal{M}_{n}(2)$ is the set of all monomials
$T\in \mathcal{M}_{n}$ such that $i\in \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(\tau),$ $j\not\in \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(T)$ and $x_{j}T/x_{i}\not\in \mathcal{M}_{n}$ .

Now we take the initial forms of this particular $k$-basis of $\varphi(J_{\Delta})_{n}$ . This yields the
monomials $T\in \mathcal{L}_{n}\cup \mathcal{M}_{n}(1)$ together with the monomials $x_{j}T/x_{i}$ with $T\in \mathcal{M}_{n}(2)$ .
Their number equals $\dim_{k}\varphi(J_{\Delta})n$

’ and they are all different. Since, by Proposition
$(3.2;\mathrm{b})$ , one has $\dim_{k}\varphi(J_{\Delta})n=\dim_{k}\mathrm{i}\mathrm{n}(\varphi(J\Delta))_{n}$ , we conclude that these monomials
form a basis of in $(\varphi(J\Delta))_{n}$ . In particular, in $(\varphi(J\Delta))$ , is generated by the elements
$x_{1}^{2},$ $x_{2’ v}2\ldots,2X$ together with some squarefree monomials. These squarefree monomials
define a required simplicial complex $\triangle’$ .

(b) Both operations–the application of $\varphi$ as well as taking $\mathrm{i}\mathrm{n}.\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{a}\mathrm{l}\mathrm{f}.\mathrm{o}\mathrm{r}.\mathrm{m}j$ s–have
no effect on the Hilbert function.

(c) When we compare the sum for $c_{n}(J_{\Delta})$ and that for $c_{n}(\mathrm{i}\mathrm{n}(J_{\Delta}))$ , then we
see that all summands coincide except those which correspond to the monomials
$T\in \mathcal{M}_{n}(2)$ . In the first sum, each $c(T)$ with $T\in \mathcal{M}_{n}(2)$ has to be replaced by
$c(x_{j}T/x_{i})$ in the second sum. Since $c(xjT/x_{i})<c(T)$ , the inequality follows.
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(d) The proof of (c) as above enables us to see that we have the strict inequality
if some $\mathcal{M}_{n}(2)$ is not empty. Of course $\mathcal{M}_{n}(2)$ not only depends on $J_{\Delta}$ , but also
on the choice of $i$ and $j$ . If we suppose that $\triangle$ is not a strongly stable simplicial
complex, then there exists an element $T\in \mathcal{M}_{n}$ such that for some $i\in \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(T)$ and
some $j<i$ with $j\not\in \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(T)$ , one has $(x_{j}T)/x_{i}\not\in \mathcal{M}_{n}$ . For this choice of $i$ and $j$ we
have $\mathcal{M}_{n}(2)\neq\emptyset$ . Q. E. D.

(3.4) COROLLARY. Given a simplicial complex $\triangle$ , there exists a simplicial com-
plex $\triangle’$ with the same $f$-vector of $\triangle$ such that the ideal $I_{\triangle}$ , is strongly stable.

Proof. Let $c(\triangle)$ denote the sum $\sum_{n=0}^{v}C_{n}(J_{\Delta})$ . If $\triangle$ is not strongly stable, then
by Theorem $(2.3;\mathrm{d})$ there exists a simplicial complex $\triangle’$ with $c(\triangle’)<c(\triangle)$ . Thus
induction on $c(\triangle)$ yields the assertion. Q. E. D.

Our next aim is to strengthen Corollary (3.4), and to prove the Kruskal-Katona
theorem in the following form.

(3.5) THEOREM. Given a simplicial complex $\triangle$ , there exist8 a unique lexsegment
simplicial complex $\triangle’$ with the same f-vector.

Thanks to Corollary (3.4), it suffices to prove Theorem (3.5) only for strongly
stable simplicial complexes. This part of the proof follows from the same line of
arguments as the corresponding proof of Bigatti [Big]. We need to introduce some
notation, and to prove some lemmata. A proof of Theorem (3.5) will begin after
Corollary (3.10).

Let $\Gamma$ denote the simplicial complex which consists of all subsets of the vertex
set $\{x_{1,2,\ldots,v}xx\}$ . Then

$k\{\Gamma\}=k[x_{1}, X_{2}, \ldots, x_{v}]/(x_{1}^{2}, x^{2}, \prime 2. . , X^{2}v)$ ,

and the set of all squarefree monomials forms a basis of $k\{\Gamma\}$ . Instead of studying
an ideal $J\subset k[x_{1}, X_{2}, \ldots, x_{v}]$ generated by squarefree monomials, we may as well
study its image $I$ in $k\{\Gamma\}$ , and give it the same attributes as $J$ . Thus, for example,
we call $I$ strongly stable (or lexsegment) if so is $J$ (in the squarefree sense).

The obvious characterization of strongly stable ideals in $k\{\Gamma\}$ stated below is
required in the proof of Theorem (3.9).

(3.6) LEMMA. Let I be a monomial ideal in $k\{\Gamma\}$ , and write $I=I’+I”x_{v}$ where
$I’$ and $I^{\prime/}$ are generated by monomials in the variables $x_{1},$ $x_{2},$ $\ldots,$ $X_{v-1}$ . Then the
following conditions are equivalent:

(i) I is strongly stable;

(ii) $I’$ and $I”$ are strongly stable, and $I^{\prime/}(x_{1}, x2, \ldots, X_{v}-1)\subset I’$ .
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If $I\subset k\{\Gamma\}$ is a monomial ideal and $1\leq i\leq v$ , then we define $G(I;i),$ $m_{i}(I)$

and $m\leq i(I)$ as follows:

$G(I;i)=\{T\in G(I) ; m(T)=i\}$ , $m_{i}(I)=\#(G(I;i))$ , $m \leq i(I)=\sum_{ij\leq}m_{j}(I)$
.

(3.7) LEMMA. Let, $I\subset k\{\Gamma\}$ be a strongly stable ideal with all generator8 of
degree $n(<v)$ .

(a) We hav..e the equalities

$\dim_{k}(I_{n+}1)=\sum_{i=1}^{v-}m_{i}(1I)(v-i)=\sum_{i=1}^{v-}m_{\leq}i(I)1$ .

(b) Let $I_{(n+1\rangle}$ denote the ideal in $k\{\Gamma\}$ which is generated by all squarefree mono-
mials in I of degree $n+1$ . Then, for all $i$ , we have

$m_{i}(I_{(n+}1))=m_{\leq}i-1(I)$ .

Proof. (a) The second equality of the s.tatement is $\mathrm{o}\mathrm{b}\mathrm{v}\mathrm{i}\mathrm{Q},\mathrm{u}\mathrm{s}$
. In order to

$\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{v}\backslash \mathrm{e}$

the first formula, we note that .,, ,, 1.

(3.7.1) The map $G(I;i)arrow G(I;i)Xj,$ $T\mapsto Tx_{j}$ , is injective for all $j>i$ ;

$(3.7.2)|$ The s.ets $G(I;i)_{X_{j}j},$
.

$=i+1,.\cdot\ldots,$ $v$ , are pairwise $\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{j}_{\mathrm{o}\mathrm{i}}.\mathrm{n}\mathrm{t}--..\cdot$

.

$\sim$

The above fact (3.7.1) and (3.7.2) imply

$\#(G(I;i)\{xi+1, \ldots, X_{v}\})=m_{i}(I)(v-i)$ .

Next we claim that

(3.7.3) If $j<i$ , then $G(I;i)X_{j} \subset\bigcup_{t=1}^{i-1}G(I;t)X_{i}$ .

In fact, let $T\in G(I;i)$ . We may assume that $Tx_{j}\neq 0$ . Then $j\not\in \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(T)$ ,
and $Tx_{j}=(Tx_{j}/x_{i})x_{i}$ . Since $I$ is strongly stable, we have that $Tx_{j}/x_{i}\in I$ . If
$m(Tx_{j}/x_{i})=t$ , then clearly $t<i$ and $Tx_{j}/x_{i}\in G(I;t)$ .

Since $G(I)= \bigcup_{i}G(I;i)$ , the claim (3.7.3) implies that

$G(I) \{X1, x_{2}, .., , X_{v}\}=\bigcup_{i}G(I;i)\{_{X}i+1, \ldots, x\}v$ .

Hence it suffices to show that

$G(I;i)\{X_{i}+1, \ldots, X_{v}\}\cap G(I;j)\{xj+1, \ldots, x_{v}\}=\emptyset$
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for all $i$ and $j$ with $i\neq j$ . However, this is clear; because if $T\in G(I;i)\{x_{i}+1, \ldots, x_{v}\}$ ,
then we have $m(T/x_{m\langle T)})=i$ .

(b) From (3.7.3) we deduce that $G(I_{(1\rangle;i}n+)= \bigcup_{t=1}^{i-1}G(I;t)Xi$ . Hence, it follows
that $m_{i}(I_{\langle n}+1\rangle)=\#(C\tau(I_{(1};i)n+))=\Sigma_{t=1}^{i-1}mt(I)=m\leq i-1(I)$ . Q. E. D.

For the proof of the next result we need some preparation. Let $n<v$ and write
$N_{n}$ for the set of all (squarefree) monomials of degree $n$ in $k\{\Gamma\}$ . If $N\subset N_{n}$ we write
$\min(N)$ for the smallest monomial $T\in N$ (with respect to the lexicographic order).
Furthermore we define a map $\alpha$ : $N_{n}arrow N_{n}$ by setting $\alpha(T)=T$ , if $v\not\in \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(T)$ ,
and $\alpha(T)=(x_{j}T)/x_{v}$ if $v\in \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(T)$ , where $j$ is the largest integer $<v$ which does
not belong to $\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(T)$ .

(3.8) LEMMA. (a) The map $\alpha$ : $N_{n}arrow N_{n}$ is order preserving, that is, for
$T,$ $T’\in N_{n},$ $T\leq_{1\mathrm{e}\mathrm{X}}T’$ , one has $\alpha(T)\leq_{1\mathrm{e}\mathrm{x}}\alpha(\tau’)$ .

(b) Let $I=I’+I”x_{v}$ be a strongly stable ideal with generators of degree $n<v$ ,
where $I’$ and $I”$ are generated by monomials in the elements $x_{1},$ $x_{2,\ldots,v-1}X$ . Then
$\alpha(\min(G(I)))=\min(G(I’))$ .

Proof. (a) Let $T$ and $T’$ be two monomials of degree $n$ with $T\leq_{1\mathrm{e}\mathrm{x}}T’$ and
$.m(T)=m(.T’)=v$ , say $T=x_{i_{1}}\cdot.\cdot,$ $\cdot x_{i_{n}}-1x_{v}$ and $T’=x_{i_{1}^{\prime\cdot\cdot xx}}\cdot i_{n-}\prime v1$ with $1.\leq i_{1}<$

$\iota_{2}<\cdot\cdot 4<\iota_{n-1}<v$ and $1\leq i_{1}’<\iota_{2}<\cdots<i_{n-1}’<v$ . Then there exists an lnteger
$t$ with $1\leq t\leq n-1$ such that $i_{1}=i_{1}’,$

$\ldots,$
$i_{t1}-=i_{t-1}’$ and $it>i_{t}’$ . Let $j$ be the

largest integer $<v$ which is not in $\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(T)$ , and define $j’$ similarly for $T’$ . Since
$i_{t}>i_{t}’$ , there is at least one ‘gap’ in the sequence $i_{t}’,$

$\ldots,$
$i_{n-1}’,$ $v$ . Thus $j’>i_{t}’$ . Hence

if $j\geq i_{t}$ , then the first indices of the factors of $\alpha(T)$ and $\alpha(T’)$ in which they differ
are again $i_{t}$ and $i_{t}’$ , and the in..equality is preserved. On the other hand, if $j<i_{t}$ ,
then we must have

$T=xi_{1}\ldots xi_{t}-1-n+txv-n+t+1xv-1x_{v}\cdots x_{v}$,

and $j=i_{t}-1=v-n+t-1$ since $i_{t-1}=i_{t-1}’<i_{t}’<i_{t}$ . That is, the factors ‘after’
$x_{i_{C-1}}$ have the highest possible indices. It is then obvious that $\alpha(T)\leq_{1\mathrm{e}\mathrm{x}}\alpha(T’)$

as desired. By the similar way one treats the case $m(T’)<m(T)=v$ , while if
$m(T)<m(T’)=v$ one has $\alpha(T)=T\leq_{1\mathrm{e}\mathrm{x}}T’\leq_{1\mathrm{e}\mathrm{X}}\alpha(T’)$ .

(b) It follows from the above result (a) that $\alpha(\min(G(I)))\leq_{1\mathrm{e}\mathrm{x}}\alpha(\min(G(I’)))=$

$\min(G(I’))$ since $\min(G(I))\leq_{1\mathrm{e}\mathrm{x}}\min(G(I’))$ . On the other hand, since $I$ is strongly
stable, $\alpha(\min(G(I)))\in G(I’)$ , which implies the reverse inequality. Q. E. D.

(3.9) THEOREM. Let I and $J$ be monomial ideals in $k\{\Gamma\}$ with generators in
degree $n$ . Suppose that I is strongly stable, that $J$ is lexsegment, and that $\dim_{k}J_{n}\leq$

$\dim_{k}I_{n}$ . Then
$m\leq i(J)\leq m_{\leq i}(I)$

for all $i$ .
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Proof. We proceed by induction on $v$ , the number of variables. The inequality
$m_{\leq v}(J)\leq m_{\leq v}(I)$ is just our hypothesis. In order to prove it for $i<v$ , we write $J=$

$J’+J”x_{v}$ and $I=I’+I”x_{v}$ with $J’,$ $J”,$ $I’$ and $I”$ ideals generated by monomials in
$x_{1},$ $x_{2,.v}\sim.,$$x-1$ . It is clear that $J’$ is lexsegment, and that $I’$ is strongly stable. Hence
if we show that $\dim_{k}(J’)_{n}\leq\dim_{k}(I’)_{n}$ , we may apply our induction hypothesis, and
the assertion follows immediately.

It may be assumed that $I’$ and $I”$ are lexsegment. In fact, let $I^{*}$ (resp. $I^{**}$ ) be
the lexsegment ideal generated by monomials in $x_{1},$ $x_{2},$ $\ldots$ , Xv-l of degree $n$ (resp.
$n-1)$ such that $\dim_{k}(I*)_{n}=\dim_{k}(I’)_{n}$ (resp. $\dim_{k}(I**)n-1=\dim_{k}(I’’)_{n}-1$ ) and set
$\tilde{I}=I^{*}+I^{**}x_{v}$ . Then $\tilde{I}$ is also strongly stable. To see this we apply Lemma (3.6),
and hence have to show that $I^{**}(X1, X2\cdots, X-1)v\subset I^{*}$ . By Lemma (3.7) and our
induction hypothesis for $I^{*}$ and $I^{**}$ , we have

$\dim k(I^{**})_{n-}1(X1, x_{2}\ldots , x_{v-1})$ $=$ $\sum_{i=1}^{v-}2m\leq i(I^{**})\leq\sum_{i=1}^{v-}2m\leq i(I’’)$

$=$ $\dim_{k}(I\prime\prime)n-1(x_{1}, X2\cdots, Xv-1)$ .

Since $I$ is strongly stable, Lemma (3.6) implies that

$\dim_{k}(I\prime\prime)n-1(x_{1}, x2, \ldots, x-1)v\leq\dim_{k}(I’)_{n}=\dim_{k}(I*)_{n}$ .

Thus $I^{**}(x_{1}, X2\cdots, X-v1)\subset I^{*}$ since $I^{**}(x_{1}, X2\cdots, X-v1)$ and $I^{*}$ both are lexsegment
ideals.

Recall that we are in the following situation: $J=J’+J”x_{v}$ lexsegment, and
$I=I’+I”x_{v}$ strongly stable as before, but in addition $I’$ and $I”$ lexsegment.
Assuming $\dim_{k}J_{n}\leq\dim_{k}I_{n}$ , we want to show that $\dim_{k}(J’)_{n}\leq\dim_{k}(I’)_{n}$ . Thanks
to Lemma (3.8) we have

$\min(G(I’))=\alpha(\min(G(I)))\leq_{1\mathrm{e}\mathrm{x}}\alpha(\min(G(J)))=\min(G(J/))$ .

Since the ideals $J’$ and $I’$ are lexsegment, the required inequality follows. Q. E. D.

The above Theorem (3.9) together with Lemma (3.7) guarentees

(3.10) COROLLARY. Let I and $J$ be monomial ideals in $k\{\Gamma\}$ with generators of
degree $n$ . Suppose that I is strongly stable, that $J$ is lexsegment, and that $\dim_{k}J_{n}\leq$

$\dim_{k}I_{n}$ . Then
$\dim_{k}J_{n+1}\leq\dim_{k}I_{n+1}$ .

We are now in the position to give a proof of Theorem (3.5). As we already
remarked, we may assume that $\triangle’$ is strongly stable. Let $I=I_{\triangle}k\{\Gamma\}$ , and sup-
pose that $I_{n}\neq 0$ while $I_{n-1}=0$ . We choose the lexsegment ideal $J$ generated by
(squarefree) monomials of degree $n$ such that $\dim_{k}J_{n}=\dim_{k}I_{n}$ . It follows from
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Corollary (3.10) that $\dim_{k}J_{n+1}\leq\dim_{k}I_{n+1}$ . Since $J_{n+1}$ is spanned by a lexsegment,
we may add some monomials of degree $n+1$ to $J$ in the lexicographic order such
that the new ideal $J’$ is a lexsegment ideal, and such that $\dim_{k}(J’)_{t}-\neg\dim_{k}I_{t}$ for
$t=n,$ $n+1$ . Again $\dim_{k}(J’)_{n+2}\leq\dim_{k}I_{n+2}$ , and we may proceed as before. Hence
a simple induction argument concludes the proof of the existence. The arguments
in this proof also show that two lexsegment ideals with the same Hilbert function
must coincide, and this yields the uniqueness. Q. E. D.

(3.11) COROLLARY Let $\triangle$ be a simplicial complex, and $\triangle’$ the unique lexsegment
simplicial complex with the same $f$-vector. Then $\mu(I_{\Delta})\leq\mu(I_{\Delta’})$

Proof. The proof of Theorem (3.5) shows that this inequality holds if $\triangle$ is
strongly stable. On the other hand, if we compare a general simplicial complex with
the corresponding strongly stable simplicial complex as constructed in Corollary
(3.4), then the same inequality for the number of generators holds. This follows
from the proof of Theorem (3.3) and from Proposition $(3.2;\mathrm{b})$ . Q. E. D.

\S 4. Betti numbers of indicator algebras of strongly
stable simplicial conlplexes

We now describe the Koszul homology of the indicator algebra $k\{\triangle\}$ of a strongly
stable simplicial complex $\triangle$ and compute the Betti numbers of $k\{\triangle\}$ . Let $\triangle$ denote
a simplicial complex on the vertex set $V=\{x_{1}, x_{2}, \ldots, X_{v}\}$ and set $I=I_{\Delta}$ . If $\tau$ is
a subset of $\{1, 2, \ldots, v\}$ , then we define

$I_{\tau}=I:x_{\mathcal{T}}$ where
$x_{\tau}= \prod_{i\in \mathcal{T}}x_{i}$

.

Thus, in particular, $I_{\emptyset}=I$ . Notice that $I_{\tau}$ is generated by the monomials

$T/\mathrm{g}\mathrm{c}\mathrm{d}(x_{\mathcal{T}}, T)$ , $T\in G(I)$ .

Hence, $I_{\tau}\neq(1)$ if and only if $\{x_{i} ; i\in\tau\}\in\triangle$ . We identify $\tau\subset\{1,2, \ldots, v\}$ with
$\{x_{i} ; i\in\tau\}\subset V$ and write, e.g., $\tau\in\triangle$ instead of $\{x_{i} ; i\in\tau\}\in\triangle$ .

(4.1) PROPOSITION. Let $\triangle$ be a strongly stable simplicial complex. Then a basi8
of $H_{i}(X_{1}, X_{2}, \ldots , x_{v}; k\{\triangle\})$ is given by the homology classes of the cycles

$T’e_{\sigma}$ A $e_{m(T)}\wedge x_{\tau}e_{\tau}$ , $T\in G(I_{\tau})$ ,

where $\sigma,$ $\tau$ and $\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(T)$ are pairwise $di_{\mathit{8}}j_{oi}nt,$ $\#(\sigma\cup\tau)=i-1,$ $\max(\sigma)<m(T)$ and
$\tau\in\triangle$ , and furthermore of the cycles $x_{\tau}e_{\tau}$ for all $\tau\in\triangle$ with $\#(\tau)=i$ .

Proof. Let $R_{i}$ denote $k[x_{1}, x_{2}, \ldots, X_{v}]/(I_{\triangle}, x_{1}, x_{2},., x_{i})22..2$ for each $0\leq j\leq v$ .
Thus, $R_{0}=k[\triangle]$ and $R_{v}=k\{\triangle\}$ . By induction on $j$ we prove the statement
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as follows: The Koszul homology $H_{i}(R_{j}):=H_{i}(x_{1}, X_{2}, \ldots, X_{v}; Rj)$ is given by the
homology classes of the cycles stated in Proposition (4.1), satisfying the additional
condition $\max(\tau)\leq j$ . We write $Z_{j}$ for this set of cycles. Let $I=I_{\Delta}$ .

If $j=0$ , then $\tau=\emptyset$ ; thus the assertion follows from Proposition (2.2). Let $j>0$
and assume that our claim is true for $j-1$ . We then consider the exact sequence

$0arrow(x_{j}^{2})arrow R_{j-1}arrow R_{j}arrow 0$ .

As in Section 2, we write $\epsilon_{1},$ $\epsilon_{2},$ $\ldots$ , $\epsilon_{v}$ for the canonical basis of $\mathrm{Z}^{v}$ . Then

$(x_{j}^{2})\simeq R^{*}(-2\epsilon_{j})$ ,

where

$R^{*}$ $=$ $k[x_{1}, x_{2,\ldots v},x]/((I, x_{1}^{22}, \ldots, xj-1):X^{2}j)$

$=$ $k[x_{1}, x2, \ldots,xv]/(I_{\{j\},1}X^{2}, \ldots, Xj-)12$ .

Hence, we have the long exact homology sequence

.. . $arrow H_{i}(R^{*})(-2\epsilon_{j})arrow H_{i}(R_{j-1})arrow H_{i}(R_{j})arrow\cdots$ .

We claim that the homomorphism $H_{i}(R^{*})(-2\epsilon_{j})arrow H_{i}(R_{j-1})$ is $\mathrm{z}\mathrm{e}r\mathrm{o}$ for all $i\geq 0$ .
In fact, if we choose $a\in \mathrm{Z}^{n}$ , then we obtain the map

$H_{i}(R^{*})a-2\epsilon jarrow H_{i}(R_{j-1})_{a}$ .

We may assume that $H_{i}(R_{j1}-)_{a}\neq 0$ . By our induction hypothesis we know the
cycles of $H_{i}(R_{j-1})$ . In particular, we conclude that the j-th component of $a$ is $\leq 1$ .
But this implies that $a-2\epsilon_{j}\not\in \mathrm{N}^{v}$ , hence $H_{i}(R^{*})a-2\epsilon j=0$ as desired. Thus, for all
$i>0$ , we obtain the exact sequence

$\mathrm{O}arrow H_{i}(R_{i^{-1}})arrow H_{i}(R_{j})arrow H_{i-1}(R^{*})(-2\epsilon_{j})arrow 0$ .

Again, by assumption of induction, the homology classes of the cycles $Z_{j-1}$ form
a basis of $H_{i}(R_{j1}-)$ . Thus the homology classes of these cycles form a part of a
basis of $H_{i-1}(R_{j})$ . The rest of a basis of $H_{i}(R_{j})$ is $\mathrm{f}\mathrm{o}\mathrm{r}\tilde{\mathrm{m}}$ed by the preimages of a
basis of $H_{i-1}(R*)(-2\epsilon_{j})$ . If $I_{\{j\}}=(1)$ , then $R^{*}=0$ , and the assertion follows,
since then there is no $\tau$ with $\max(\tau)=j$ and $I_{\tau}\neq(1)$ , so that $Z_{j-1}=Z_{j}$ . If
$I_{\{j\}}\neq(1)$ , then $I_{\{j\}}$ is a strongly stable ideal in the ring $k[x_{1}, \ldots, xj-1, Xj+1, \ldots, x]v$ .
Thus we may apply our induction hypothesis, and find that $H_{i-1}(R^{*})$ is generated
by the homology classes of all the cycles described in Proposition (4.1), satisfying
the additional conditions $\sigma,$ $\tau\subset\{1, \ldots,j-1,j+1, \ldots, v\},$ $\max(\tau)\leq j-1$ and
$\#(\sigma\cup\tau)=i-2$ . Let $Z$ denote this set of cycles. Then, for every $z\in Z$ , the element
$z$ A xjej is a cycle in $H_{i}(R_{i})$ whose homology class is mapped to the homology class
$\pm[z]$ in $H_{i-1}(R^{*})$ . Thus the homology classes of the cycles $\mathcal{Z}_{j-1}$ together with the
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homology classes of the cycles $z$ A $x_{j}e_{j},$ $z\in Z$ , form a basis of the cycles of $H_{i}(R_{j})$ .
This proves our assertion, since $Z_{j}=Z_{j-1}\cup$ { $z$ A $x_{j}e_{j}$ ; $z\in Z$ }. Q. E. D.

Let us consider the simple example $I=I_{\Delta}=(X_{1}x_{2})$ . Then $I_{\{1\}}=(x_{2}),$ $I_{\{2\}}=$

$(x_{1})$ and $I_{\{1,2\}}=(1)$ . Thus $H_{1}$ is generated by the homology classes of the cycles:

$x_{1}e_{2}$ , $x_{1}e_{1}$ , and $x_{2}e_{2}$ ,

and $H_{2}$ by
$e_{2}$ A $x_{1}e_{1}$ , and $e_{1}$ A $x_{2}e_{2}$ .

(4.2) COROLLARY. Let $\triangle$ be a strongly stable simplicial complex with f-vector
$(f_{0}, f1, \ldots, f_{d-}1)$ . Then

$\beta_{i}(J_{\Delta})=\sum_{\in T\Delta}(\sum T\in G(I\tau))+f_{i}$ ,

where $|\tau|_{T}$ is the number of elements of $\tau$ which are less than $m(T)$ . In particular,
all the Betti numbers of $J_{\Delta}$ do not depend on the characteristic of the field.

Let $\triangle$ be an arbitrary simplicial complex. Since the ideals $I_{\Delta}$ and $J_{\Delta}$ are graded
ideals, they have a graded free resolution, and we may, as in Section 1, discuss the
graded Betti numbers $\beta_{i_{J}}$ of these ideals. Let $\triangle’’$ denote the lexsegment simplicial
complex with same $f$-vector of $\triangle$ .

(4.3) CONJECTURE.

$\beta_{i_{g}}(I_{\Delta})\leq\beta_{i_{j}}(I_{\triangle}\prime\prime)$ and $\beta_{i_{j}}(J_{\triangle})\leq\beta_{i_{j}}(J_{\Delta’’})$

for all $i$ and $j$ .

The first inequalities of Conjecture (4.3) is the squarefree version of Bigatti-
Hulett theorem on the upper bounds for the Betti numbers of a given Hilbert func-
tion. On the other hand, the second inequalities of Conjecture (4.3) have an in-
teresting combinatorial consequence as follows. Recall from, e.g., $[\mathrm{H}_{1}]$ or [Bru-Her]
that for given positive integers $a$ and $i$ , there exists a unique representation of $a$ of
the form

$a=++\cdots+$
$a_{i}>a_{i-1}>\cdots>a_{j}\geq j\geq 1$ .

Then, we define

$\partial_{i-1}(a)=++\cdots+$ .
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The second inequalities of Conjecture (4.3) imply the following: Let $\triangle$ be an arbi-
trary simplicial complex with $f$-vector $f(\Delta)=(f_{0}, f_{1}, \ldots , f_{d-1})$ and write $n_{i}(\triangle)$ for
the number of maximal faces $\sigma$ of $\triangle$ with $\#(\sigma)=i+1$ . Then

$n_{i-1}(\triangle)\leq f_{i}-1^{-\partial_{i}}(fi)$

for every $1\leq i\leq d-1$ (and $n_{d-1}(\triangle)=f_{d-1}$ ). Moreover, if $\triangle$ is lexsegment, then
the equality holds for every $1\leq i\leq d-1$ .

: We conclude this paper with some results related with Conjecture (4.3).

(4.4) THEOREM. Let $\triangle$ be an arbitrary simplicial complex, $\triangle^{J}$ a strongly sta-
$ble$ simplicial complex with same $f$-vector as $\triangle$ , and $\triangle’’$ the lexsegment simplicial
complex $with_{Sa}mef$-vector as $\triangle$ . Then, for every $i$ and $j$ , we have the inequality

$\beta_{i_{\mathrm{j}}}(I_{\Delta’})\leq\beta_{i_{j}}(I_{\Delta}\prime\prime)$ .

Moreover, if the base field is of characteristic $0$ or 2, then, for every $i$ and $j$ , we have
the inequality

$\beta_{i_{j}}(J_{\Delta})\leq\beta_{i_{j}}(J_{\Delta’})$ .

Proof. First, we prove the second inequality for $\beta_{i_{j}}(J_{\Delta})$ and $\beta_{i_{j}}(J_{\Delta’})$ . The
Betti numbers may depend on the field characteristic. To express this dependence
we write, e.g., $\beta_{i_{j}}^{k}$ for $\beta_{i_{j}}$ . Quite generally, if $I$ is an ideal whose generators have
integer coefficients, then $\beta_{i_{j}}^{k}(I)\leq\beta_{i_{j}}^{k’}(I)$ for any two fields with char$(k)=0$ and
char$(k’)>0$ . In view of this fact, it suffices to show the inequality in the case of
characteristic 2. Now, Theorem (3.3) guarantees that $J_{\Delta’}$ is obtained from $J_{\Delta}$ by
taking initial forms, which implies the desired inequality. See, e.g., [B-H-V].

We next give a proof of the first inequality for $\beta_{i_{j}}(I_{\Delta}’)$ and $\beta_{i_{j}}(I_{\Delta’’})$ . Let $I$ be a
squarefree strongly stable ideal and set

$G(I)_{n}=\{T\in G(I) ; \deg T=n\}$ .

Then it follows from Theorem (2.1) (or Proposition (2.2)) that

$\beta_{i_{j}}(I)=\sum_{\in^{c}\tau(I)_{j-:1}+}$ .

We split this sum into a difference of two sums $C$ and $D$ . Let $I_{\langle n\rangle}$ denote the ideal
in $k\{\Gamma\}$ which is generated by all (squarefree)- monomials in $I$ of $\deg r$ee $n$ . Then

$G(I)_{n+1}=G(I_{\langle n+1)})-G(I_{\langle}n\rangle)\{x1, X2, \ldots, xv\}$ ,

and hence $\beta_{i_{j}}(I)=C-D$ , where

$C=T \in^{c}(I-i1)(\sum_{+j\rangle}$ ,
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and $D$ is the same sum taken over all monomials $T\in G(I_{(ji}-\rangle)\{x_{1,2}x, \ldots, X_{v}\}$ .
Then, with the same notation as in Section 3, we have

$C$ $=$ $\sum_{t=1c}^{v}\sum_{)\tau\in \mathrm{t}I-\cdot+1\rangle;(jt}.$

$=$ $\sum_{t=1}^{v}mt(Ij-i+1\rangle)($

$=$ $\sum_{t=1}^{v}(m\leq \mathrm{f}(I-i+\rangle)(j1-m\leq t-1(I_{(1}j-i+)))$

$=$ $m_{\leq v}(I_{\langle j}-i+1\rangle)$

$+ \sum_{t=1}^{1}(m\leq t(v-I(j-i+1))[-]$

$=$ $m\leq v(I_{(ji1\rangle}-+)$

$- \sum_{1t=}^{v-}m\leq t(I_{(j\rangle}-i+1)1$ .

Furthermore, it follows from Lemma $(3.7;\mathrm{b})$ that

$D= \sum_{t=1}mv\leq t-1(I_{(}j-i\rangle)$ .

Now let $J$ denote the squarefree lexsegment ideal with the same Hilbert function
of $I$ . Then, the number of generators of $I_{(n)}$ and $J_{\langle n\rangle}$ are equal for all $n$ . Thus,
$m\leq v(I_{(n\rangle})=m\leq v(J_{\langle n\rangle})$ , and it follows from Theorem (3.9) that $m\leq i(J_{\langle\rangle}n)\leq m\leq i(I_{(\rangle}n)$

for all $i$ . Therefore, if we compare the above expression for $\beta_{i_{j}}(I)$ with that of $\beta_{i_{j}}(J)$ ,
the required inequality follows. Q. E. D.
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