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ON THE GLOBAL EXISTENCE OF SOLUTIONS
FOR THE DISCRETE BOLTZMANN EQUATION
WITH LINEAR AND QUADRATIC TERMS

MITsURU YAMAZAKI

Dept. Mathematical Science, Univ. Tokyo

In this paper, we study the discrete Boltzmann equation in one-dimensional space
with linear and quadratic terms. This system, which is more general than the usual one
by the intervention of linear terms, describes the gas motion of molecules which take only
a finite number (§I < o) of velocities ¢;( € I) under the interactions between particles
represented by the quadratic terms and also under the reflection of molecules at the inner
wall of an infinite thin tube, represented by the linear terms which we treated in the papers

[9], (10], [11], [12], [13], [14].

Ou; Ou; _
(B) Bt g )+ Liw),
Uilmo = ud(z) , i € [,t € Ry,z € R!
where -
Qi(u) = Y (AHurue— AZuiu;)
J.kLel ‘
Li(u) = Z(afuk —aluyy) .
kel

The physical theory imposes to this system the natural conditions :

Conditions .—
ke k€ _ Akl _ ALk
Aij g 0, A‘] == A]i = A'] y
*) A #0 = 1#7],
of20 and al=0 foral i,kel.
This linear terms are more general than the ones which are obtained by considering
solutions around constant stationary solutions (M;) with Q;(M) = 0, called constant

Maxwellian. We suppose furthermore the condition of distinct velocities and the microre-
versibility condition for the quadratic terms.
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Condition vd.—

i1#F ] o ci#c
Condition urQ.— -
Y A=) A for Vijel
k€T kel

We introduce the space B(R x [0,T]) defined as follows : for T < co fixed,
B(R x [0,T)) = {u(z,t) : ui(s,t) € C(0,T; L}, o(R))

such thatz / sup
ier VK

tefo,T)

uf(x,t)| dz < o0, for VK CC R},

where ul(z,t) = ui(z + cit, t) .
Definition.— Suppose the condition (vd). Let be u} € L}, (R) and v € B(R x [0,T}).

Loc

We say that u is a solution of the system (B) with Cauchy data (u?); if and only if

ud(z, 1) = ud(z) + / (QY(u)(z, 5) + L¥(u)(z, 5)}ds .

Remark : The solutions defined as above are weaker than those in the distribution sense.

Main Theorem.— Suppose the conditions (vd) and (urQ). Let the Cauchy data be
positive with locally finite entropy (not necessary bounded). Then there exists a global
solution in time and the solution is unique and positive.

Let’s show the local existence in time for the small mass :

Theorem 2.— Suppose the condition (vd). There exists § > 0 such that, for ||u°” =6
there exists an unique solution u in B(R x [0,6]), and we have ||u|| gz £ 26. Furthermore,
the mapping u® + u is continuous from the ball with radius é§ of L' to the ball with radius
26 of B(R x [0,6]). Finally, we have the finite velocity propagation and the conservation
of the positivity.

Proof. The equation can be written in the form v — Ku = f, where

(Ku)i(z,t) = / (Qi(w) + Li(w)) (= — ci(t — 5), 5)ds

and (f); = u?(z — c;t). For sufficiently small §, K is Lipschitz continuous with Lipschitz
constant 1/2 from the ball with radius § of L' to the ball with radius 2§ of B(R x [0, §]).
We have also K(0) = 0 and |jv|lg £ §' = ||Kv||g £ §'/2 for §' < 6. Then the inverse of
1 — K exists in the form of the Neumann series .-, K™ and it is Lipschitz continuous
with Lipschitz constant 2. The mapping u° + u is continuous from the ball with radius §
of L' to the ball with radius 26 of B(R x [0, §]).

Let’s show the finite velocity propagation. Now we suppose that the Cauchy data
are supported in [—B, B] with B < oo. Then it is easy to see that Ku is supported in
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{(z,t) : z € [-B — Ct,B + Ct]} where C = max;|c;|. Similarly, K?u, then all the K™u
(n2 1), are supported in the same region. Because we have u = Y oo K™ f, the support
of u is included in {(z,t) :z € [-B — Ct,B + Ct]}. Then we have the finite velocity

propagation.

Now we suppose that u° is bounded. Let [0,T] with T' £ é be the widest interval where
sup; . [ui(z,-)| is bounded. Then u is a solution in the distribution sense. It is easy to see
T >'0. We put M = sup,¢(o, 17 SUP; - |ui(z,t)] < 0. By the equation, we have

supul(z,t) £ [[v°|| j + CuaMullg + Cullull s + MT
< CubM +Cab + |4

where the constant C, depends only on the equation. For § < (20*)_1, we have

M = sup suplui(z,t)| £2(1+ |[v°| ;)
t€l0,T] i,z

This upperbound depends only on the Cauchy data. Therefore we have T' = §. We omit
a proof for the conservation of the positivity. (See [14]) g

Corollary 3.— Suppose the condition (vd). Let u® be positive data in L' and h a
number such that fa+h ¢ < § for any a € R, then there exists an unique solution u in
B(R x [0,6]) with § = mm{6 h/C} and C = max;|c;|. Furthermore we have the finite
velocity propagation. Finally, if we suppose the condition (urQ), then, for the Cauchy data
such that u® are supported in [—R, R| and verifying 3 ; [ ulog u?(:z:)dx < oo, we have,
fort € [0,6], H(t) + K < e H(0) + K) with C. which depends only on the equation,
where H(t) = }; [g uilogui(z,t)dz and K depends only on the equation and R . o

Proof. By virtue of the finite velocity propagation shown in the preceding theorem, we
can restrict the data in the interval [a, a + k]. Then the solution exists in small triangles of
base [a, a + k] and of height min{é, h/C}. Pasting the solutions defined in these triangles,
we have a solution in B up to the time 6 with § = min{é, h/C}.

For the calculus on the increase of H (t) we make approach the data by u® = inf(u%,n).
Then we have Y, [¢ ul ;logul (z,t)de £ 3, [ ullogul(z,t)dz < 0. By virtue of the
theorem 2, the solutlons Unp correspondmg to the Cauchy data u? exist up to the time
6. Furthermore they are bounded and positive up to the time 6. Especially the solutions
have their support in z included in [—-R', R'] with R' = R+ C.6 . Therefore the quantity
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Ho(t) =Y, g un,ilogun i(z,t)dz are well-defined. We write

0 9\ .. —Ct
> (5 + ¢ ax) (un,ilogunie™")

i

= —Cup,ilog un,;e'Ct

1 ¢ Uy kU
—~Ct ke n,kUn £
-3¢ E Aj; (Un kUnglog ———"= — Uy kUn ¢ + Un,iUn,j)

ijke n,itn,j
- —Ct k
—e Z a;tun k(logun r —logus ;)
ik

< —Ce™“ Z Uy iloguy, ; — e Z afu, r(logun k — logun ;) ,
i ik

where C is a constant which we choose later. Integrating this inequality over [0,%] then
over R, we obtain

e~ CtH,(t) — Hn(0)

t t
< —Ce‘Ct/ Hy(7)dr — e Ct Zaf/ / Un i log Upn kdTdz
0 T o JR

t
+e_CtZaf/ / Un k loguy, idrdz .
ik 0 /R

We have t
_e—CtZaf/ / Un klog Uy pdrdr S C.teCtR'
ik 0 JR

< C.R't

with a constant C, which depends only on the equation, because we have —z logz £
1/e for any z € R . Because uglogu; S max{0,u;logu;,urlogu,}, we obtain

t t
zaf/ / urlogu;drds < C*e_Ct/ Ho(7)dr + Cite ©'R'
m o JrR 0
t
< C.e™C / Ho(r)dr + C.R't
0
with a constant C, which depends only on the equation. We obtain finally
t
e CtH, (t) — Ha(0) £ —(C — C.)e™ ¢ / H.(r)dr + C.R't .
0

Taking the constant C > C., and using —H,(t) £ C.R', we have

H,(t) £ eCY(H(0)+ C.R'?) .
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Putting K = C.R', we have

H.(t) + K < e (H(0) + K + Kt)
eCt (H(0) + Ke?)
TtV (H(0) + K) .

Il/\ II

By virtue of the conservation of the mass, the u,(-,t) converge to the solution u(-,t) in
L! for each ¢t € [0,0]. Taking a suitable sub-sequence, the un(-,t) converge to u(:,t)
almost everywhere. Because up ;logun i(-,t) are upper-bounded by 1/e and that they are
supported in a fixed compact set, the Fatou’s lemma give that

H(t)+K=Z/ u;logui(z,t) dz + K
; R

< lim ian/ Unilogun i(z,t) dz + K
i R
= liminf Ho(t) + K £ DY H(0) + K) .

Corollary 4.— Suppose the conditions (vd).

1) Suppose that there exist two solutions u and v in B(R x [0,T)]) corresponding to the
summable and positive data which coincident in an interval [a,b]. Then the solutions
coincident in the triangle or trapezoid {(z,t) :t € [0,T],z € [a + Ct,b — Ct]}.

2) Let the Cauchy data be supported in [—R, R], summable and positive. Suppose that
there exists a solution u in B(R x [0,T]). Then the support of u(-,t) is included in
[-R - Ct,R+ Ct].

Proof. Let be ¢, = inf{t : u(-,t) # v(-,t)}.. We have then u(-,t9) = v(-, %) € L.
Because u and v are in L1, there exists p such that f{z u(z,10)2p) U(Z: to)dz < 6/2 . Taking

h = §/(2p), we have, for any a € R,

at+h §
/ ui(z,t0)dz < 5 +hp<§.

Using the preceding corollary, u and v coincident in small triangles of base [a,a + h]N {t =
to} and of height 8, which is a contradiction.
To prove the finite velocity propagation, we introduce

to = inf{t such that the support of u(-,t) is not
included in [-R—-Ct,R+Ct] }.

Then, similarly, there exists h such that faa+h u;(z,t)dz £ § . By virtue of the preceding
corollary, the support of u(-,t) is included in [-R— Ct, R+ Ct] up to the time ¢ 46, which

is a contradiction. g
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Lemma 5.— Suppose the conditions (vd) and (urQ). Let u(z,t) be a positive solution
defined in R x [0,T] and supported in [—R, R]. We suppose that, for any t € [0,T],
> fRu,-log ui(z,t) dz is less than a constant C which don’t depend on t . Then, for any

é > 0, there exists a h which depends only on R,C, and § such that f:+h u(z,t) de <6
for any a € R and any t € [0,T).

Proof. If not, for any h > 0, there should exist a, € R and ¢. € [0,T*] such that

) :_‘ +h ui(z,t.)dz > 6. Now we use the argument due to Toscani [8] and Tartar-Crandall

[7]. We put, for m 2 1,
B; = {z € [ax,ax + h] :ui(z,t,) 2 e™}

and
By, = [a*,a* + h] \ B; .

Then we should have

a.+h
1
/ ui(z,t)dz £ = [ wilogtui(y,t.)dy + he™
Qe m Bl

where logTy = max{logy,0} . On the other hand, we should have

C2 Z/ u;log ui(y,t.)dy
—~ Jr
R
> Z/ (uilogtu(y,t.) — 1) dy
~ J-r
R
= Z/ u,-log"'u,-(y,t*)dy - 2pR,
~ J-r

where p = §I . Then we should obtain
a.+h

§< Z/ ui(y, t.)dy

1 a.+h
< = Z/ u,-log"'u,-(y, ts)dy + phe™

< %(c + 2pR) + phe™ .

Choosing m such that ;L—(C + 2pR) < %, then h such that phe™ < g, we should have
6 < g + g = %, which is a contradiction. g
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Corollary 6.— Suppose the conditions (vd) and (urQ). Let the Cauchy data be sup-
ported in [—R, R], positive with finite entropy. Suppose that there exists a solution in
B(R x [0,T]). Then we have

H(t)+ K S e%{(H(0) + K)

where the constant C,. depends only on the equation and K depends only on the equation,
Rand T .

Proof. The solution have its support in z included in [-R'R'] with R = R+ CT

Let K be the constant associated to R’ by the corollary 3. Let be to =
inf{t such that the estimate is not valid at the time ¢}. Taking a small € > 0, we have
H(tg—¢) £ eC-(o—)(H(0) + K) < eC-T(H(0) + K). Because u(-,to — €) is positive and
supported in [—R', R'], the preceding lemma shows that there exists a h independent of €
such that we have, for any a € R, [ :+h ui(z,to — €)dz < 6. By virtue of the corollary 3,
we have

H(to—e+6)+ K S e%°(H(to — €) + K)
< eC.OeC.(to—c)(H(O) + K) .

The estimate is then verified up to the time to — € + 8 with 6 > 0 independent of &, which
is a contradiction. g

Now let’s show the proof of the main theorem.

Proof. Let T, be arbitrary number and we want to prove that the existence time of the
solution is at lest Ty . By virtue of the finite velocity propagation, we can suppose that
the Cauchy data are supported in [—R', R'] and they have a finite entropy. Let T* be the
existence time of the solution. Suppose that T* < Tp. By the corollary 6, the entropy is
bounded for t < T*: H(t) £ Hr < oo. By virtue of the lemma 5, there exists h > 0 such

that f:+h ui(z,t)dz £ §forany a € Randt < T*. Fort < T, by the corollary 3, applied
to the data u;(-,t), there exists § > 0 independent of ¢ such that the solution is prolonged
in R x [0, + 6] . It is sufficient to choose t > T* — @ for arriving at a contradiction. g
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