分散型修正項をもつ双曲型特異摂動の 漸近解の構成について

上智大学理工学部 内山康一

Sophia University, UCHIYAMA Kôichi

1 Introduction

We consider Cauchy problems for a linear strictly hyperbolic equation of order l with a small parameter $\epsilon \in (0, \epsilon_0]$:

(1)
$$\left((i\epsilon)^{l-m} L(t, x, D_t, D_x; \epsilon) + M(t, x, D_t, D_x; \epsilon) \right) u(t, x; \epsilon) = f(t, x; \epsilon)$$
 for $(t, x) \in (0, T) \times \mathbf{R}^{d}_{x}$,

(2)
$$D_t^j u(0, x; \epsilon) = g_j(x; \epsilon) \quad j = 0, 1, 2, \dots, l-1$$

where L and M are linear strictly hyperbolic operators of order l and m (l=m+1 or m+2) with C^{∞} bounded derivatives with respect to $(t,x,\epsilon)\in [0,\infty)\times \mathbf{R}^{d}\times [0,\epsilon_{0}]$.

The aim of this paper is to give C^{∞} asymptotic expansions of solutions to singularly perturbed Cauchy problems of this type. This is a revisit of problems treated in [8].

We postulate that the solution has an expansion

(3)
$$u(t,x;\epsilon) \sim v(t,x;\epsilon) + w(t,x;\epsilon),$$

(4)
$$v(t,x;\epsilon) = \sum_{n=0}^{\infty} \epsilon^n v_n(t,x) \text{ (regular part)},$$

(5)
$$w(t, x; \epsilon) = \sum_{n=m}^{\infty} \epsilon^n w_n(t, x; \epsilon) \text{ (singular part)}$$

where v and w mean formal sums such that

$$(6) Pv \sim f$$

$$(7) Pw \sim 0$$

(8)
$$D_t^j(v+w)\Big|_{t=0} \sim g_j, \quad j=0,1,2,\ldots,l-1.$$

We investigated in [9] a priori L^2 and higher order Sobolev norm estimates of the solution to (1) and (2) under various separation conditions of characteristic roots of L and M. In [10], we dealt with the case where the singular part, that is, the correction terms (5) associated with (4) were of dissipative type (exponential decay as ϵ tends to 0). In this paper, we treat the case where the the correction terms are dispersive (highly oscillating as ϵ tends to 0). They are described by oscillating functions locally and by Maslov's canonical operators globally. The estimates of the remainder terms of asymptotic expansions are given by a priori estimates in [9].

In view point of propagation of waves, the regular part of the solution is governed by the principal part of M (the subcharacteristic wave in [11]). The singular part is governed by ϵ -principal part of $(i\epsilon)^{l-m}L + M$. In contrast with the propagation of singularity of the solution u, the principal part of L is not *principal* to determine the quantitative propagation of the singularly perturbed wave.

2 A priori estimates

We consider two operators L and M:

(9)
$$L(t,x,D_t,D_x;\epsilon) = D_t^l + \sum_{j=1}^l L_j(t,x,D_x;\epsilon)D_t^{l-j}$$

(10)
$$M(t, x, D_t, D_x; \epsilon) = m_0(t, x, D_x; \epsilon) D_t^m + \sum_{j=1}^m M_j(t, x, D_x; \epsilon) D_t^{m-j}$$

with their principal symbols

(11)
$$l(t, x, \tau, \xi; \epsilon) = \tau^{l} + \sum_{j=1}^{l} l_{j}(t, x, \xi; \epsilon) \tau^{l-j}$$

(12)
$$m(t,x,\tau,\xi;\epsilon) = m_0(t,x,\xi;\epsilon)\tau^m + \sum_{j=1}^m m_j(t,x,\xi;\epsilon)\tau^{m-j}.$$

We assume the following assumptions:

(H0) Regular Hyperbolicity of L: $l(t, x, \tau, \xi; \epsilon)$ has the decomposition

(13)
$$l(t, x, \tau, \xi; \epsilon) = \prod_{j=1}^{l} (\tau - \varphi_j(t, x, \xi; \epsilon))$$

where $\varphi_j(t, x, \xi; \epsilon)$ are real distinct elements such that

(14)
$$\varphi_1(t, x, \xi; \epsilon) < \varphi_2(t, x, \xi; \epsilon) < \dots < \varphi_l(t, x, \xi; \epsilon) \quad \text{uniformly:}$$

that is, $\varphi_{j+1}(t, x, \xi; \epsilon) - \varphi_j(t, x, \xi; \epsilon)$ is uniformly positive for $j = 1, \dots, l-1$.

(H1) Regular Hyperbolicity of M: $m(t, x, \tau, \xi; \epsilon)$ has the decomposition

(15)
$$m(t, x, \tau, \xi; \epsilon) = m_0(t, x, \xi; \epsilon) \prod_{j=1}^{m} (\tau - \psi_j(t, x, \xi; \epsilon))$$

where $\psi_j(t, x, \xi; \epsilon)$ are real distinct elements such that

(16)
$$\psi_1(t, x, \xi; \epsilon) < \psi_2(t, x, \xi; \epsilon) < \dots < \psi_m(t, x, \xi; \epsilon) \quad \text{uniformly.}$$

When l = m + 1, we assume the following assumptions (H2) and (S0).

(H2): $m_0(t, x; \epsilon)$ is pure-imaginary and uniformly away from 0, that is,

$$\Re m_0(t,x;\epsilon) = 0$$
 and $|\Im m_0(t,x;\epsilon)| \ge \delta > 0$,

(S0): $\{\psi_i\}$ separates $\{\varphi_j\}$ uniformly, that is,

$$\varphi_1 < \psi_1 < \varphi_2 < \dots < \psi_m < \varphi_{m+1}$$
 uniformly.

Remark 1 Since L and M are differential operators, the conditions (H2) and (S0) are equivalent to (WS^{\pm}) and (S^{\pm}) in [9].

Remark 2 In [10], we assumed (H0), (H1), (S0) and

(E1): the uniformly strong ellipticity of m_0 , that is,

$$\Re m_0(t,x;\epsilon)\geq \delta>0.$$

We quote from [9]

Theorem 2.1 Under the assumptions (H0),(H1),(H2) and (S0), for any natural number p, there exist C>0 and γ_0 such that for any positive $\epsilon \leq \epsilon_0$, any $\gamma \geq \gamma_0$ and for any $u(t) \in C^{\infty}\left([0,T]; C_0^{\infty}(\mathbf{R}_x^d)\right)$ we have

$$(17) C\left\{\frac{1}{\gamma}\int_{0}^{T}e^{-2\gamma t}\frac{1}{\epsilon}\sum_{j=0}^{p}\left(\epsilon^{2}\gamma\right)^{j}\parallel D^{j}f(t)\parallel^{2}dt+\parallel D^{m-1}u(0)\parallel_{1/2}^{2}\right. \\ + \left.\gamma^{p}\left(\epsilon\sum_{j=0}^{p}\epsilon^{2j}\parallel D^{m}u(0)\parallel_{j}^{2}+\sum_{j=1}^{p}\epsilon^{2j}\parallel D^{m}u(0)\parallel_{j-1/2}^{2}\right. \\ + \left.\epsilon\sum_{j=0}^{p-1}\epsilon^{2j}\parallel D^{j}f(0)\parallel^{2}+\sum_{j=1}^{p-1}\epsilon^{2j}\parallel D^{j-1}f(0)\parallel_{1/2}^{2}\right)\right\} \\ \geq \left.\gamma\int_{0}^{T}e^{-2\gamma t}\sum_{j=0}^{p}\left(\epsilon^{2}\gamma\right)^{j}\left(\epsilon\parallel D^{m+j}u(t)\parallel^{2}+\parallel D^{m+j-1}u(t)\parallel_{1/2}^{2}\right)dt \\ + \left.e^{-2\gamma T}\sum_{j=0}^{p}\left(\epsilon^{2}\gamma\right)^{j}\left(\epsilon\parallel D^{m+j}u(T)\parallel^{2}+\parallel D^{m+j-1}u(T)\parallel_{1/2}^{2}\right).$$

When l=m+2, we assume (H0), (H1) and the following assumptions (WS) and (P): (WS): $\{\psi_i\}$ weakly separates $\{\varphi_j\}$ uniformly, that is,

$$\varphi_1 < \{\psi_1, \varphi_2\} < \dots < \{\psi_{m+1}, \varphi_m\} < \varphi_{m+2}$$
 uniformly.

where $\{a,b\} < \{c,d\}$ means $\max\{a,b\} < \min\{c,d\}$.

(P): $m_0(t, x; \epsilon)$ is real and uniformly positive, that is,

$$\Im m_0(t,x;\epsilon)=0, \text{ and } m_0(t,x:\epsilon)\geq \delta>0.$$

We quote from [10],

Theorem 2.2 Under the assumptions (H0), (H1), (P) and (WS), for any natural number p, there exist positive constant C and γ_0 such that any $\epsilon \in (0, \epsilon_0]$, for any $\gamma \geq \gamma_0$, we have

(18)
$$C\left\{\frac{1}{\gamma}\int_{0}^{T}e^{-2\gamma t}\frac{1}{\epsilon^{2}}\sum_{j=0}^{p}\left(\epsilon^{2}\gamma\right)^{j}\parallel D^{j}f(t)\parallel^{2}dt + \gamma^{p}\parallel D^{m}u(0)\parallel^{2}\right.$$

$$\left.+ \gamma^{p}\left(\epsilon\sum_{j=0}^{p}\epsilon^{2j+2}\parallel D^{m+1}u(0)\parallel_{j}^{2} + \sum_{j=0}^{p-1}\epsilon^{2j}\parallel D^{j}f(0)\parallel^{2}\right)\right\}$$

$$\geq \gamma\int_{0}^{T}e^{-2\gamma t}\sum_{j=0}^{p}\left(\epsilon^{2}\gamma\right)^{j}\left(\epsilon^{2}\parallel D^{m+j+1}u(t)\parallel^{2} + \parallel D^{m+j}u(t)\parallel^{2}\right)dt$$

$$+ e^{-2\gamma T}\sum_{j=0}^{p}\left(\epsilon^{2}\gamma\right)^{j}\left(\epsilon^{2}\parallel D^{m+j+1}u(T)\parallel^{2} + \parallel D^{m+j}u(T)\parallel^{2}\right).$$

3 Singular characteristic roots.

3.1 degeneration of order 1.

Let l = m + 1. We define ϵ -principal symbol

$$p(t, x, \tau, \xi; \epsilon) = il(t, x, \tau, \xi; \epsilon) + m(t, x, \tau, \xi; \epsilon).$$

We denote the roots of $p(\tau) = 0$ by $\tau_j(t, x, \xi; \epsilon)$'s.

Proposition 3.1 We assume (H0),(H1),(H2) and (S0). Then, τ_j 's are real and uniformly distinct, that is,

$$\tau_1 < \tau_2 < \cdots < \tau_{m+1}$$

Moreover, if

$$\Im m_0(t,x;\epsilon) \geq \delta > 0,$$

the least root $\tau_1(t, x, \xi; \epsilon)$ belongs to the nonhomogeneous smooth symbol class S^1 and $\tau_1(t, x, 0; \epsilon) = -\Im m_0(t, x; \epsilon)$.

If

$$(20) -\Im m_0(t,x;\epsilon) \geq \delta > 0,$$

the greatest root $\tau_{m+1}(t, x, \xi; \epsilon)$ belongs to the nonhomogeneous smooth symbol class S^1 and $\tau_{m+1}(t, x, 0; \epsilon) = -\Im m_0(t, x; \epsilon)$.

Remark When the condition (19) holds, we have

$$\tau_1 < \varphi_1 < \psi_1 < \dots < \psi_m < \tau_{m+1} < \varphi_{m+1}.$$

We call τ_1 the singular root. Attrnatively, τ_{m+1} is the singular one, when the condition (20) holds.

We denote for simplicity, $p(t, x, \tau, \xi; 0)$ by $p, \tau_1(t, x, \xi; 0)$ by τ_1 and so on. We consider a Hamiltonian system for $(t(\sigma), x(\sigma), \tau(\sigma), \xi(\sigma))$:

(21)
$$\begin{cases} \frac{dt}{d\sigma} = \frac{\partial p}{\partial \tau}, & \frac{dx_j}{d\sigma} = \frac{\partial p}{\partial \xi}, & j = 1, 2, \dots, d, \\ \frac{d\tau}{d\sigma} = -\frac{\partial p}{\partial t}, & \frac{d\xi_j}{d\sigma} = -\frac{\partial p}{\partial x_j}, & j = 1, 2, \dots, d, \end{cases}$$

with Cauchy data

(22)
$$\begin{cases} t(0) = 0, & x_j(0) = y_j, \quad j = 1, 2, \dots, d, \\ \tau(0) = \tau_1(0, y, 0; 0), & \xi_j(0) = 0, \quad j = 1, 2, \dots, d. \end{cases}$$

Proposition 3.2 (Fedoryuk[2]) The family of $t = t(\sigma, y)$, $x = x(\sigma, y)$, $\tau = \tau_1(t(\sigma, y), x(\sigma, y), \xi(\sigma, y))$, $\xi = \xi(\sigma, y)$ is a unique solution to (21) and (22), if and only if $\tilde{x}(t, y) = x(\sigma(t, y), y)$ and $\tilde{\xi}(t, y) = \xi(\sigma(t, y), y)$ satisfy the Hamiltonian system

(23)
$$\begin{cases} \frac{d\tilde{x}_{j}}{d\sigma} = -\frac{\partial \tau_{1}}{\partial \xi}, & j = 1, 2, \dots, d, \\ \frac{d\tilde{\xi}_{j}}{d\sigma} = \frac{\partial \tau_{1}}{\partial x_{j}}, & j = 1, 2, \dots, d, \end{cases}$$

and Cauchy data

(24)
$$\tilde{x}(0) = y, \quad \tilde{\xi}(0) = 0.$$

Proposition 3.3 We assume the above assumptions.

(i) We have a unique system of solutions $\{\tilde{x}_i(t,y)\}$ and $\{\tilde{\xi}_i(t,y)\}$ to (23) and (24) for all non-negtive t. There exists a positive constant M such that for any nonnegative t

$$\sup_{y} \left| \tilde{x}_i(t,y) - y_i \right| \le Mt \qquad i = 1, 2, \dots, d,$$

$$\sup_{y} \left| \tilde{\xi}_i(t,y) \right| \le e^{Mt} - 1, \qquad i = 1, 2, \dots, d.$$

(ii) There exist positive constants T_0 , δ , such that

$$\left|\det\left(rac{\partial ilde{x}_i}{\partial y_a}(t,y)
ight)
ight| \geq \delta > 0 \quad (t,y) \in [0,T_0] imes oldsymbol{R}^d.$$

3.2 degeneration of order 2.

Let l = m + 2. We define ϵ -principal symbol

$$p(t,x,\tau,\xi;\epsilon) = -l(t,x,\tau,\xi;\epsilon) + m(t,x,\tau,\xi;\epsilon).$$

We denote the roots of $p(\tau) = 0$ by $\tau_j(t, x, \xi; \epsilon)$'s.

Proposition 3.4 We assume (H0),(H1),(P) and (WS). Then, τ_j 's are real and uniformly distinct, that is,

$$\tau_1 < \tau_2 < \cdots < \tau_{m+2}.$$

Moreover, the least root $\tau_1(t, x, \xi; \epsilon)$ and the greatest root $\tau_{m+2}(t, x, \xi; \epsilon)$ are inhomogeneous symbols in S^1 . They satisfy $\tau_1(t, x, 0; \epsilon) = -\sqrt{m_0(t, x; \epsilon)}$ and $\tau_{m+2}(t, x, 0; \epsilon) = \sqrt{m_0(t, x; \epsilon)}$

Remark. We have for $j = 2, 3, \dots, m+1$,

$$\tau_1 < \varphi_1 < \min\{\varphi_j, \psi_{j-1}\} < \tau_j < \max\{\varphi_j, \psi_{j-1}\} < \varphi_{m+2} < \tau_{m+2}.$$

We call τ_1 and τ_{m+2} singular root.

We consider the Hamiltonian systems of the same type as in the previous subsection, except one condition in the Cauchy data,

(25)
$$\tau|_{\sigma=0} = \tau_i(0, y, 0) \text{ for } i = 1 \text{ or } m+2$$
$$= \pm \sqrt{m_0(0, x; 0)}.$$

We obtain the solutions $(t^*(\sigma), x^*(\sigma), \xi^*(\sigma))$ and $(\tilde{x}^*(t, y), \tilde{\xi}^*(t, y))$, where $* = \pm$ according to the signature of the Cauchy data (25).

4 Canocical operators of Maslov

We refer details to Maslov and Fedoriuk [6] and other references [2], [1], [3], [7] related to Maslov [5].

Let Λ^{d+1} be the flow-out of $\mathbf{R} \overset{d}{_{x}} \times \{0\} \subset \mathbf{R} \overset{d}{_{x}} \oplus \mathbf{R} \overset{d}{_{\xi}}$, by the trajectory (23) for $t \in [0, \infty)$. That is,

$$(26) \qquad \Lambda^{d+1} = \left\{ (t, x, \tau, \xi) \in \mathbf{R} \right\}_{t,x}^{d+1} \oplus \mathbf{R} \right\}_{\tau,\xi}^{d+1}; 0 \le t < \infty, x = \tilde{x}(t, y),$$

(27)
$$\tau(t) = \tau_1(t, \tilde{x}(t, y), \tilde{\xi}(t, y)), \xi = \tilde{\xi}(t, y)$$

Proposition 4.1 (Fedoryuk [2]) (i) Λ^{d+1} is a (d+1)-dimensional simply connected nonhomogeneous Lagrangian C^{∞} manifold with boundary

$$\Lambda' = \left\{ (0, y, \tau_1(0, y, 0); y \in \mathbf{R}^d \right\}$$

$$\cong \mathbf{R}^d.$$

- (ii) The variable t can be always in a set of local coordinates of any point of Λ^{d+1} .
- (iii) The projection of the restricted part $\Lambda^{d+1}\Big|_{[0,T_0]}$ onto $\mathbf{R}^{d+1}_{t,x}\Big|_{[0,T_0]}$ along $\mathbf{R}^{d+1}_{\tau,\xi}$ is a diffeomorphism.

 Λ^{d+1} has a global system of coordinates $(t,y) \leftrightarrow \lambda \in \Lambda^{d+1}$. This defines a volume element $d\sigma(\lambda(t,y)) = dtdy$ on Λ^{d+1} , which is invariant by the Hamiltonian flow. We choose a locally finite covering of canonical charts $\{\Lambda_j\}_{j=0}^{\infty}$ of Λ^{d+1} where $\Lambda_0 = \Lambda^{d+1}|_{[0,T_0]}$. Λ_j has a canonical coordinates $\lambda_j(t,x_{I(j)},\xi_{\overline{I}(j)})$ where $I(j) \cup \overline{I}(j) = \{1,2,\cdots,d\}$ and $I(j) \cap \overline{I}(j) = \emptyset$. We associate a C^{∞} partition of unity $\{e_j(t,x_{I(j)},\xi_{\overline{I}(j)})\}$ with $\{\Lambda_j\}_{j=0}^{\infty}$.

For $h \in C_0^{\infty}(\Lambda)$, we define the global canonical operator K_{Λ} by

$$(K_{\Lambda}h)(t,x) = \sum_{j=1}^{\infty} K_{\Lambda_j}(e_jh)(t,x)$$

, where K_{Λ_j} is the precanonical operator (See [2], [6]).

In the same way, the global canonical operators K_{Λ^*} , where $*=\pm$, are defined.

5 Formal construction of asymptotic solutions.

For any $n \in \mathbb{N}$, we have the Taylor expanion of L:

$$L(t,x,D_t,D_x;\epsilon) = \sum_{n=0}^{N} \epsilon^n L^{(n)}(t,x,D_t,D_x) + R_{N+1}(L;\epsilon),$$

where $L(t, x, D_t, D_x; \epsilon)$ and $R_{N+1}(L; \epsilon)$ are differential operators of order m+1. We have also

$$M(t,x,D_t,D_x;\epsilon) = \sum_{n=0}^{N} \epsilon^n M^{(n)}(t,x,D_t,D_x) + R_{N+1}(M;\epsilon),$$

where $M(t, x, D_t, D_x; \epsilon)$ and $R_{N+1}(M; \epsilon)$ are differential operators of order m.

5.1 degeneration of order 1.

We consider $P = \epsilon L + M$. The problem is

$$\begin{cases} Pu = f, \\ D_t^j u(0, x; \epsilon) = g_j(x; \epsilon), \qquad 0 \leq j \leq m. \end{cases}$$

We introduce

$$\tilde{P}(t, x, \epsilon D_t, \epsilon D_x; \epsilon) = \epsilon^m P(t, x, D_t, D_x; \epsilon).$$

We assume for the singular part

$$w \sim \sum_{n=m}^{\infty} \epsilon^n w_n = \sum_{n=m}^{\infty} \epsilon^n K_{\Lambda} h_n.$$

The equations (6), (7) and (8) expanded with respect to ϵ determine successively v_n 's and h_n 's.

5.2 degeneration of order 2.

We consider $P = (i\epsilon)^2 L + M$. The problem is

$$\begin{cases} Pu = f, \\ D_t^j u(0, x; \epsilon) = g_j(x; \epsilon), & 0 \leq j \leq m+1. \end{cases}$$

We introduce

$$\tilde{P}(t, x, \epsilon D_t, \epsilon D_x; \epsilon) = \epsilon^m P(t, x, D_t, D_x; \epsilon).$$

We assume for the singular part

$$w \sim \sum_{n=m}^{\infty} \epsilon^n w_n = \sum_{\substack{n=m\\ \bullet=\pm}}^{\infty} \epsilon^n K_{\Lambda^{\bullet}} h_n^*.$$

6 Remainder estimates of asymptotic solutions.

6.1 degeneration of order 1.

We define the partial sum by

$$u_N(t,x;\epsilon) = \sum_{n=0}^N \epsilon^n v_n(t,x) + \sum_{n=m}^{N+m} \epsilon^n K_{\Lambda} h_n(t,x;\epsilon)$$

and its remainder term by

$$R_{N+1}(u;\epsilon) = u(t,x;\epsilon) - u_N(t,x;\epsilon).$$

Our main result is

Theorem 6.1 Let T be a fixed positive number. Let $f \in C^{\infty}([0,T]; C_0^{\infty}(\mathbf{R}^d))$ and $g_j \in C_0^{\infty}(\mathbf{R}^d)$. There exists a positive constant C such that for any $\epsilon \in (0, \epsilon_0]$,

$$(\mathfrak{D}^{2(N+1)-2m}) \geq \int_{0}^{T} \sum_{j=0}^{p} \epsilon^{2j} \left(\epsilon \parallel D^{m+j} R_{N+1}(u; \epsilon)(t) \parallel^{2} + \parallel D^{m+j-1} R_{N+1}(u; \epsilon)(t) \parallel^{2}_{1/2} \right) dt$$

$$+ \sum_{j=0}^{p} \epsilon^{2j} \left(\epsilon \parallel D^{m+j} R_{N+1}(u; \epsilon)(T) \parallel^{2} + \parallel D^{m+j-1} R_{N+1}(u; \epsilon)(T) \parallel^{2}_{1/2} \right).$$

Corollary For any $k, N_0 \in \mathbb{N}$ and positive T, there exist $N_1 \in \mathbb{N}$ such that for any $N \geq N_1$ there exists a positive constant C_{N,N_0} independent from ϵ such that

$$\sup_{\substack{0 \leq t \leq T \\ x \in \mathbf{R}^d}} \sum_{j+|\alpha| \leq k} |D_t^j D_x^{\alpha} R_{N+1}(u;\epsilon)(t,x)| \leq C_{N,N_0} \epsilon^{N_0}.$$

Remark The constants C and C_{N,N_0} depend on the support of f and g_j 's.

6.2 degeneration of order 2.

We define the partial sum by

$$u_N(t,x;\epsilon) = \sum_{n=0}^N \epsilon^n v_n(t,x) + \sum_{n=m\atop n=1}^{N+m} \epsilon^n K_{\Lambda^*} h_n^*(t,x;\epsilon)$$

and its remainder term by

$$R_{N+1}(u;\epsilon) = u(t,x;\epsilon) - u_N(t,x;\epsilon).$$

Our main result is

Theorem 6.2 Let T be a fixed positive number. Let $f \in C^{\infty}([0,T]; C_0^{\infty}(\mathbf{R}^d))$ and $g_j \in C_0^{\infty}(\mathbf{R}^d)$. There exists a positive constant C such that for any $\epsilon \in (0, \epsilon_0]$,

$$C\epsilon^{2(N+1)-2m} \geq \int_{0}^{T} \sum_{j=0}^{p} \epsilon^{2j} \left(\epsilon^{2} \| D^{m+j+1} R_{N+1}(u; \epsilon)(t) \|^{2} + \| D^{m+j} R_{N+1}(u; \epsilon)(t) \|^{2} \right) dt$$

$$+ \sum_{j=0}^{p} \epsilon^{2j} \left(\epsilon^{2} \| D^{m+j+1} R_{N+1}(u; \epsilon)(T) \|^{2} + \| D^{m+j} R_{N+1}(u; \epsilon)(T) \|^{2} \right).$$

Corollary For any $k, N_0 \in \mathbb{N}$ and positive T, there exist $N_1 \in \mathbb{N}$ such that for any $N \geq N_1$ there exists a positive constant C_{N,N_0} independent from ϵ such that

$$\sup_{\substack{0 \le t \le T \\ x \in \mathbf{R}^d}} \sum_{j+|\alpha| \le k} |D_t^j D_x^{\alpha} R_{N+1}(u;\epsilon)(t,x)| \le C_{N,N_0} \epsilon^{N_0}.$$

参考文献

- [1] K. Asada and D. Fujiwara, On some oscillatory integral transformations in $L^2(\mathbb{R}^n)$, Japanese J.Math.4,(1978),299-361.
- [2] M.V. Fedoriuk, Singularities of Fourier integral operators and asymptotic solutions of mixed problemOHs, Russian Math. Surveys 32.6, (1977), 67-120.
- [3] 藤原大輔, 「線型偏微分方程式論における漸近的方法 I,II」、岩波書店、岩波基礎 数学講座, 1977。
- [4] R.X. Gao, Singular perturbation for higher order hyperbolic equations (I),(II), (in Chinese,) Fudan J. (Natural Science) 22(3), (1983), 265-278, 23(1), (1984),85-94.
- [5] V.P. マスロフ、「摂動論と漸近的方法」岩波書店。1976。
- [6] V.P. Maslov and M.V. Fedoriuk, Semi-classical approximation in quantum mechanics, Nauka, 1976 (inRussian), D.Reidel Publ. Co.1981 (in English).
- [7] A.S. Mishchenko, V.E. Shatalov and B.Yu. Sternin, Lagrangian manifolds and the Maslov operator, Nauka, 1978 (in Russian), Springer-V. 1990.
- [8] 内山康一「双曲型特異摂動解の漸近展開について」、京都大学数理解析研究所講究録。
- [9] K. Uchiyama, L^2 theory of singular perturbation of hyperbolic equations I, a priori estimates with parameter ϵ , J. Fac. Sci. Univ. Tokyo Sect. IA, Math. **39** (1992), 233-269.
- [10] K. Uchiyama, L^2 theory of singular perturbation of hyperbolic equations II, asymptotic expansions of dissipative type, J. Fac. Sci. Univ. Tokyo Sect. IA, Math. 40

(1993), 387-409.

[11] G.B. Whitham, Linear and nonlinear waves, Whiley, New York, 1974.