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1 Introduction

We consider Cauchy problems for a linear strictly hyperbolic equation of order ! with

a small parameter € € (0, €] :
(1) ((ie)"‘"‘L(t, z,Dy, D;;€) + M(t,z, Dy, Dy; e)) u(t, z;€) = f(t, z;€)

for (t,z) € (0,T) xR %,

(2) D{u(O,m;e):gj(m;e) 7=0,1,2,...,1-1

where L and M are linear strictly hyperbolic operators of order ! and m (I =m +1 or
m + 2 ) with C*® bounded derivatives with respect to (t,z,€) € [0,00) x R ¢ x [0, &g)]-
The aim of this paper is to give C* asymptotic expansions of solutions to singularly

perturbed Cauchy problems of this type. This is a revisit of problems treated in [8].

We postulate that the solution has an expansion
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(3) u(t,zie) ~ v(t,z;€) + w(t, z;¢),

4) v(t,z;€) = Y €"v,(t,z) (regular part),
n=0

(5) w(t,z;€) = Y €'w,(t,z;¢) (singular part)

where v and w mean formal sums such that

) | Pv ~ f
(7) Pw ~ 0
(8) D{(v+w)| ~ gi, §=012...,1-1

t=0

We investigated in [9] a priori L? and higher order Sobolev norm estimates of the
solution to (1) and (2) under various separation conditions of characteristic roots of L
and M. In [10], we dealt with the case where the singular part, that is, the correction
terms (5) associated with (4) were of dissipative type (exponential dec#y as ¢ tends to
0). In this paper, we treat the case where the the correction terms are dispersive (highly
oscillating as € tends to 0). They are described by oscillating functions locally and by
Maslov’s canonical operators globally. The estimates of the remainder terms of asymptotic
expansions are given by a priori estimates in [9)].

In view point of propagation of waves, the regular part of the solution is governed by
the principal part of M (the subcharacteristic wave in [11]). The singular part is governed
by € .-principal part of (i€)""™L + M. In contrast with the propagation of singularity of
the solution u, the principal part of L is not principal to determine the quantitative

propagation of the singularly perturbed wave.



2 A priori estimates

We consider two operators L and M :

l .
) L(t,z, Dy, Dy; € = D:+2Lj(t7m’Dz; C)Di—J
Jj=1
(10) M(t,z,D;, Dsze) = mo(t,z,Dz;€)Df + > M;(t,z,D; e)D:"'j
i=1 |

with their principal symbols

1
(11) l(t,z,7,&€) = !+ E i(t,z, & €)r'=i
. j=1
(12) m(t,z,7,6€) = mo(t,z,& €)™ + ) m;(t,,&; €)r™ I,
=1 .

We assume the following assumptions:

(HO) Regular Hyperbolicity of L: I(t,z, 7, £; €) has the decomposition

: 1
(13) l(t$$’7—a£; 6) = H(T - ‘Pj(t7$,£;6))

i=1

where @;(t,z, ; €) are real distinct elements such that

(14) p1(t, z,€5€) < pa(t,z,&5€) < -+ - < it  z,€5€)  uniformly:

that is,p;41(t, 7, &5 €) — (¢, 2, ¢; €) is uniformly positive for j =1, ---,1—1.

(H1) Regular Hyperbolicity of M: m(t,x,7,¢; €) has the decomposition

(15) m(t,z,7,&;€) = mo(t, z,€;5€) ﬁ(T —¢;(t,z,&5€))

=1

where v¥;(,z,&;€) are real distinct elements such that

(16) Bi(ts2,63€) < Palt, 2,6;€) < oo < Yru(t, 7, ;¢) uniformly.

When [ = m + 1, we assume the following assumptions (H2) and (S0).

(H2): mo(t, z;¢€) is pure-imaginary and uniformly away from 0, that is,

Rmo(t,z;¢) =0 and |Sme(t,z;€)| > 6> 0,

63
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(S0): {v:} separates {¢;} uniformly, that is,
P1<P1 <2<+ <ty < Pmy1  uniformly.

Remark 1 Since L and M are differential operators, the conditions (H2) and (S0) are
equivalent to (WS*) and (S*) in [9].
Remark 2 In [10], we assumed (HO0), (H1), (S0) and

(E1): the uniformly strong ellipticity of mq, that is,
Rmo(t,z;€) > 6§ > 0.
We quote from [9]

Theorem 2.1 Under the assumptions (HO0),(H1),(H2) and (S0), for any natural number
p, there exist C > 0 and o such that for any positive € < €, any v > 4o and for any
u(t) € = ([0,T); C°(RY)) we have

(17) c {l LTS (@) 1 Dife) 1P et || Do) 1R,

7 ,j=0

14 . ] )
+ 7 (eEéJ I D™u(0) |2 + 3" €% || D™u(0) |12,

7=0 =1

-1 . pml ,
F X Dif(O) I +3 € | D () Mf/z)}

i=0 =1

T 4 . . .
2 [ e Y () (el D™Hu) | + | Do) |2,) di
J=0

4 j . ;
+ €T3 () (el DMHUT) I + | DT |13)

=0
When [ = m + 2, we assume (H0), (H1) and the following assumptions (WS) and (P):

(WS): {1;} weakly separates {y;} uniformly, that is,

o1 < {Ynp} < -0 < {¥m+1,9Ym} < Pms2 uniformly,
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where {a, b} < {c,d} means max{a, b} < min{c,d}.

(P): mo(t, z;¢€) is real and uniformly positive, that is,
Smo(t,z;¢) =0, and mo(t,z:€) >6>0.
We quote from [10],

Theorem 2.2 Under the assumptions (H0), (H1), (P) and (WS), for any natural number
p, there ezist positive constant C and v, such that any € € (0, ¢}, for any v > 7o, for any
any u(t) € C* ([0,T];Cg° (Ri)) we have

(18) c {-1- [ e 53 (@) 1D 1P di+ 71D u0))?

Y 3=0

P . p-1 . .
+ 7 (6262’“ I D™+ u(0) I +3_ € || D’ £(0) Ilz) }

j=0 3=0

v

[ (@) (@ 1D 1 4 ) D) 1) a

£ T Y ()] (@ DT P + | D) IF).

j=0

3 Singular characteristic roots.

3.1 degeneration of order 1.

Let | = m + 1. We define e-principal symbol
p(t,z, 7, & €) =dl(t,z, 7,8 €) + m(t, z, 7, & €).
We denote the roots of p(7) = 0 by 7;(t,z,&;€)’s.

Proposition 3.1 We assume (H0),(H1),(H2) and (S0). Then, 7;’s are real and uniformly
distinct, that is,

T1<7'2<"'<Tm+1.



66

Moreover,if

(19) Smo(t,z;€) > 6§ > 0,

the least root 7(t,x,;€) belongs to the nonhomogeneous smooth symbol class S* and
71(t,z,0;€) = —Sme(t, z; €).

If

(20) — QSme(t,z;¢) > 6> 0,

the greatest root Tp,i1(t,z,€;¢€) belongs to the nonhomogeneous smooth symbol class S*

and Tpmy1(t,2,0;5€) = —Sme(t, z;€).

Remark When the condition (19) holds, we have

M<P1 <P < <Py < Tipp1 < Prg1-

We call 7, the singular root. Aternatively, 7,,4; is the singular one, when the condition

(20) holds.

We denote for simplicity, p(t, z, 7,; 0) by p, n1(¢,z,£;0) by 7, and so on. We consider
a Hamiltonian system for (¢(),z(0),7(0),£¢(0)):

dt 0Op dz; Op

&= wooe  IThEG
(21)
dr _ 0p d;  Op _
do ~  ot’ da_—aa:j’ =124,
with Cauchy data
t(0)=0, zj(0)=yj, j= 1,2,"',d,

(22)
7(0) =71(0,5,0;0), £&(0)=0, j=1,2,---,d.
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Proposition 3.2 (Fedoryuk([2]) The family of t = t(0,y), = = z(0,y), T = 11(t(0,y),
z(0,y), £(a,y)), € = £(0,y) is a unique solution to (21) and (22), if and only if E(t,y) =

z(o(t,y),y) and (t,y) = E(o(t,y),y) satisfy the Hamiltonian system

dfij _ 31'1 .
E—_aé" .7—'1’2a ,d’
(23) )
dfj _ 871 .
dO'_a:L‘J, 1—1’2’ 7d3
and Cauchy data
(24) 50)=y, £0)=0.

Proposition 3.3 We assume the above assumptions.
(i) We have a unique system of solutions {%(t,y)} and {€&:(t,y)} to (23) and (24) for all

non-negtive t. There exists a positive constant M such that for any nonnegative ¢
suqii(tay)—yils Mt i=1,2,---,d,
Yy

sup|€;(t,y)| <M1, i=1,2,---,d.
v

(it) There ezxist positive constants To, 6, such that

det (g;' (t,y))’ >6>0 (t,y)€[0,To] x R

3.2 degeneration of order 2.
Let | = m + 2. We define e-principal symbol
p(t, z,7,&€) = =l(t,z, 7, & €) + m(t,z, 7,6 €).

We denote the roots of p(7) = 0 by 7;(¢,z,&;€)’s.
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Proposition 3.4 We assume (H0),(H1),(P) and (WS). Then, 7;’s are real and uniformly
distinct, that is,

1 <7< < Tmy2.

Moreover, the least root 1y(t,,&;€) and the greatest root Tpy2(t,z,€; €) are inhomogeneous

symbols in S*. They satisfy 11(t,,0;€) = —\/mo(t, z;€) and Tm42(t, 2,05 €) = \/mo(t, z;¢€)

Remark. We have for j =2,3,---,m+1,

71 < 1 < min{p;, ¥;-1} < 7; < max{p;, ¥;j_1} < Pmi2 < Tmsa-

We call 71 and 7,42 singular root.

We consider the Hamiltonian systems of the same type as in the previous subsection,

except one condition in the Cauchy data,

(25) Tlo=o = 7:(0,y,0) for ¢=1 or m+2
= =4/me(0,z;0).

We obtain the solutions (t*(o), *(¢),£*(0)) and (:i"(t, y),E*(t, y)), where * = + according

to the signature of the Cauchy data (25).

4 Canocical operators of Maslov

We refer details to Maslov and Fedoriuk [6] and other references [2], [1], [3], [7] related

to Maslov [5].
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Let A%*! be the flow-out of R ¢x {0} C R 2@ R §, by the trajectory (23) for t € [0, o).

That is,
(26) A = {(t,z,'r, £)ER :1’:1 ®R f}l;O <t<oo,z=7(ty),
(27) T(t) = Tl(t’ E;"(ta y),f(t,y)),f = g(t7 y)} .

Proposition 4.1 (Fedoryuk [2]) (i) A**! is a (d + 1)-dimensional simply connected

nonhomogeneous Lagrangian C*® manifold with boundary

AN = {(anﬂ'l(o,y,o)‘;y €R d} .

IR

R,

(ii) The variable t can be always in a set of local coordinates of any point of A**1.

(iii) The projection of the restricted part Ad+1|[0,To] onto R f;ll[o'%] along R ¥ is a

diffeomorphism.

A**! has a global system of coordinates (¢,y) « A € A%t!. This defines a volume
element do(A(t,y)) = dtdy on A%+!, which is invariant by the Hamiltonian flow. We
choose a locally finite covering of canonical charts {A;}32, of A%+ where Ao = Ad"'ll oIl
A; has a canonical coordinates A;(t,z1(;), &) where I(j) U 1) = {1,2,---,d} and
I(5) NI(j) = 8. We associate a C™ partition of unity {ej(t,xl(j),&f(j)} with {A;}52,-

For h € C§° (A), we define the global canonical operator K by

(Kah) (t,2) = i K, (eh)(t,2)

, where K, is the precanonical operator (See [2], [6]).

In the same way, the global canonical operators K+, where * = +, are defined.
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5 Formal construction of asymptotic solutions.
For any n € N, we have the Taylor expanion of L:

N
L(t,z,D¢, Dyie) = 3 " L™(t,z, Dy, D,) + Rna(Lse),

n=0
where L(t,z, Dy, D,;€) and Ry (.L; ¢) are differential operators of order m + 1. We have
also

N .
M(t,z,D, Dyz€) = 3 *M™(t,z, Dy, D,) + Rn41(M;e),

n=0

where M(t,z, D;, D;;€) and Rn41(M;¢€) are differential operators of order m.

5.1 degeneration of order 1.
We consider P = ¢L + M. The problem is
Pu=f,

Diu(0,z;¢) = gj(z;e), 0<j<m.
We introduce

P(t,z,eDy,eD,;€) = € P(t,z, Dy, Dy;e).

We assume for the singular part

[o o] o0
w~ Z w, = z e"Kph,.
n=m n=m

. The equations (6), (7) and (8) expanded with respect to € determine successively v,’s

and h,’s.



5.2 degeneration of order 2.
We consider P = (i€)2L + M. The problem is
Pu=f,

D{u(O,:c; €) = g;(z;€), 0<j<m+1l
We introduce

P(t,z,eD;,eD,;€) = €"P(t,z, Dy, Dyie).

We assume for the singular part

o0 : 00

w~ Z w, = Z €' Kpsh;,.
n=m n=m
o=

6 Remainder estimates of asymptotic solutions.

6.1 degeneration of order 1.

We define the partial sum by
N N4+m
un(t,z;€) = Y €"v,(t,z) + Y € Kphy(t,z;€)

n=0

and its remainder term by
Rnii(u;€) = u(t, z; €) — un(t, ;€).

Qur main result is

71

Theorem 6.1 Let T be a fized positive number. Let f € C®([0,T); CP(R?)) and g; €

CP(R?). There exists a positive constant C such that for any € € (0, €,

T P ) . .
@I > [F52 & (el D™ Rwaa (i ®) I + || D™ Ruvia (i (1) o)

=0

p . iy
+ Y € (e | D™ Ry a1 (u;€)(T) ||* + || D™ Ryga(w; €)(T) "3/2) .

=0
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Corollary For any k,Ny € N and positive T, there exist N; € N such that for any

N > N, there erists a positive constant Cn n, independent from € such that

sup Z |D{D;’RN+1(u;e)(t,:c)| < CN,N06N°.
o<t<T .
=5 a Jtlal<k

sERd .
Remark The constants C and Cn,n, depend on the support of f and g;’s.

6.2 degeneration of order 2.

We define the partial sum by

N N+m

un(t,z;€) = Y valt,z) + Y, € Kphl(t,z5€)
n=0 n=m
=%

and its remainder term by

Ryia(use) = u(t, z;€) — un(t, z;€).
Our main result is

Theorem 6.2 Let T be a fized positive number. Let f € C®([0,T]; C3(R?)) and g; €

CP(R?). There exists a positive constant C such that for any € € (0, ),
TP . . )
Camt-in > [T e (& || D™ Ry (s )(0) I + | D™ Ryva (5 €)(8) ) e
0

i=0

P . . i
+ 30 (@1 D™ Ry (s )(T) 1P + I| D™ By (5 )(T) 7).

Jj=0
Corollary For any k,Ny € N and positive T, there erist Ny € N such that for any
N > N, there exists a positive constant Cn N, independent from € such that
sup E |D{D;’RN+1(u;e)(t,x)| < CN'N06N°.

PSIST S lal<k

d
zGR
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