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REAL OPERATOR ALGEBRAS*
Li BINnGreN (B H(C) (PERFSEFHFED

Abstract. This paper is a summary of my works on real operator algebras, which
contains the following: Definitions of real C*-algebras and real W*-algebras, Gelfand-
Naimark conjecture in real case, A proof of the structure theorem of finite dimensional
real C*-algebras in operator algebra method, Irreducible * representations of real C*-

algebras, The classification of real Von Neumann algebras.

§1. Introduction

As well-known, the theory of (complex) operator algebras is very rich and im-
portant. So it is a natural and interesting problem: what’s happen in real case?

A natural way to real case is as follows. Let A be a real * algebra. Then
A. = A+iA is a complex * algebra in a natural manner. Consider A. and then go
back to A. Moreover, for any z € A the spectrum o(z) of z is the spectrum of z as
an element of A.. In particular, o(z) = o(z).

In this paper, we study some fundamental results of real operator algebras.

A (complex) C*-algebra Bisa (complex) Banach * algebra and ||z*z|| = ||z||?,Vz €
B. But the definition of a real C*-algebra needs some additional condition. We give
the definitions of real C*-algebras and real W*-algebras in §2. -

Gelfand-Naimark conjecture ([1]) is very important for the theory of (complex)
C*-algebras, i.e., could the condition ||z*z|| = ||z]|°(Vz € B) be replaced by a weaker
condition ||z*z|| = ||z*|| - ||z||(Vz € B) for a C*-algebra B? In S3 we discuss this
conjecture in real case. :

It is well-known that any divisible real Banach algebra is isomorphic to R, C or H

(quaternion field). Its purely algebraic proof depends on the Wedderburn theorem.

*) Partially supported by NSF of China.
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L.E.Dickson ([2]) gave a proof in Banach algebra method. Samely, the proof of the
structure theorem of finite dimensional real C*-algebras in [3] is purely algebraic and
still depends the wedderburn theorem. In §4 we sketch a proof in operator algebra
method.

For a topologically irreducible * representation of a (complex) C*-algebra the
n-transitivity ([4]) holds for any n. Consequently, a té)pologica,lly irreducible * rep-
resentation is also algebraically irreducible. But in real case the n-transitivity is not
true for n > 2 generally. In §5 we point out that 1-transitivity still holds in real
case. In particular, a topologically irreducible * representation of a real C*-algebra
is still algebraically irreducible. ]

In §6, we discuss the Von Neumann-Murray classification of real Von Neumann
algebras. For first classification the situation is similar to complex case. But in

second classification some new situation appears.
§2. Definitions of real operator algebras

Definition 2.1. ([5]) A real Banach  algebra is called a real C*-algebra, if
A. = A+iA can be normed to become a (complex) C*-algebra and keep the original
norm on A.

Let A be a real C*-algebra, and S(A) the real state space on A. For any ¢ € §(A)
we have GNS construction {Hy,7,,&,}. Further, let

H= Y @H, =w= ) &,
9€S(A) ES(A)

Then A is isometrically * isomorphic to 7(A), and 7(A) is a uniformly closed *
operator algebra (concrete real C*-algebra) on the real Hilbert space H ([5]).

Similar to the definition of a (complex) C*-algebra, we have the following.

Theorem 2.2. (L. Ingelstam [6]) Let A be a real Banach * algebra, and
llz*z|| = ||z]|?,Vz € A. Then A is a real C*-algebra, if and only if, A is hermitian
(i.e. for any h* = h € A,o(h) C R).

Let H be a real Hilbert space, and M a x subalgebra of B(H) (all bounded linear
operators on H1). Then M is called a real Von Neumann (VN, simply) algebra, if
1 € M and M is weakly closed. It is easy to see that the Von Neumann’s double
commutation theorem and the Kaplansky’s density theorem still hold for real VN
algebras.
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Definition 2.3. ([5]) A real C*-algebra M is called a real W*-algebra, if
M. = M+iM can be normed to become a (complex) W*-algebra and keep the
original norm on M. :

Through all o-continuous real states and the GNS construction, we can see that
a real W*-algebra can be 0 — o continuously * isomorphic to a real VN algebra.
Moreover, if A is a real C*-algebra, then A** is a real W*-algebra ([5]).

Similar to the definition of a (complex) W*-algebra, we have the following.

Theorem 2.4. ([5]) Let M be a real C*-algebra. Then M is a real W*-
algebra, if and only if, there exists a real Banach space M, such that M = (M.)*
and the maps

>a-and-—>-a: Mo M

are g — o continuous, Ya € M.

Remark. Up to now, we don’t know that the condition of o — & continuity
of maps - — a- and - — -a in Theorem 2.4 can be omitted. But in complex case the

o — o continuity of these maps is satisfied automatically ([7]).
83 Gelfand-Naimark conjecture in real case

Theorem 3.1. (Glimm-Kadison [8]) Let B be a unital (complex) C*-algebra,
and S= {b € B | ||b|| < 1}. Then

Co{e™ | h = h* € B}

is dense in S.
By this theorem, Glimm and Kadison solved the Gelfand-Naimark conjecture in
unital case. Further, Vowden ([9]) solved this conjecture in general case, i.e., we

have the following.

Theorem 3.2.  Let B be a (complex) Banach * algebra, and ||z*z|| = ||=*|| -
llz]l,Yz € B. Then B is a (complex) C*-algebra.

In unital case, the condition “Vz € B ” can be weakened further.
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Theorem 3.3. (Glickfeld [10]) Let B be a unital (complex) Banach * algebra.
1) If there exists a constant C(> 1) such that

e < C, Vh*=he B,

then B is C*-equivalent.
2) If the constant C = 1 in 1), then B is a (complex) C*-algebra.
3) If ||z*z|| = ||z*||-||z]| for each normal z € B, then B is a (complex) C*-algebra.
Elliott introduced the concept of strictly poéitive element, and then he omitted
the unital condition.

Theorem 3.4. ([11]) Let B be a (complex) Banach # algebra, and ||z*z| =
lz*]| - ||zl for each normal z € B. Then B is a (complex) C*-algebra.
All above results are in complex case. In real case, we have the following .

Theorem 3.5. ([5]) Let A be a unital real C*-algebra, and S= {a € A | ||af| £
1}. Then
Co{cosb-e* | b* =b,a* = —a € A}

is dense in S.

By this theorem we solved the Gelfand-Naimark conjecture in real case.

Theorem 3.6. ([5]) Let A be a real Banach * algebra, and |[z*z|| = [|z*|| -
|lz|l,Vz € A. If A is hermitian, then A is a real C*-algebra.

In unital case, we have further result.

Theorem 3.7. ([5]) Let A be a unital real Banach * algebra.
1) If there exists a constant C(> 1) such that '

lcosb|]| < C, |le*]|<C, Vb*=b, a"=-a€A,

then A is real C*-equivalent.
2) If the constant C = 1in 1), then A is a real C*-algebra.
3) If ||z*z]|| = ||=*]| - ||z|| for each normal z € A, and A is hermitian, then A is a

real C*-algebra.

Remark. Up to now, we don’t know that if A is non-unital then the conclusion
3) of Theorem 3.7 is still true.



84 Finite dimensional real C*-algebras

Let M be a real W*-algebra, U(M) the subset of all unitary elements of M, and
[U(M)] the (real) linear span of U(M).

For any skew self-adjoint element k € M (i.e., k* = —k), it is easy to see that
ke [U(M)] For h = h* € M, let N be the real W*-subalgebra of M generated by
h and 1 (the identity of M). Then we can prove that

N 2 LP(T,v).

Thus, [U(N)] is o-dense in N. From above discussion, we have the following.

Lemma 4.1. ([12]) Let M be a real W*-algebra. Then [U(M)] is o-dense in
M.

From this Lemma, the theorem of projection comparison ([4]) still holds in real
W*-algebras.

Now let A be a finite dimensional real C*-algebra, and Z the center of A. Then

Z¥C(Q,-), "< oo.
Hence, we can write that
(=) = {tj o3 | 1<j<m 1 <k <m),
where ¥; = t;, s # 3k,Vj, k. Further,
A= @A“) o O 1A(2)
j=1

and Z(A{") 2 R, 2(4{Y) 2 C,Vj, k.
Now we may assume that Z 2 R or C.
1) Z = R.
In this case, A is a finite dimensional real factor. Then we can take an orthogonal

family {e; | 1 < j < n} of minimal projections of A such that ZeJ = 1. By the
. j=1
theorem of projection comparison, e; ~ eg,Vj, k. Thus we have that

A= M,(R)®pAp,
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where p = e;. It is easy to see that pAp is divisible. Therefore, pAp = R or H.
2) Z2C.
In this case, there exists € Z such that

and Z = {\+ pz | A, u € R}. Consider the (complex) C*-algebra A, = A+iA and
its elements
2= 5(1%1’2), z3 = 5(14'—1'(—3:)).

It is easy to see that
Ac = Aczy @ Aczy, and Acz; & M, (C),
j = 1,2. Further, we can prove that
A=Az & Az

as real C*-algebras. Consequently, ny = ny = n, and A & M,(C).
Therefore, we proved the following structure theorem of finite dimensional real

C*-algebras in operator algebra method.

Theorem 4.2. ([3]) Let A be a finite dimensional real C*-algebra. Then
A My (D1)® - & Ma, (Di),

where D; = R,Cor H,1 <:<k.

§5 Irreducible * representations of real C*-algebras

Let B be a (complex) C*-algebra, and {r,H} a topologically irreducible *
representation of B. Then we have the following transitivity property ([4]): if
&, &My, € H and {&1,---,&} is linearly independent, then there exists
b € B such that 7(b)¢; = 7,1 < i < n. Consequently, {m, H} is also algebraically
irreducible.

However, the above transitivity property (for any =n) is not true for real C*-
algebras generally. For example, consider the following real C*-algebra A on real
Hilbert space R?: ,

A={AE+pU | \p€R},
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10 0 1 ‘
where FE = (0 NE U= ) 0). Clearly, A is irreducible on R?, but there are

not A, u € R such that

(AE + uU) ((1]) = (\E + uU) (‘1’) £0,

Moreover, A” = A # M3(R). And there is just one real state p on A : p(AE 4 uU) =
A, VA, u € R. Of course, p is pure. The null space N and left kernel I of p are
{wU | p € R} and {0} respectively, and N # I + I*. These are also different from
the complex case.

In this section, we point out that 1-transitivity still holds in real case. In partic-
ular, a topologically irreducible * representation is still algebraically irreducible for
a real C*-algebra.

Let A be a real C*-algebra, and A, = A+iA. If p is a real state on A, then p, is
a state on the (complex) C*-algebra A., where-

pc(a + ib) = p(a) + ip(b),Va,b € A.
For any state ¢ on A, define @:
P(a + 1) = p(a) + ip(b),Va,b € A.

Clearly, % is also a state on A, and § = ¢. Moreover, if ¢ is pure, then % is also
pure.

Proposition 5.1. ([13]) Let A be a real C*-algebra, p a real state on A, and
{m, H} the x representation of A generated by p.
1) If p is pure, then there exists a pure state  on A, such that

| P = %(99 +9).
/2) pis pure, if and only if, {r, H} is topologically irreducible for A. In this case,

H = A/I, where I is the left kernel of p. ,
It suffices to prove that H = A/I if p is pure. And this proof can be gotten to

follow from Halperin ([14]) essentially.

Proposition 5.2. ([13]) Let p be a pure real state on a real C*-algebra A,
and I, I, the left kernels of p, p, respectively. Let p, = %(<p + %), where ¢ is a pure
state on A, and I, I the left kernels of ¢, respectively. Then
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1) I is a regular closed left ideal of A;

2)'Ic = I(p n Iz;;

3) I is a maximal left ideal of A.

The proofs of 1) and 2) are easy. Now on H = A/I, introduce two norms:

la+ Illy = p(a*a)2, lla+ Iz = dist(a, 7),

Va € A. We can prove that they are equivalent. Further, if L s a maximal left ideal
of A such that I C L, then L/I is not dense in H using || - ||1 ~ || - ||2. Therefore,
L = I and the proof is completed.

Remark. In complex case, ||-||i = || - ||z (Takesaki [15]).

Now we can prove the following.

Theorem 5.3. ([13]) Let A be a real C*-algebra. Then there is a bijection
between the collection of all pure real states on A and the collection of all regular
maximal left ideals of A. Moreover, any closed left ideal L of A is the intersection

of all regular maximal left ideals of A containing L.

Theorem 5.4. ([13]) Let A be a real C*-algebra, and {7, H} a topologically
irreducible * representation of A. Then for any £, € H and £ # 0 thereisa € A
such that .

m(a){ = .
Consequently, {r, H} is also algebraically irreducible.

§6 The classification of real Von Neumann algebras
Let us consider the Von Neumann-Murray first classification of real VN algebras.
Let M be a real VN algebra. Then it is easy to see that we have the unique
decomposition:
M = M & M2 ® Ms,

where My, M,, M3 are finite, semi-finite and properly infinite, purely infinite real VN
algebras respectively, and the concepts of finiteness, infiniteness of real VN algebras
are the same as the complex case. ;

Now let M be a finite real VN algebra on a real Hilbert space H,Z the center
of M, and My, Z;, the self-adjoint parts of M, Z respectively. Then we have a (real)
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linear map T : My — Z,, such that

{T(a)} = Co{u*au |u € UM)} N Z,

Va € M}, and
T(My)C Zy, T(2)=2 T(a)=T(u*au),

Vz € Zp,a € My,u € U(M), where M, Z, are the positive parts of M, Z respec-
tively. Further, we can easily prove that M, is also finite, where M, = M4iM is a
(complex) VN algebra on the (complex) Hilbert space H, = H4iH. Let

T.: M, — Z.
be the central valued trace of M., where Z. = Z+iZ is the center of M,.. Then
T(z) = Te(z), Vz e M.,

where T = a — b if = a + ib and a,b € M. Consequently, T(M)C Z,TeMy, =T,
and T.(My) C Zi, where My, Zj are the skew self-adjoint parts of M, Z respectively.
Therefore, we can define the central valued trace T' from M onto ZasT=T,JM.

Now let M be a semi-finite real VN algebra. If ¢ is a trace on M, then we can
prove that there exists unique trace ¥ on M., such that

YIMy = o, P(T) = P(z), Vze M.

Moreover, the definition ideal of ¢ is M, = M+iM, where M is the definition ideal
of ¢, and

+o0, if (a+1ib) € M\ M4,

‘P(a)? if (a' + ib) € Mcy,

where a,b € M Furthermore, ¢ is semi-finite, normal, or faithful, if and only if, so
is 1.

From the above discussion, we have the following.

P(a + i) = {

Theorem 6.1. ([16]) A real VN algebra M is finite, properly infinite, semi-
finite, or purely infinite, if and only if, the (complex) VN algebra M, = M+iM is
finite, properly infinite, semi-finite, or purely infinite.

Now we consider the Von Neumann-Murray second classification of real VN

algebras. New situation appears, and it is different from the complex case.



Definition 6.2. ([17]) Let M be a real VN algebra, and P(M) the subset of
all projections of M.

p € P(M) is said to be abelian, if pMp is abelian;

p € P(M) is said to be semi-abelian, if pM;p is abelian.

M is said to be discrete, if for any non-zero central projection z of M there is a
non-zero abelian projection p of M such that p < z;

M is said to be semi-discrete, if for any non-zero central projection z of M there
is a non-zero semi-abelian projection p of M such that p < z;

M is said to be semi-continuous, if there is no any non-zero abelian projection
in M;

M is said to be continuous, if there is no any non-zero semi-abelian projection
in M. '

Remark. In complex case, a semi-abelian projection must be abelian. But
in real case, they can be different. For example, 1 is a non-abelian but semi-abelian
projection of the real VN algebra H(H), = R1).

Theorem 6.3. ([17]) Let M be a real VN algebra. Then we have the unique

decomposition:
M= Mi®oM®Ms=M &M, M3

= M ® M ;& M;d M,

where M; is discrete (type I), M, is semi-finite and semi-continuous, M; is semi-
discrete, M, is semi-finite and continuous (type II), M ; is semi-discrete and semi-
continuous, M; = M; & Ml,z,]f{g = M2 @ M;, and M3 is purely infinite (type
I1I).

Remark. M, ; is existential, for example, L°(T',»)®H, and it is necessary
to study it further. Moreover, except type I, II, III real factors we also have semi-

discrete and semi-continuous real factors, and it must be
B(H,)H,

where H,, is a n-dimensional real Hilbert space, and n is finite or infinite.
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‘Proposition 6.3. ([17])) Let M be a real VN algebra, and M, = M+iM.
Then we have the following relations.
1) M discrete <= M’ discrete
= M, discrete
== M and M’ semi-discrete;
2) M semi-continuous <=> M’ semi-continuous;
3) M continuous => M, continuous

=> M semi-continuous.
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