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Hyperbolicity of Localizations

BRAHE 74 @ (Tatsuo Nishitani)

1.INTRODUCTION

Let P(z, D) be a differential operator of order m in an open set Q ¢ R™t! with
coordinates * = (xz9,z') = (%o,21,.:-,Zn), hence a sum of differential polynomials
Pj(z, D) of order j (j < m) with symbols P;j(z,£). In [7] Ivrii-Petkov has proved a
necessary condition for the Cauchy problem to P(z, D) is correctly posed which asserts
that Pp,_;(2) must vanish of order r — 2j at z if P,,,(z) vanishes of order r at z with
z = (z,§) € T*Q\ 0. This enables us to define the localization P,,(z) at a multiple
characteristic zo ( of P,(z)), which is a polynomial on T, (T*2), following Helffer [4].

In this note we show that P,,(z) is hyperbolic, that is verifies Garding’s condition if
the Cauchy problem to P(z, D) is correctly posed. The proof is based on the arguments
of Svensson [9] and Nishitani [§].

Since P,,(z) is hyperbolic, following Atiyah-Bott-Gérding [1], one can define the
localizations P, ;,,...,z,)(2) successively as the localization of Plz,21,...,2s1) (2) 8t 24
which are hyperbolic polynomials on T, (T*Q) & --- &2 T, (T*RQ) (see also Hérmander
[5, I1]). It may occur the case that the lineality A(,, ... z,)(Pm) of Pro(z0,21,...,25) (2) (see
(2.8) below) is an involutive subspace with respect to the canonical symplectic structure
on T, (T™2). In this case we prove that for the Cauchy problem to be correctly posed
it is necessary that

-P(zo,zl,...,z,)(z) = Pm(zo,zl,...,z,)(z)’

that is, no lower order terms of P, .. .,)(2) occur. This argument was also used in
Bernardi-Bove-Nishitani [2] with s = 1.

2. LOCALIZATION IS HYPERBOLIC

We denote by L7+ the set of pseudodifferential operators P near zy with symbol
P(z, &) verifying

P(a:,f) ~ ZPm—j(za £)
j=0

in every homogeneous symplectic coordinates around 2o where Py,_;(z, £) are positively
homogeneous of degree m — j in £ and vanish of order at least r — 25 and P, (z,§)
vanishes exactly to the order r at zp. Note that we may replace in the definition “every”
by “some”.

Lemma 2.1 (Helffer [4]). Let P € L7>". Then

(2.1) Q@6 = exply Y 5 }P(@.6)
j=0 9%3i0%i

is invariantly defined in L7 / L;’;"”: Let x be a homogeneous symplectic coordinates

around zo and let F' be a Fourier integral operator associated with x and P = FPF-!.
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Then we have FO - o
Qx(z,£)) = Q(z,§)

in LT /L™™+1 where Q is associated with P by (2.1).

Definition 2.1. We define the localization P,,(z,§) of P € L7»" at zp = (Zo, o) as
the lowest order term of the Taylor expansion of

w2 Qo + px, p 260 + pE)

as p — 0 which is invariantly defined as a polynomial on T,,(7*Q): If y are local
coordinates around the origin and P(y,n) is the full symbol of P for the coordinates
(y,ndy) then we have

Poo (' (0),ty (m0) 6+ (&) (@0)2) = Py (2,£), wo = (y(0),* y' (%0) ™ &o)-
Writing Q(z,£) as the sum of homog_eneous parts Qm,—;(z, £), it is clear that

Py (z 5) Z Qm—j,20 (2, €);

" r—252>0
Qm—Jzo(z) Pjo(2) + Z caPly )zzom)(")

i<g,|a|=j—1i

(2;12)' |

with some constants ¢, where Qm—; o (.’L’, €) and Pp,_j . (x, &) are defined by
Ppi_jz(2) = lim L -(r=2)p_ —j(z0 + p2).

Let P(z,D) = E " o Pj(z, D) be a differential operator of order m on Q conta.mmg
the origin where P; (:c D) is the homogeneous part of degree j with symbol P;(x,§).
Assume that the plane zo = 0 is non characteristic and we are concerned w1th the
Cauchy problem with respect to zg =const.. Let zo € T*Q \ 0 be a characteristic of
P, of order r;

@ Pn(z0) =6 for j<r, d Pn(z)#0.

By the necessary condition of Ivrii-Petkov [7] stated in Introduction we conclude that
P € L™ provided that the Cauchy problem for P is correctly posed. Then we have
from Lemma 2.1 that -+~ :

Proposition 2.2 (cf. Ivrii and Petkov [7]). Assume that the Cauchy problem for
P(x, D) is correctly posed near the origin and let zo € T*Q\ 0 be a multiple charac-
teristic of Py,. Then the localization P, (z) is an invariantly defined polynomial on
T,,(T*).

Let us denote by on (z, &) the lowest order term of the Taylor expansion of
P2 P(zo + pa, p 280 + pE)

as p — 0. Note that P, (z,€) is not coordinates free but we have



87

Lemma 2.3. The following two conditions are equivalent.
(i) P,,(z) is hyperbolic with respect to 6 = (0, eg),
(ii) P,,(z) is hyperbolic with respect to 6.
Proof. Recall that P, (2) = > r—2j>0 Pm—j,%(2). Since P,,(z) is hyperbolic if and only
if Pr—jz(2) are weaker than P, ,(2) = Qm,z(2) (see Hormander [5, II], Svensson
[9]) the proof is immediate by (2.2).
Now our aim is to prove

Theorem 2.4. Assume that the Cauchy problem for P(x, D) is correctly posed near
the origin and let zg € T*Q\0 be a multiple characteristic of P,,. Then the localization
P,,(z) is a hyperbolic polynomial with respect to § = (0, eg).

Let zg be a characteristic of order vy of Py,(2) so that P,,(2) is a polynomial of
degree r9. We denote by P, ,,)(2) the localization of P,,(z) at 21, that is the first
coefficient of u™ P,,(u"'21 + z) that does not vanish identically in z:

KO Pro (0™ 21+ 2) = 1™ (Pla,0)(2) + O(), = 0
(see Hérmander [5, IT] and Atiyah-Bott-Gérding [1]). We call r the order of z;. From
Lemma 3.4.2 in Atiyah-Bott-Garding [1] it follows that P(,, ,,)(z) is again hyperbolic
with respect to §. Furthermore z; is a characteristic of P, ,, of order 71 and Pry(4,,2,) (2)

is the principal part of P(,, ,,)(z). On the other hand Corollary 12.4.9 in Hérmander
[5, II] shows that :

dVQm__j’zO (2!1) = 0, v<iry — 2j

where d”Q(z) denotes the v-th differential of Q with respect to z. Since Qm—j,z(2)
are homogeneous of degree rg — 2j it is clear that '

P(zo,z1)(z) = Z Qm——?j(zo,zl)(z)
r1—2§>0
where .
Qm—j(zo,z1)(z) = il_'nlo /‘L_(Tl_zj)Qm—j,zo (Zl + [LZ)
which is homogeneous of degree r; — 2j in 2. Repeating the same arguments we get

Lemma 2.5. Let P, . ,.)(2) be the localization of P, ... ., .)(2) at zx of which
order is 1, (> 2);

P(zo,...,zk)(z) = (P(zo,...,zk_l))Zk (z)
Then we have for every j with rp, — 25 >0

& Qum—ji(zo,....zn-1)(2k) = 0, v <1 — 2]
and hence
Qm——j(zo ----- Zk)(z) = 3‘% /J'—(rk—zj)Qm—j(zo,...,zk_1)(Zk + ,uz)
exists. Moreover P, . ..)(z) is equal to

Z Qm—j(zo,...,zk) (z)

TE—2§>0
and hyperbolic with respect to 8.
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Corollary 2.6. Let zj be a characteristic of Py, ... »,_,)(2) of order vy, (= 2). Then
we have

(2.3) A" P j(z0,...20-1)(2k) =0, v <7 —2j

and then

(2.4) Pr_j(z0,0,20) (2) = }LI_)H{) pm TP oz ) (26 + p2)
exists.

Proof. Assume that (2.3) and

Qm_j(zﬂy-"yzk—l)(z) = Pm—j(Z(),...,zk_l)(z)
(2.5) + Z o P (2)

m—1i(zo,...,zk-1) ()
i<j,la|=j—1

hold with k = p where ¢, are constants. Then it is easy to see that (2.5) with k = p+1
holds. Thus (2.3) with ¥ = p + 1 follows from Lemma 2.5. By induction on k£ we get
the desired conclusion.

Here we give another formula which defines P(,, . . y(z) directly. Let 0 < po <
1 < --- < us be a sequence of parameters with

(2.6) pi=O0Wih') as pip1 —0.
Then we have

(o 1s)*™Q(@o + poTr + -+ po -+~ s—1Ts + Ho -+ T,
(2.7) (o ps) 2 (€0 + pobr + -+ + po -+ po—1€s + po -+ k)
= pg -+ 5 (Plzo,..,ze) (2) + O(us))
where z; = (z;,£;) and r; is the order of z;.
Let A(,,...,z,)(Pm) be the lineality of Ppy(,,...,.,) Which is a linear subspace defined
by .
(2.8) {2 Prz0,....20) (W + 12) = Pa,....2,) (W), VE € R, Yw € T, (T0) }

and let o = Z?:o d¢; A dz; be the canonical symplectic two form on T*Q. For S C
T, (T*Q) we denote by S” the annihilator of S with respect to o:

S° ={z € T,,(T*Q)|o(z,w) =0,Vw € S}.



89

Theorem 2.7. Assume that the Cauchy problem for P(z, D) is correctly posed near
the origin and

A(zo,...,zs)(Pm)a C A(zo,...,zs)(Pm)'
Then we have
P(zo,...,zs)(z) = Pm(zo,...,zs)(z)7

that is, no lower order terms occur in P, . ,.(2).
Example 2.1. Let
P(z,€) = (& — 21€, — €)(€3 — o165 — 263) + p2 (b0, 216, 61)6n
where p, is a homogeneous polynomial of degree 2. With zg = (0, e,) it is clear that
Py = (€ — 23 — €)(€5 — 21 — 260), Q3,20 = 6iz1£1 + pa(bo, 71, 61).
Let z1 be §p = z1 = a, a € R, & = 0 so that
Py(z0,20) = 46% (€0 — #1)%, Q3(20,21) = P2(a, ,0).

Since A(z,,2,)(P4)? C A(z,2,)(Ps) it follows from Theorem 2.7 that p(a,a,0) = 0.
Similarly choosing z; to be §, = a, 1 = —a, {&1 = 0 we get p2(a, —a,0) = 0. Thus

p2(€0, 21, 1) = (€5 — 23) + &apa (o, 21, 1)
where p; is linear. Finally one can write
P(z,£) = (6 — 2i&n — & + c£n) (6 — 2367 — 261) + E1L(E0, 216n, E1)én

with a linear function L.

Example 2.2. Let

P(z,€) = (€0 — 2obn)? (b0 + To&n) + (b0 — To&n)én + B(€o + Tobn)én
where a, f € C. With 2y = (0,e,) we have

Py 2o = (€0 — 20)* (€0 + o), Q2,20 = (€0 — To) + (8 — ) (& + z0)-
Taking z; to be §g = 1, g = 1 it follows that
P3(2,21) = 2(60 — %0)%, Qa(z0,21) = 2(8 — 7).
Since A(zy,2,)(P3)7 C A(z,z,)(P3) we have 8 = i by Theorem 2.7. Set
P1(z,€) = o — Tobn, P2(z,€) = (§o — o&n) (€0 + Zoén) + ( + i)én

then # = ¢ implies that
P(z, D) = py'(z, D)p% (z, D)

where p(z, D) are Weyl realizations of p;(z, §), see Hormander [5, III].
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