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Abstract ,
We consider an algebraic D-module, i.e. a system of linear partial differential

equations with polynomial coefficients. Our main purpose is to present algorithms
for computing the characteristic variety and the multiplicity of such a system.

1 Involutive bases

We denote by A, := C[z](d) = Clz,..., Tn) (O1,...,0,) the Weyl algebra or the ring of
differential operators with polynomial coefficients. We consider a system of linear partial
differential equations

M . ZPij’u]'ZO (izl,...,s)
j=1

for unknown functions uy, ..., u,, where P,; are elements of A,.

The characteristic variety Char(M) of M is by definition an analytic subset of the
complex cotangent bundle 7*C™ and it represents the analytic nature of the system M.
The characteristic variety is defined analytically, i.e., through the sheaf of rings D of
linear partial differential operators with analytic coefficients. Hence even for a system of
equations with polynomial coefficients as above, it does not seem obvious, at least to the
present author, that the characteristic variety can be computed purely algebraically in
finitely many steps. v

The key point of our argument consists in proving that for a system with polynomial
coefficients, a Grobner basis in the Weyl algebra with an appropriate monomial order
gives a so-called involutive basis in the analytic sense.

We denote by £ the sheaf on T*C" of rings of rnicrodifferentia,l_'operators of finite

order. For a vector P = (Py,...,P,) € £, we denote by m := ord(P) the maximum of
the order of each component P; as microdifferential operator, and by o(P) the vector

0(P) = (0m(Pr), ..., 0m(P)),

where o,,(F;) stands for the principal symbol of order m, which is an analytic function
of (z,€) = (21,...,2n,é1,...,&) € T*C™. We denote by Or.cn the sheaf on T*C™ of
holomorphic functions and by Or«cn .+ its stalk at 2* € T*C™. :
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Theorem 1 Let P, ..., P, be elements of (A,)" and assume that they are A,-involutive;
ze,foranyPEAP1+ +AP3,wehcwe

o(P) € Clz,lo(Py) + ... + Clz, £lo(P,).

The_q, for any point z* of T*C", P;,...,P; are E-involutive at z*; i.e., for any Pe
ExxPr+ ...+ &+ Py, we have

0'(13) S OTtCn,xta(ﬁl) +...+ OT"‘C",x'J(ﬁs)°

This theorem is a special case of Proposition 2.0.9 of [K] (p. 15) stated without proof.
We can use the Grébner basis theory for the polynomial ring and for the Weyl algebra
in two respects: first, in order to prove this theorem concretely (cf. [01]), and second, in
order to compute an A,-involutive basis. In [O1], Theorem 1 is proved for D instead of
&; however, the same argument applies to this case by replacing Ocn[¢] by Opscn.

2 Grobner basis for the Weyl algebra

Let us review the Grobner basis theory for modules over the Weyl algebra. We fix a total
order < of N** with N := {0,1,2,...} that satisfies the following conditions:

(1) (0,0) = (o, B) for any a,f € N*;
(2) if (a, 8) < (!, B'), then (a + ", B+ B") < (¢/ + ", f' + B") for any ", 5" € N™;
(3) if |8| < |@|, then (a, B) < (, B') for any a,a’ € N™.

Here we use the notation |8 = B + ... + B, for B = (B1,...,B.) € N™.

An element P of A, is written as a finite sum
P = Z aa,@x"‘aﬁ
a,B

with 2% = z{*...2%, 8F = §,"...9,", aap € C for a = (ag,...,0,) and f =
(B1,-+-,Py). Then we define the leading exponent lexp(P), the order ord(P), and the
leading coefficient lcoef(P) of P by

lexp(P) = max<{(a, ﬂ) e N I Qap 7é 0}7

ord(P) = max{|B| | aas # 0},
lcoef(P) = a,5 with (o,B) = lexp(P),

where max 4 denotes the maximum element with respect to the order <. When ord(P) <

m we write
om(P) = Z aaﬁwaﬁﬂ
o,|Bl=m
with { = (&,...,&). If ord(P) = m, we write simply o(P) = o,,(P) and call it the
principal symbol of P. :
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Moreover, for an r-vector P= (Pi,...,P) € (An)", we define its order, the leading
point Ip(P), the leading exponent and the leading coefficient by

ord(]:J:) = max{ord(P,) |v=1,...,r}, }
Ip(P) = max{rv € {l,...,r}|ord(P,) =ord(P)},
lexp(P) = (lexp(P,),lp(P)) with v =Ip(P),
lcoef(P) = lcoef(P,) with v =Ip(P).

Let N be a left A,-submodule of (A,)". Then the set E(N) of leading exponents of
N is defined by

E(N) = {lexp(P) | Pe N, P#0} c N* x {1,...,r}.
We introduce a total orderl < in the set N?* x {1,...,r} by

(o, B,v) < (!, 8,7) <> (1] < I8
or (Bl=1#| and v<v)
or (B]=18] and v=+ and (a,B)<(,8))

for o, 8,0/, € N* and v,v’' € {1,...,r}.

Definition 1 A finite subset G of a left A,-submodule N of (A,)" is called a Grébner
basis of N if

B(N) = | (lexp(P) + N*)
PeG
holds, where we put

(o, B,v) + N** = {(a+ o/, 8+ B,v) | o/, f' € N*}.

The algorithm of constructing a Grébner basis from a given set of generators of N
is similar to the Buchberger algorithm ([B]) for ideals of polynomial rings as was first
pointed out by Galligo ([G]), which was generalized by Takayama ([T]) to a more general
setting.

The following lemma is an immediate consequence of the definitions above:

Lemma 1 Put G = {ﬁl,...,ﬁs} with }31,...,133 € (A,)". Assume that G is a Grébner
basis of the left A,-submodule N of (A,)" generated by G. Then G is A, -involutive.

3 Characteristic variety

Now consider the system M defined in the first section and put ]3, = (Py,...,P;) for
1=1,...,s.
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Theorem 2 Let G be a Grébuer basis of the left An-submodule N := APy + ...+ AP,
of (An)". Put

G,={PeG|Ip(P)=v}
for each v € {1,...,7}. Then the characteristic variety of M is given by Char(M) =
Ul=1 V. with

V, ={(z,&) e T*C" | g(ﬁ),(x,ﬁ) =0 forany Pe€ G,},

where o(P), denotes the v-th component of the vector a(P).

4 Multiplicity
We regard M as a left coherent £-module on T*C" by
M:=EJEP, +...+ EP.

Let uy,...,u, be the residue classes of the unit vectors (1,0,...,0),...,(0,...,0,1) € &".
For each integer j, let us denote by £(j) the subsheaf of £ consisting of operators of order
at most 7 and put

M) = EG)ur + ... + EG)ur C M.

Let z* be a non-singular point of the characteristic variety V = Char(M). Then the
maultiplicity of M at z* is defined as the multiplicity of the coherent Or.cr-module

M i= Orec B0,.c.a(0) (M(O)/M(~1)

along V, where Op.cn(0) denotes the subsheaf of Or.cr consisting of functions homoge-
neous of degree 0 with respect to ¢ (cf. [K]). We denote by multy (M, z*) the multiplicity
of M along V at z*. Let T; be the residue class of u; in M and put

ﬂy = OT'C"ﬂl + ...+ 0T~Cnﬂ,, C —M—.

Then we have .
multy (M, z*) = > multy (M, /M, _1,z").
v=1
Using the same notation as in Theorem 2, let Z, be the ideal of Op«cn generated by
{o(P), | P € G,}. Then we can show that M, /M,y = Op:cn/T,. Let J be the

maximal ideal of Or«cn 4+ and put

h(k) = i dll’l’lc OT‘C",m‘/((IU)a:‘ + Jk)

J=1

for k € N. Then h(k) is a polynomial of k for k sufficiently large (Hilbert polynomial).
Denote the leading term of h(k) by ck?/d!. Then d is the dimension of V and we have
¢ = multy(Or«cn/Z,,z*). This d and c can be obtained by computing a so-called standard
basis of Z, introduced by Hironaka. In general, to compute a standard basis is difficult;
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however, in our situation, since the ideal is generated by polynomials, we can compute a
standard basis by using the Buchberger algorithm and the technique of homogenization
as was shown by Lazard.

Once we get the multiplicity of each irreducible component of the characteristic variety
of a holonomic system, we can compute, at least in principle, the local index

Xp(M) = Z(—l)idimcht% (M, Oc¢n),

at a point p € C" by virtue of the index theorem of Kashiwara ([K]), where we regard M
as a left D-module M = D7/ DP1 +...+DP,.

5 Effective computation in D

As is shown so far, in order to compute the characteristic cycle of an algebraic D-module,
we do not need to carry out computation in the ring D, of differential operators with
convergent power series coefficients. However, for some other computations of D-modules
such as verifying an isomorphism between two D-modules, computing an induced system
of a D-module along a non-characteristic submanifold, the notion of Grébner basis (or
standard basis) for left ideals of the ring D, as was formulated by Castro ([C]) seems
indispensable. This notion is rather abstract and not sufficiently suited for actual compu-
tation. However, if the ideal in question is geretated by elements of the Weyl algebra, then
we have an algorithm of computing a Grobner basis in D, via a kind of homogenization

([02)).
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