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MICRODIFFERENTIAL EQUATIONS
WITH ISOTROPIC INTERSECTIONS
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ABsTrRACT. For some weakly hyperbolic microdifferential equations we show that the propa-
gation of the singularity is decided by the symplectic structure of their characteristic varieties.

Although the propagation of the singularity for weakly hyperbolic operators has been
studied by many authors, the detailed results are restricted to two cases: The case of
regular involutive characteristics and of non-involutive characteristics. For the first case,
it is well-known that the singularity propagates along the integral manifold defined by
the symplectic structure of the characteristic variety, and in the second case that the two
bicharacteristic strips of the operator interfere each other (See [8,15,19] for the first case
and [1,2,4,5,,9,10,11,13,14,16] for the second case). We study a new problem including
both these two cases. It will turn out that the propagation is completely decided by
the symplectic structure of the characteristic variety, also in our framework. This result
contains both the above theories. We next remark the fact that it is usual to assume some
restrictive conditions for the lower order terms (especially in distribution theory), even
for the simpler cases mentioned above. To avoid complicated calculation, we shall assume
such an auxiliary condition. However, it is never more restrictive (and sometimes more
general) compared with the usual assumptions in the above simpler theories. At last we
remark that for this purpose we shall study a theory of some non-local integral operators.
The prototype can be found in [6]. The property of the parametrices of microhyperbolic
operators was investigated in [7] , and we can give a more precise result for the parametrices,
in our situation.

Now we give some notations. Let z* = (0;0,---,0,v/=1) € /—IT*R" and (* =
(0,-++,0,1) e R™ (n e N ={1,2,3,---}) . £(xesp. C) denotes the sheaf of microdifferen-
tial operators (resp. of microfunctions) on /—IS*R" , and let EaeU) = {A € Epejord A<
it,j € Z. If A(z,D) € £4+U), we denote by o(A) (and sometimes also by A(z,¢)) the
complete symbol of A(z, D), where (z,£) is a homogeneous symplectic coordinate system.
Here D = /82, as is usual in hyperfunction theory. Conversely if the complete sym-
bol A(z,¢) of a microdifferential operator is given, we denote this operator by A(z,D).
If A(z,6) ~ Y ;c; Ai(2,§), where each 4; is homogeneous in ¢ of degree i, we define
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0i(A) = Ai(2,£). Of course this notation depends on the choice of (z,¢), except for the
principal symbol. If A(z, D) € £,., we define

j-times
.

A(z,DY =A(z,D)---A(z,D), j € Ly.

If A(z,D) is elliptic, we define A(z, D)™/ = (A~!(2,D))’. We define 2',2" € R*"! by
z=(21,2')=(2",2,) € R™.

Let (2,£) be a homogeneous symplectic coordinate system. We assume that
Po(z,€),- -+ , Pi(2,€) (2 < £ < n— 1) are real holomorphic functions defined in a neigh-
borhood of * . We assume that Py is (resp. Py,---, P, are) homogeneous in ¢ of degree
0 (resp. 1). We also assume that

((Pi(=") =0, -0<igy,
{P:;, P} =0, <i4,j<Y{
(1) ! {Po, PL}(=z") #0,
{PU,PJ'}=0’ 2<j5<Y,
(dP1 FANCERWAN dP[ A E f,-dz,-)(a:*) # 0.
\ 1<j<n

For instance, (Py, Py, , P;) = (21,61, -+ , &) satisfies (1). Let mg,my,-++- ,my € Z, =
{0,1,2,---} satisfy mg < m;. Let my + mg+---+my; = m' and m; +m' = m. We define

Er = {A(2,D) € £,+{™);0.ni(A) can be divided by P,™ P,™* ... P,™},
and for A(z,D) € £ we define
oa(A) = "M PyT™ - BT M om(A).
We always assume the following condition:
P(z, D) € £,-(™,
P(‘B’D) = Z E]PJ'.k(m’-D)(IJ(](“’:D)PI(Q”-D))J.I:’l(a”-D)k)
Al (;‘S<j5m0 ‘
OS _m1—7no

each P;; belongs to 4 and oA (Pmg,my—mo) = 1.

Let us define

Ip(s) = Y oA(Pimy-mo)(=")({Pr, Po}(=")y ™
0<j<ma
x8' (s +1)(8 +2) -+ (8 + my — my).
We assume that P(z, D) satisfies either

A2 s€Z, = Ip(s)#0
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or
A2 s€{-my+mg—1,—mg+mg—2,---} =>Ip(s) # 0.

It is easy to see that these conditions are invariant under QCT (=quantized contact
transformation), defined by [12]. Precisely speaking, let ko be a real homogeneous sym-
plectic transformation defined in a neighborhood of z* satisfying ko(z*) = z*, and let
K : Ez» —> E,+ be an associated QCT ((1) is invariant for ko). Let P; = rg*(P;), and de-
fine £, and &, for Py, -- -, B (instead of Py, , P,), as above. Then we have x(£,) = é
and &, (4) = no"(o-A(A)), A € &y, Furthermore, P(z, D) satisfies Al if, and only 1f
B(z, D) satisfies the same condition for £, and 5. For such P(z, D), we can define I5(s)

similarly for P(2, D). Since we have Ip(s) = I5(s), A2 and A2’ are invariant for .
To give the main theorem, we prepare the following

- Definition 1. (i) Let A; : R — R be a strictly increasing continuous function satisfying
A1(0) = 0. Let A; : R — R be a C! function satisfying Az(0,---,0) = 0 and
Oz, Az(22,--+ ,21) >0, 2< 5 < L.

(ii) We denote by O the sheaf of holomorphic functions. Let S(z,£), S'(2,£) € Oa» and
let P’(z £), Q;(z,€) € Ops, 1 < j < n, be a homogeneous symplectic coordinate system
around z* such that

S(z*), 5'(=") #0

Bj(2") = V=16, 1<
Q,-(z") = 0, 1 <
Py =5Q, P;=5'P, 1<j <£

<n
<n

where S, §', Qj(1 < j < n) (resp. Pj(1 < j < n)) are homogeneous in £ of degree 0 (zesp
1). Note that we can choose such functions.

(iii) Let @ C v/—1S*R™ be a (fixed) small neighborhood of z*. For any open neigh-
bourhood w C @ of z*, we define

wy = {(,£)00 € w; A2(Q2,-+,Qe) 20, | Pj/Pp < M(| Q1 ]), 155 < 8}
wy = {(,€)00 € w;A2(Q2,- -+ , Q) > A1(] Q1 )}
We define C; = ]E)nI‘wj(w, Crn) for j =1,2.

The main result is the following

Theorem 1. (i) If P(z, D) satisfies A1 and A2, then P(z, D) : C; — C1 is surjective.
(ii) If P(z, D) satisfies A1 and A2, then P(z,D):(C; — C3 is injective.

Example. Let P(z,D) = 21D, -+ D,;. P satisfies A1 and A2' for § = §' = 1, P =
¢, Q@ =z; (1<j<n). Wedefine

bj = {(z’é)oo € v —].T"R"; 33‘ = 01£ =V —1C°}, 1< J < l)

b = {(2,£)o0 € by; +2; > 0},
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where 2, = (21, A -y 25,). It is easy to see that u € C,. satisfies Pu = 0 if, and only if, it is
written in the form

u = sp(H(zl)Eluo(zi) + E 3"‘J("’j))
1<ji<¢L

Here sp f denotes the singularity spectrum of a hyperfunction f , H is the Heaviside
function, and u; € (Brna-1)o, 0<j <L Ifu # 0 (at 2*), then spu; # 0 for some j,
and suppu must contain at least one of by, by, by,---,b;. It follows that no non-trivial
solution belong to C; (See the figure below). Theorem 1 generalizes this fact.

z
bi(2<5 <0
w2
br 2
> zl
Figure
Remark. If mg = 0 , then P is of regular involutive type, and if my = --- = m; = 0 to the

contrary, P is of non-involutive type. In the first case, we do not assume any conditions
for the lower order terms. In this case Theorem 1 is well-known under some assumptions
for the lower order terms (See [8,19] ). [15] considered this case without such assumptions
in the second microlocal category. On the other hand, in the second case our assumption
Al is the usual Levi condition for Fuchsian operators, and Ip(s) is also the usual indicial
polynomial. In this case Theorem 1 is well-known precisely in this form. However, from
now on we always assume that mg,--- ,m; > 1. Note that this is no restriction. For
instance, to prove (i) of Theorem 1 it suffices to show the surjectivity of P'(z,D) =
P(z,D)21D; -+ Dy, instead of P(z, D). By this modification each of myg, - - - , m, increases
by one, and if P satisfies A1 and A2 then P’ satisfies the same condition. Similarly, to
prove the injectivity of P(z, D), we may consider D, --- D;2, P(z, D) instead.

In [17] another generalization of Fuchsian operators is investigated. For the sake of
simplicity, let the principal symbol of A(z, D) € &£,.(™) satisfy

_ Amo gma_, sgmy
o= Ay A] A,
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where Ap is (resp. Ay,---,A; are) homogeneous in ¢ of degree 0 (resp. 1), and we assume

{Aj(z*)=0, 0<j<{,
{40,4;}#0, 1<5 <Y,

instead of (1). In [17], under some additional conditions the propagation of the singularities
is investigated for such operators. Of course the result is not the same, due to the difference
of the symplectic structure of the characteristic variety. Roughly speaking, the singularity
of the solutions for such A(z, D) does not propagate along the bicharacteristic strip of
Ag, in some sense (See [17] ). Anyway, non-local integral operators enable us to give
clear results on the propagation of the singularities, for various types of weakly hyperbolic
operators.

We next explain a non-local operator theory necessary for the proof of Theorem 1. Let
(Q1y:* - Qn, P|,--- P.) be the coordinate system mentioned in Definition 1. From now on
we denote this system simply by (z,£). We may also assume Py = 2,, P; =¢§;,1 <j <Y,
neglecting elliptic symbols. For the reader’s convenience, we rewrite the notations in this
coordinate system. £y = {A(2, D) € £,+(™);0m:(A) can be divided by £,™? - - §™}, and
for A(z,D) € Ep we define op(A) =&, ™2 & "2 -

£, ™ 0om:(A). We always assume the following condition:
P(z,D) € £,.(™),
bis P(sz)‘Z > 3P; k(zvp)(lel)j-va
Al 0<i<mo '
GSE_Sn_z;—mo‘
each P;; belongs to £ and oA(Pprgmi—mo) = 1.
We define
Ip(s)= 3 oa(Pimi-mo)(2")s (s +1)(s +2) -+ (s + my — mo).

0<j<mo

We assume that P(z, D) satisfies either
A2bE scZ,=>Ip(s) #0

or
A2 bis 8E{—m1+m0_1’_m1+m0_2"”}=>IP(8)#0'

Let @ C v/—1S*R™ be a (fixed) small neighborhood of z*. For any open neighbourhood

w C @ of 2*, we define

wy = {(, €)oo € w;Az(22," - y22) >0, | £J'/£n |< M2 [),1<7< 8}
wy = {(2,£)00 € w; Aa(23, -+ ,24) > Ai(] 21 |)},
and we define C; = l_iir)lI‘wj(w, Cr») for j =1,2.

w
We next define two non-local operator classes.



115

Definition 2. We denote by £; the set of germs k(2,y) € (Cran)(a+,~5+) Which satisfy

supp k(z,y) C {(=,;¢,m)o0 € V=IS*"R?™;0 < 30,,---,39, < 1,
y1=0121, & +01m =0,
Yi <z, § +0;m =0, 2<j < U,
¥i =25, §+n; =0, {+1<j<n},

and £, by &3 = {k(—y, —2); k(z,y) € &1}
If AC+/-18*R?*™ \ (R™ x +/—1S"R") and B C y/—1S*R", then we define Ao B C
v—1S*R" by

Ao B ={(2,£)0 € /—18*R™; there exists some (y,n)co € B
such that (z,y, £, —n)oo € A}

Of course we have £, & Lo« G E1, £, where £ denotes the sheaf of microlocal
operators. We explain some important properties of these operator classes.

Proposition 1. (i) Let j € {1,2}. If ki(2,y), k2(=,y) € £;, then [ky(z,2)ki(2,y)dz €
C(a*,~2+) is well-defined and belongs to £;. Thus £; naturally acquires a ring structure
with the unit element sp §(z — y) .

(i) Let j € {1,2}. If u(z) € C; and k(z,y) € &; , then [ k(z,y)u(y)dy € Cp» is well-
defined and belongs to C;. Thus C; naturally acquires the structure of a left £;-module.
In fact we have

supp ([ k(z, y)u(y)dy) C supp k o supp u.

Note that the integral operators thus defined are not microlocal, i.e., they may increase
the singularities of the operands. Now Theorem 1 is a direct consequence of the following

Theorem 2. (i) If P(z, D) satisfies A1 and A2, then P(z,D) has a right inverse in &;.
(ii) If P(z, D) satisfies A1 and A2', then P(z, D) has a left inverse in &,.

We can prove (i) of Theorem 2 using a symbol calculation for £;, and (ii) is its direct
consequence. See [18] for the details.
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