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A CLASSICAL APPROACH TO STUDIES ON
PROPAGATION OF ANALYTIC SINGULARITIES

SEIICHIRO WAKABAYASHI ( UNIv. oF TsUuKUBA HHHE—ER)

1. Introduction

It is natural to consider the problems in the framework of hyperfunctions, when
we study “propagation of analytic singularities.” Many authors have investigated
such problems from the viewpoint of “Algebraic Analysis.” On the other hand,
“propagation of singularities” has been investigated in the frameworks of C* or
Gevrey classes by applications of “Classical Analysis.” In this article we attempt to

study “propagation of analytic singularities,”

applying “Classical Analysis.” There
is Hormander’s book [3] for a short introduction to theory of hyperfunctions, which
1s not so hard for us, studying in the C'* category, to understand. There is also
Treves’ book as to analytic pseudodifferential operators, which were studied by
Boutet de Monvel and Kree [1]. Combining the methods in these two books, we will
apply the arguments in Kajitani and Wakabayashi [4] to the studies of “propagation

of analytic singularities.”

2. Function spaces

Let ¢ € R, and denote (¢) = (1 + |¢|?)}/2, where € = (&1,-+- ,€,) € R™. We

denote

Se :={v() € C®(R"); eEu(¢) € S}.

we say that v; — v in S.asj — ooif e, (£) — ey(€) in S as j — .
Since D is dense in 8., it is obvious that the dual space 3’; of S, is identified with

{e5¢€)u(€) € D'; v € §'}. For € > 0 we can define
S.=F 8] (= F8.] = {ues; i) €5,

where F and F~! denote the Fourier transformation and the inverse Fourier trans-

formation on S ( or S’ ), respectively, and 4(£) = Flu](£). We introduce the



topology in S, so that F : S, — S, is homeomorphic. Denote by S. the dual space
of S, for ¢ > 0. Then we can define the transposed operators {F and {F~! of F
and ! which map S’ and 3; onto 3’5 and S, respectively. Since S_, C §;

(C D) for e >0, we can define S_, := tf_l[g_e] for € > 0. It is easy to see that
S, = f[gl_e] is the dual space of S_,, 31_5 cS'c 3; and S, C &' C S, for
€ >0, and that F =*F on §’. So we write !{F as F. Let K be a compact subset
of C", and let A'(K) be the space of analytic functionals carried by K. Denote A’
(=A(R")) :=UggrrA'(K). Then we have

AI C n€<055 C .7'- = ﬂs>05'€.
Following [3], we put

U(@, 2nt1) = (sgn n1) exp[—|zn41[(D)]u(z)/2
(= (sgn 2ns1)F ' [exp[=|2ns1|(€)]0(E)](2)/2) for u € F,

where @ = (21,--- ,2,) ER", 2,41 € Rand D =i"18 =i"1(8/0zy, - ,0/z,).
Then we can see that

Uz, 2041) € C¥(R1\ (R” x {0}),

U(z,2n41) = —U(z,—2p41) if 2541 #0,

U(-"”"”n+1)lzn+1>o € C*([0,00); F),

u(:z:) = U(zi +0) - U(.’B, _0);

(1= Aurony)U(2,2041) =0 in ™\ (R” x {0}).
We can define supp u for u € F as follows;

d
z° ¢ supp u &, “U(=z, 2n4+1) can be extended

in a neighborhood of (2°,0) as a C?-function.”

Then, for a compact subset K of R" we have the following:

(1) u € A'(K) <= supp u C K,

(ii) 3v € F s.t. supp v C K and supp (x —v) C R"\ K, where 4 denotes
the closure of A. Moreover, supp (v — w) € 8K if w € F, supp w C K and supp
(v —w) C R™ \ K, where 8K denotes the boundary of K in R™.
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For a bounded open subset © of R" the space of hyperfunctions B(f2) in Q is
defined by

B(Q) = A'(Q)/A'(59)

( see [3]). By the property (ii) of supp u we can define
supp [u] = supp uNQ,

where u € A'(Q) and [u] ( € B(Q) ) denotes the residue class of u. We can also
define the restriction u|,, of u € B() to an open subset w of Q. For any open subset
Q2 of R" ( or any real analytic manifold Q ) the space B(?) of hyperfunctions in
2 is defined by its sheaf property ( see [3]). We note that hyperfunctions can be
locally identified with elements in A’

3. Pseudodifferential operators in S,

Let Ry > 0 and 61,62 € R, and let a(€, y, n) and b(¢, y, 7) be symbols in C° (R x
R; x R}) satisfying

|08 DEOY a(€, y, m)| < Ca,y(B/Ro)P(g)ym:+1A1 (yma
x exp[81(€) + 8a{m)] if (€) > Ro8,
|0g D28Yb(E, y,1)| < Cay(B/Ro)PHEY™ (m)m2tFl

x exp[61(£) + 62(m)] if (n) > Ro|B-

Define

a(Dg,y, Dy)u(e) = (27) " F [/ e vt (/ eV"a(€, y,n)i(n)dn)dy] (=)
for u € S, :=N.S..

Proposition 3.1. a(D,,y,D,) ( resp. b(D,,y,D,) ) can be defined as a con-
tinuous linear operator, which maps S, to S., and §',, to 8’ , if ¢ > 0,
g2 > 81 + 65 + €1, Ry > max{l,encmax{l + V2, B}(ez — &1 — 6, — 62)" '} and
1/Ro > &', wheree = ey — 8y and €' = e, + 6, (resp. ¢ = —¢; — 6; and &' = 65—
€2 ). In particular, a(D,,y, D,) maps continuously U.5oSe to Ue»oS. and b(D,, y,
D,) maps continvuously FtoF,if by = by =0.
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We need symbol calculus for a various kind of symbol classes. We give here only
a few results on symbol calculus. Let I/ be an open conic set in 7*R" \ 0. First we

assume that a(z, €, y, n) satisfies the following: (i)

| DE+Pog+e Dy 0 a(z, &y, )|
< Clapianianixi (A1/ Ro)* (B /Ro)? (A/ Ro)?(By / Ro)M
x (gymIalHBlyma=lP+ M exp[s, (€) + 8(n)]
if (€) > Ro(la| +|B]) and {(n) > Ro(|p| + [A))-

(i1) 6 < 0or Je > 0:

lDf"’ﬁag‘“"&D;""iB,’;”’a(z, £y, ,’)|
< Ciay 3115115 (A1/Ro)!* (B1/ Ro)P1(A2/ Ro)¥I( By / Ro)
x (gyma~laltel(yma=2l(|¢] + |n])M exp[61 (€) + 62(n)]
if |z — y| <e, (§) > Ro(le| +|B), (n) > Rolp| and (|€] + [n]) = Rol|Al.

(i) e >0 and 0 < I’ < 1/2:
|DE8g+E D optPa(z, €, y, )|
< Cia51(41/Ro)!* B (A5 Ro)P BIN a1 A1

x (€)m118l(myma=17l exp[8y (€) + 82(m)]
if (z,n) €U, |z - y| < 2¢, | — 1| < 2¢'(m), (€) = Rola| and (n) > Rop|.

(iv)
|DEog+E DM+ 0r+Pa(z, €, y, 1)
< Cyay 31,15 (A1/Ro) I BI? (4, /Ro) Pl (B2 / Ro) M| 8]t
x ()™= 18l(nyma=11+1\ exp[s, (€) + 82(n)]
if (z,m) € U, {€) = Rola| and (n) > Ro(|p] + [A]).
(v) e >0:

- 1 2,3 -
| DE8Z*e Dy X +280%Pa(a, £, y, m)|
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< Ciay oy (A1/ o) BN 45/ Ro)Pl (B, / Ro) X 1+12%1 g1
x (€)1l ymal M expls, (€) + by (n)]
if (z,m) €U, |2 — y| < 2¢, (€) > Ro(lo] + |\]) and (1) > Ro(|p| + |A%)).

Formally we define
a(a, Ds, v, Dy )u(e) = lim(2m) ™ [ expl-sfal?let>”

X (/(/e‘”'(f'")a(m,n, v, {)Q({)dﬁ)dy)dn for u € So.

Lemma 3.2. (i) a(z, D;,y, D) is well-defined and maps continuously Szs, 5,41
to S if Ry > Ro(A1, B2), 1/Rg > 36, and 8; > 0, where Ro(A;, By) is a constant
depending on A; and B, and locally bounded with respect to A; and By. Moreover,
a(z, Ds,y, Dy) maps continuously S;, to S if §; < 0. (ii) Put

a(z,8) = ¢1F(£)a;(2,£),
Jj=0

aj(z,8) = Y NI D]a(z,&+nx+9,8)| o, o
vl=i

where the ¢1(£) are chosen so that ¢F(€) = 0 if (€) < 2Rj, ¢f(€) = 1if (€) > 3R],
and |83 *¢R()| < Cia(Co/R)1*N(€) 13l if |a| < 2j. Then,
o513 (2 )] < Cay 31 (A7 (2Ro)) 1 (B/(2Ro)) I (g +ma=11 846

if (€) > 2Rolal, (§) > 2Ro|B|, 6 = 6, + 6, + nA1 B /RE, A > 2(A;, + Ag + Co/4)
and B > 2(By + By). (iii) There is a symbol r(z,&) such that a(z,D,,y,D,) =
a(z, D)+ r(z, D) on So, and

|5 (2 6 < Ciag 31 {(€)™++™2 expl—r(€)/ Ro)

ifk >0, Rg > Rl(Al,Bz, 1/6, IC), l/Ro > 36; and 1/R0 > max{4(61)++62,9(61)+,
661 + 12(61)+ + 1262,18(81)+ — 16(82)-}/(12k), where 61 = max{0, +6}. (iv)

Jaay (2, €)] < Ciai(A4/ o) BY|Bl1(ey™ 151 exp (61 + 8)(¢)]

if A > A+ Ay + Co/4, B' > 2max{B{,2B}}, (z,£) € U, (£) > 2Ro|a| and
Ro 2 4nAlB§, and

|73 (2,€)| <Cja),roB(B1, By, 1/e, Ro/k, ¢ Ro/x)#!| )
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x (€)(m1)++73 exp[—k(€) / Ro]

if (:c,f) EU k>0, Rg > Rz(Al,Bz,Bé,l/e,l/ﬁ'l,IC), l/Ro > 36, and ]./RO >
max{251 -+ 2€'|5ll + 262,4(51)+ + 89,26, + '61|,461 + 2|51| + 262}/(216)

Next assume that a(¢, z,n,y, () satisfies
=~ 1 2,0 = 1 2,3 2
|6g+aDg +P +ﬂa;’7+’YD;> +A +/\6g+pa(£’ T, Y, C)I

< Crapanninia (A1/Ro) By / Ro)P 11 (45 / Ro)l
X (B2/Ro)|)‘ll+|’\2|(As/Ro)lpl (€)m1—|&|+|ﬂ1|(n)m2_|q|+|52|+‘/\1|

x ()71l exp(6y (€) +65(n) + 83(C)]
i (€) > Ro(led + 181]), (m) > Ro(l] + |87 + I\ and (¢) 2 Ro(lol + [AZ]), and
|5?+&Dfag+ﬁ[’$af+"’a(€, z,1,9,¢)|
< Cial it 131 (A1/Ro)™ B! (42 R BIM (4s/ Ro) V!
x | B gy™ =18l myma= I (¢ym e~ 1Pl exp(61 (€) + b2(m) + 63(C)]

if (2,¢) € U, || > Ro/4, Inl > Ro/4, I¢| > Ro/4, |z —y| < 2¢, [n~¢| < €{C),
(€) > Rolal, {(n) > Rolv| and (¢) > Rol|p|, where ¢ > 0 and 0 < &’ < 1. Formally

we define
D2y, Dy, Dulule) = 77 iy [([ ([ ([ exolvicr?
x 0 (EM €=y, y, ¢, w,)i(€)dE) duw)dC) dy | (2)
for u € Seo.

Lemma 3.3. (i) a(Dg,y, Dy, w, Dy,) is well-defined and maps continuously
33(52)++53+1 to 5_,511 if Rg > R3(Bz), 1/R0 > 389 and 5’1 > 6. (11) Put

a6, y,m) = ¢37(m)a; (€, ,m),
j=0
a;j(&y,m) =Y YD a6, y,m+ oy + w,0)| 2o 0
vI=i

Then,

|05+ DJ*P 07+ a6, y,m)| < Cia,pa 51 ( A1/ Ro)'™! (B/ Ro) !



x (A/Ro)Pl(gyma~I&l(mymatms=Ipi+1Pl exp(sy (€) + 6(n)]

if (€) > Rola|, (n) > 2Ro(|B| + |p|), § =62+ 63+ nA2Ba/R3, A > As + Az + Co/4
and B > By + B,. (iii) There is a symbol r(§,y, n) such that a(D,,y, D,,w, D,) =
a(Dz,y, Dy) + v(Dg,y, Dy) on S and
|5?D5+ﬂ3,‘;’r(€,y, 77)| < C|5,|,|¢§|,|;,|,RO(B(BI, B3, 1/e, RO/"")/RO)WI

x (€)1 1E1HPl () (ma)++ms expls, (£) — k(n)/Ro
if (f) Z Rolﬂl, K > 0, Ro Z R4(A2,Bz,Bé, 1/6, lﬁ), I/Ro > 362 and ]./Ro Z
max{4(62)+ + 63,62 + |82]/2} /K. (iv)

|3?+&D555+5a(€7?/, )| < C|54,1,3|(1‘11/1‘30)1041'_34[”(1‘1/1120)"’I

x | B|gy™ 18 ) matme=I?l exp(61(€) + (82 + 63)(m)]

if (y,m) € U, (€) > Rolal, (1) > 2Rop|, |¢| = Ro/4, Ro > 1, A > Az + A3+ Co/4
and B' > 2max{B}, 2B}, and
|08 D077 (8, 3 m)| < Cia 13y 151, m0 (B(By, B, By, Ro/x)/ Ro)”!
x (gym eI+ Bl (n)(m2)++ms exp[6, (€) — w(n)/ Ro]
if (y,m) € U, (§) > Ro|B|, |€] > Ro/4, £ > 0, Ry > Rs(As, By, By, 1/e,1/¢' k),
1/R0 > 369 and 1/R0 > max{4(52)+ + 83,069 + I(SQI/Q}/IG

4. Analytic wave front sets and microfunctions
There are several definitions of analytic wave front sets which are equivalent to

each other. For u € A’ we define the FBI transform Tyu(z) by

Thu(z) = uy(exp[-A(z — y)*/2]),
where A > 0 and z € C". We say that (2°,£°) € (T*R"™ \ 0) \ W F4(u) if there are
a neighborhood V of 2% — i£9/|¢%| and positive constants C and ¢ such that

IThu(z)] < CerV2=9) for z € V and A > 0,

where u € A'. Since W F4(u) is determined by the local properties of u € A’, the
definition of W F4(u) can be immediately extended to functions in F and hyper-

functions.
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Proposition 4.1. Let u € F, and let (z°,¢°) € T*R™ \ 0. Then, (2°,£°) ¢
W F4(u) if and only if there are Ry > 0 and a family {g®(£)}r>r, C C°(R") such
that g®(£) =1 in a fixed conic neighborhood T of £°,

|gR*A)(€)| < Cig (C/R)INE)~IPlif (€) > Rlal

and g®(D)u is analytic near z° for R > Ry.

Lemma 4.2. Let T’ be an open cone in R" \ {0}, and let X be an open set in R".
Assume that a symbol p(z, €) satisfies

supp p(z,6)NX x T =0,

1515 (@ O < Clay a1 (B/Ro)PHEY™ P! if (€) > RolB,
|p§g; ,€)| < C|a|B'ﬂ'|ﬂ|!(€)’" ifreX.

Then, W Fa(p(z, D)u) N X x T =0 if u € F and Ry > /nemax{B,2(1+v2)}.

Let U be an open conic subset of T*R"™ \ 0, and define
CU) = B(R™")/{u € B(R"); WF4(u)NnlU = 8}.

Elements of C(U) are called microfunctions on U. Let © be an open conic set in

T*R™\ 0, and let P(z,£) € C*(Q) satisfy
(1) |PG)(z,8)] < Coab' B alt|Bl&)™ 1 for (z,£) € @ with [¢] > Ro.

Assume that X x v @ X; x 11 @ N, where X and X; are open sets in R", and
v and 71 are open conic sets in R™ \ {0}. Then we can construct a symbol P(z, £)
so that P(z,&) = P(z,€) in X x yN {|§|] > Ro}, supp P(z,€) @ X1 X 71, supp
P(s,€) C {|¢] > Ro/2} and

IPEZIZ; (2,8)| < Cia13(A/Ra)1* (B[ Ro)1Pl(gym~1l+1A]

if (€) > Ro|e| and (€) > Ry|A],
|PE;:0‘)($,€)| < C|&|(A/R0)|alBllﬂlwu(é)m—lél

if z € X, (€) > Rolo] and [¢] > Ro,



~(a) e .
[P a4y (2, 8)] < CIBlAl |(B/ Ro)!l|a|t(£)ym~lel+16]
if § €7, (§) > Ro|B| and [£] > R,
=(a) Nal i
|P(ﬂ)("3,f)| < cA'le gl o)1) 811 (gYy ™1

ifze€ X, £ €vand || > Ro.

From Lemma 4.2 it follows that P(z, D)u|x is uniquely determined by P(z, D) and
u € F modulo {f € F; WFs(f)nX x v = 0} if Ry > Ro(B, B'). We can also
prove analytic pseudo-locality of }3(3:, D) in X x «, shrinking X x v if necessary.
Therefore, we can define P(z, D) : C(Q) — C(2) by P(z, D)u|x = P(z,D)u|x in
A’ for u € F.

5. Propagation of singularities

Let (2°,€°) € T*R"™ \ 0, and let Q be a conic neighborhood of (22,£°) in
T*R"\ 0. Assume that P(z,£) € C™(1Q) satisfies (4.1), and that u € C(f) satisfies
P(z, D)u = 0 in C(2). Under the above assumption we study conditions which give
u = 0 near (2%,€°) (in C(R2) ). Let S be a closed conic subset of T*R" \ 0 such
that (z°,£°) € S, and assume that

(A) supp u C S, where supp u = WF,4(v) N Q if u is the residue class of v in
B(R™).

We choose a real-valued function ¢(z,£), which is defined in Q and positively
homogeneous of degree 0, such that ¢(z°¢°%) = 0, ¢(z,£) > 0if (z,6) € S\
{(=% A€%); A > 0}, and

|o(8) (2, 6)| < LA B aB]! for (z,) € @ with [¢] = 1.

Let ¥(£) and A(€) be functions in C*°(R™) such that ¥(¢) = 1 for |¢| > 1 and
P(€) = 0 for [§] < 1/2, C7H{€) < A(€) < C(€), A(€) € S} and

|’\(a)(5)| < CzAlza||a|!(£)1_'°‘| for (z,£) € Q with |¢] > 1.

Put

Aoy (2, €) (= Aj(2,€)) = {a(p(z, ) = 1/)ME)~* + b(e(x, £) + 1/5)A(€) }9(€),
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where a,b> 0 and 0 < 6§ < 1. Let Py, (,£) be a symbol in ST, satisfying

Pp;(z,€) ~ Y _(My)710) D)7 DL {P(2 + w + iAje(=, N (2,3, € + 1), ),

Ay

Ni(z,y,€+ ))deta—Nj(m E+n)}
)y7 77 66 ) y’ 77 y=w=0’n=c=0

in S77%(€2), where a+b < e(j) < 1, Aje(=,&,n) = fol VeAj(z,E+0n)db, Ajo(z,y,§)
= fol VoAj(z +0y,£)dd and n = Ni(,y,() is the solution of n + iAj,(z,y,7) = (.
We assume that

(ME) 3jo € N and 3x(z,£) € S7 s.t. “x(=,€) is positively homogeneous of
degree 0 for |¢| > 1, x(z,£) = 1 near (2% £°/]€9)), and Vj > jo, Jag > 0 and
Jbg>0st. 0<Va<ag, 0<Vb<by,0<3<1,3eR(1<Ek<4),3C>0
and 3V¥(z,£) € S?’O, which is positively homogeneous of degree 0 for |£] > 1,
satisfying supp ¥ NS = @ and

KDY ]| <C{I(DY P, (2, D)o + (DY o]
+ [(D)2(1 = x(z, D))el| + [(D)+¥(z, D)o}

if v € C$° and 0 < § < &,” where || - || denotes the L2-norm.

Theorem 4.3. Assume that (A) and (ME) are satisfied. Then, u = 0 near (z°,£9),
i, (°,€0) goupp u.

We can prove the above theorem by the same idea as in [4], after establish-
ing symbol calculus of analytic pseudodifferential operators and pseudodifferential
operators introduced here.

Let us give some applications of Theorem 4.3. If P(z,£) is microhyperbolic,
then we can choose ¢(z,£) so that Py (2, £) is elliptic. Therefore, we can prove the
results of Kashiwara and Kawai [5].

For Grusin type operators a prior: estimates ( energy estimates) are well-known
( see [2]). So we can immediately prove the results on analytic hypoellipticity
of Métivier [6] and Okaji [7] in the space of hyperfunctions ( microfunctions) by
Theorem 4.3.

Finally we consider analytic hypoellipticity of operators with double characteris-

tics. Let (29,£9) = (0;0,---,0,1) € T*R™\0, and let P(z,£) be an analytic symbol
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defined in a conic neighborhood of (2, £°) such that P(z,€) = €2 +a(z, &, -+, &n)+
B(z,€) in a conic neighborhood of (2°,£°), where a(z, &, - - ,€n) is positively ho-
mogeneous of degree 2, a(z, &, --,£,) > 0 and B(z, €) € Sll,0 is a classical symbol.

Put
§={(=,§) eT*R™\ (; ' =0, ¢ =0},

where 1 <r <n-1,2" = (z1,---,2,) € R" and ¢ = (§,---,&) € R". We
impose the following conditions: ,
(H-1) P(z, D) is analytic ( micro) hypoelliptic in  \ S, where Q is a conic
neighborhood of (22, £9).
(H-2) 3U": a neighborhood of (0,0) in R” x R", 3U"": a complex neighborhood
of (0,£%) in C*™" x (C™*~"\ {0}) and 3C > 0 s.t.

Ia(z,’ Z”, 62; e )ET)C")l S Ca(mla 0) 52) e )E‘r’gon)

if (2',¢') € U’ and (2",¢") € U", where 2" = (2,41, ,2,) € C"™" and ¢" =
(Ga1,0-,G) €C™T.
(H-3) 3¢ >0, 3C > 0 and 3¢;(2',€') € S (1< j < 2¢) st

(1 - 6) (6]? + Re a(mli z”)EZa e )67‘1 C”)) + Re sub G-(P)(m” Z", 5’7 C”)

2L L
- Z‘Ij (=", &) + Z{Q2j_l, 025 Hz', &) > -C
j=1 ji=1

for (¢/,€') € U and (2",¢") € U", where sub o(P)(z,£) = 8z, £) — (i/2) doiea

(0°p/0=;0€;)(2,€), B°(=,€) is the principal symbol of (z,€) and p(s,£) = £2 +
a(a:, 62’ e 7€n)~

Theorem 4.4. Under the assumptions (H-1)-(H-3) P(=, D) is analytic ( micro)
hypoelliptic at (2°,£°), i.e., 3U: a conic neighborhood of (2°,£°) in T*R™ \ 0 s.t.
supp u NU =supp P(z,D)unU for u € C(U).

Remark. Let n = 3, and let P(z,£) = &7 + £ + a(z1,22)b(2)€2 be an analytic
symbol. Assume that a(z1,22) > 0, a(z1, z3) # 0 for (z1, z3) # (0,0) and b(z) > 0.
Then, it follows from Theorem 4.4 that P(z, D) is analytic hypoelliptic.
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