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In this note we discuss the discrete spectrum of the $\mathrm{S}\mathrm{c}\mathrm{h}\mathrm{r}6\mathrm{d}\mathrm{i}\mathrm{n}\mathrm{g}\mathrm{e}\mathrm{r}$ operator $H_{N,Z}(b)$ ,
defined as below, for an atomic system in a magnetic field. Let $x=(x^{1}, \ldots, x^{N})\in \mathrm{R}^{3N}$ ,
each $x^{j}\in \mathrm{R}^{3}(1\leq j\leq N)$ and $\nabla_{j}$ being the gradient in $\mathrm{R}^{3}$ with respect to $x^{j}(1\leq j\leq$

$N)$ . Then we consider the following operator:

(1.1) $H_{N,Z}(b)= \sum_{j=1}^{N}(T_{j}(b)^{2}-\frac{Z}{|x^{j}|})+\sum_{j1\leq i<\leq N}\dot{.}\frac{1}{|x-x^{j}|}$ ,

as a self-adjoint one in $L^{2}(\mathrm{R}^{3})$ , where $Z>0,$ $N\in \mathrm{N},$ $b\in C^{1}(\mathrm{R}^{3})^{3}$ being real-valued
and

$T_{j}\equiv T_{j}(b)=-i\nabla_{j}-b(x^{j})$ $(1 \leq j\leq N)$ .
This operator $H_{N,Z}(b)$ is the atomic Hamiltonian with a nucleus, that is assumed to be
infinitely heavy, with charge $Z$ and $N$ electrons of charge 1 and mass 1/2, and with the
magnetic vector potential $b$ .

The problem is the finiteness or the infiniteness of the discrete spectrum of $H_{N,Z}(b)$ ,
which is one of the characteristic spectral properties. This problem in the case that $b=0$

was studied by Zhislin $[9],[10]$ , Yafaev [2] and others. The following theorem, which is
obtained by combining with $[9],[10]$ and [2], gives the necessary and sufficient condition,
which is the relation between $Z$ and $N$, for the finiteness of the discrete spectrum of
$H_{N,Z}(\mathrm{o})$ .

Theorem 0.1 $([2],[9],[10])$ . The number of the discrete spectrum $ofH_{N,Z}(0)$ is finite
if and only if $Z\leq N-1$ .

On the other hand, in the case of uniform magnetic fields, $\mathrm{A}\mathrm{v}\mathrm{r}\mathrm{o}\mathrm{n}- \mathrm{H}\mathrm{e}\mathrm{r}\mathrm{b}_{\mathrm{S}\mathrm{t}-}\mathrm{s}\mathrm{i}\mathrm{m}\mathrm{o}\mathrm{n}[1]$ and
Tamura [7], and Vugal’ter-Zhislin [8] gave a necessary and a sufficient condition, respec-
tively, for the finiteness of the discrete spectrum of the atomic Hamiltonians.
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Theorem 0.2 $([1],[8])$ . The number of the discrete spectrum of $H_{N,Z}(b_{c})i\mathit{8}$ finite
if and only if $Z<N-1$ .

Here $b_{c}(y)=(0,0, B/2)\cross y(y\in \mathrm{R}^{3})$ , which satisfies rot $(b_{c})=(0,0, B),$ $B$ is a pos-

itive constant and rot $(\cdot)$ denotes 3-dimensional rotation. We remark that, comparing

Theorem 0.2 with Theorem 0.1, the difference between the presence and the absence of

uniform magnetic fields appears only in the delicate case that $Z=N-1$ .
Then our concern is the case of non-constant magnetic fields. Some different phenom-

ena are expected to occur in non-constant magnetic fields. In fact, we have the following
theorem.

Theorem 1.1. For any positive constant $Z$, there exists a vector potential $b_{Z}\in$

$C^{1}(\mathrm{R}^{3})^{3}$ , which is independent of $N$, such that the number of the discrete spectrum of
$H_{N,Z}(bz)$ is always finite for $N\geq 2$ .

In other words, any atomic system has only finitely many bound states in a suitable

magnetic field. Also we have the following result.

Theorem 1.2. There exists a vector potential $b_{0}\in C^{1}(\mathrm{R}^{3})^{3}$ , which is indepen-

dent of $N$ and $Z$, such that the number of the discrete spectrum of $H_{N,Z}(b_{0})i_{\mathit{8}}$ infinite
for any $N$ and any $Z$ .

In other words, any atomic system has infinitely many bound states in a suitable mag-
netic field. So, as a consequence, the finiteness or the infiniteness of the number of bound
states generically depends on magnetic fields.

Besides, it follows from Theorem 1.2 that the discrete spectrum of $H_{N,Z}(b_{0^{)}}$ is not
empty. This is related to the problem of the presence or the absence of the discrete
spectrum. This problem was studied by Ruskai $[4],[5]$ , Sigal [6], Lieb [3] and others.

Ruskai and Sigal proved that there is no very negative ions and Lieb [3] improved their
results as follows.

Theorem 0.3 ([3]). If $N\geq 2Z+1$ , then $H_{N,Z}(0)$ has no $di_{\mathit{8}Cre}te$ spectrum.

As a consequence of the above theorem, the number of electrons that a nucleus of charge
$Z$ can bind is less than $2Z+1$ . In view of Theorem 1.2, the presence or the absence of
the discrete spectrum depends on magnetic fields. Also, even if there is no very negative
ions in a fixed magnetic field, the maximal number of electrons that a nucleus can bind
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depends not only on the charge of the nucleus but also on the magnetic field.
At the end we roughly explain the vector potentials in Theorems 1.1 and 1.2. First

$bz(y)=fz(\rho)(-y_{2,y}1, \mathrm{o})$ , where $y=(y_{1}, y2, y3),$ $\rho=\sqrt{y_{1}^{2}+y_{2}^{2}}$ , and $f_{Z}$ is larger than $B/2$

and converges to $B/2$ of the order $\rho^{-1/2}$ as $\rhoarrow+\infty$ . Further the height $B/2$ is sufficient
small and dependent of $Z$ (Figure 1). Next $b_{0}(y)=f_{0}(r)(-y_{2}, y1,0)$ , where $r=|y|$ , and

$f_{\cap}$ is smaller than $B/2$ and conver $\rho \mathrm{e}\mathrm{s}$ to $B/2$ of $\mathrm{t}‘ \mathrm{h}\mathrm{e}$.
$\cap \mathrm{r}\mathrm{r}\mathfrak{j}_{P}.\mathrm{r}r^{-1}/2\mathrm{a}.\mathrm{q}r--\llcorner\propto\tau- \mathrm{F}\tau \mathrm{l}\mathrm{r}\mathrm{f}.\mathrm{h}\rho r$

$\mathrm{p}_{\dot{\Psi}^{\lambda\wedge\iota}}$

$[$

$\mathrm{F}_{7^{j\lambda}}^{\backslash }\iota \mathrm{A}\not\subset 2$
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