0oooo0O0oooo
9390 1996 0 198-207 : 198

Image recovery by convex combinations of
nonexpansive retractions
in Banach spaces
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1. Introduction

- Let H be a Hilbert space, let C1,Cs,...,C, be nonempty closed convex subsets of
H and let I be the identity operator on H. Then the problem of image recovery in a
Hilbert space setting may be stated as follow: The original (unknown) image z is known a
priori to belong the intersection Cy of r well-defined sets C;, Cs,. .., C, in a Hilbert space
H; given only the metric projections P; of H onto C; (i =1,2,...,7), recover z by an
iterative scheme.

In 1991, Crombez [4] proved the following: Let T = apl + i, o,T; with T; =
I+ XN(Pi=1I)foralli,0< X <2,a;>0fori=0,1.2,...,r,Y[_,a; =1, where each P,
is the metric projection of H onto C; and Cy = N, C; is nonempty. Then starting from
an arbitrary element x of H, the sequence {7z} converges weakly to an element of Cj.
Later, Kitahara and Takahashi [9] dealt with the problem of image recovery by convex
combinations of sunny nonexpansive retractions in uniformly convex Banach spaces. In
[9], they proved that an operator given by a convex combination of sunny nonexpansive
retractions in a uniformly convex Banach space is asymptotically regular and the set of
fixed points of the operator is equal to the intersection of the ranges of sunny nonexpansive
retractions. Further, using the results, they proved some weak convergence theorems for
the operator which are connected with the problem of image recovery. See also Reich [12].

In this paper, we also deal with the problem of image recovery in Banach spaces
setting and improve some results in [9]. We first prove two weak convergence theorems
for an operator given by a convex combination of nonexpansive retractions in a strictly
convex and reflexive Banach space. In the proofs of the theorems, it is crucial that the
operator is asymptotically regular and the set of fixed points of the operator is equal to
the intersection of ranges of nonexpansive retractions. One of the crucial results is proved
using Edelstein and O’Brien [5] or Ishikawa [7] and the other is obtained using Bruck [1].
We also pay attention to the situation where the constraints are inconsistent, i.e., when
the intersection of the sets C;(/ = 1.2,...r) is empty. Finally we consider the problem of
finding a common fixed point for a finite commuting family of nonexpansive mappings iu
a strictly convex and reflexive Banach space.
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2. Preliminaries

Throughout this paper, we denote by N the set of positive integers and by R the set of
real numbers. Let E be a Banach space and let I be an identity operator on E. Let C be
a nonempty subset of £. Then, a mapping T of C into itself is said to be nonexpansive on
Cif||Ta -~ Ty|| < |lx —y|| for every x,y € C. Let T be a mapping of C into itself. Then
we denote by F'(T') the set of fixed points of T and by R(T') the range of T. A mapping
T of C into itself is said to be asymptotically regular if for every x € C, T"z — T"*ly
converges to 0. Let D be a subset of C' and let P be a mapping of C onto D. Then P is
said to be sunny if

P(Px+t(x— Px))= Px
whenever Pr +t(z — Px) € C for v € C and t > 0. A mapping P of C into itself is said
to be a retraction if P = P2 If a mapping P of C into itself is a retraction, then Pz = 2
for every = € R(P). A subset D of C is said to be a (sunny) nonexpansive retract if thele
exists a (sunny) nonexpansive retraction of C onto D. Let E be a Banach space and let
= {2 € E : ||z|| = 1} be the unit sphere of E. Then, for every ¢ with 0 <z < 2, the
modulus 6(z) of convexity of a Banach space E is defined by

. T+y
se (o) =int {1 = L g cu ol < e - 2 <}

A Banach space FE is said to be uniformly convex if

Op(c)>0
for every ¢ > 0. A Banach space FE is also said to be strictly convex if

T+y

<1
2

for x,y € Sg with @ # y. A uniformly convex Banach space is strictly convex. In a strictly
convex space, we also have that if

lzll =yl = (1 = AN+ Ay for z,y € E and X € (0,1),

then @ = y. A closed convex subset C' of a Banach space E is said to have normal structure
if for each bounded closed convex subset i’ of C' which contains at least two points, there
exists an element of i’ which is not a diametral point of K. It is well-known that a closed
convex subset of a uniformly convex Banach space has normal structure and a compact
convex subset of a Banach space has normal structure. The following result was proved
by Kirk [8].

Theorem 2.1 (Kirk [8]) Let E be a reflezive Banach space and let C be a nonempty
bounded closed convex subset of E which has normal structure. Let T be a nonexpansive
mapping of C' into itself. Then F(T) is nonempty.

Let E be a Banach space and let E* be its dual, that is, the space of all continuous
lincar functionals f on E. Then the norm of E is said to be Gateaux differentiable if

o+t = ]
t—0 t
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exists for each o and y in Sg. It is said to be Fréchet differentiable if for each z in Sg,
this limit is attained uniformly for y in Sg. The following result is a direct consequence
of Bruck [3]: see also [10], [15].

Theorem 2.2 ([9]) Let E be a uniformly convex Banach space with a Fréchet differen-
tiable norm, and let C be a nonempty closed convez subset of E. Let T be an asymptoti-
cally reqular nonezpansive mapping of C into itself with F(T) # ¢. Then, for each x € C,
{T"2} converges weakly to an element of F(T).

A Banach space E is said to satisfy Opial’s condition [11] if z,, — z and 2 # y imply
liminf ||z, — z|| <liminf |z, - yll

where — denotes the weak convergence.

3. Weak convergence theorems

In this section, we prove two weak convergence theorems which are connected with

the problem of image recovery in a Banach space setting. Using Edelstein and O’Brien
[5] or Ishikawa [7], we first prove the following lemma.
Lemma 3.1 Let FE be a Banach space and let C be a nonempty convez subset of E. Let S
be a mapping on C given by S = Bl + i1 5:Si, 0< i< 1, i=0,1,...,7, Tio8i=
1, such that each S; is nonexpansive on C and N._, F (S;) is nonempty. Then, S is
asymptotically reqular on C.

Proof Define a mapping T of C into itself by

Tx =) . _/?i 5 Six for every z € C.

=1

Then T is nonexpansive. Further, since Ni_, F (S;) is nonempty, for any v € C, {T"x}
is bounded. So, from S = ol + (1 — )T and Theorem 1 in [3], we have that S is
asymptotically regular on C. O

The following lemma proved by Bruck [1] is crucial in the proofs of Theorems 3.3 and
3.4. We give the proof for the sake of using it in the proof of Theorem 4.1

Lemma 3.2 Let E be a strictly convex Banach space and let C' be a nonempty closed
convez subset of E. Let C\, Cy, ..., C, be nonexpansive retracts of C such that Ni-; Ci # ¢.
LetT be a mapping on C given by T =371, 0< a; < 1, ¢e=1,2,...,7, i, =
1, such that for each i, T; = (1 = \;)) I + NPy, 0 < \; < 1, where P; is a nonexpansive
retraction of C' onto C;. Then,

F(T)= ﬂ C.

=1
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Proof Let a € C;. Then, since P; is a retraction of C onto C;, there exists y € C with
Py = z. So, we have 7 = Py = P,-'Zy = Px and hence T;x = z. Then z € F(T;). It is
obvious that F(T;) C C;. Therefore, Ni—; C; = Ni=, F'(T3) . So, it is sufficient to show

F(T)c (O C

=1
Let x € F(T). Then, for any y € N, Ci, we have
le =yl = |ITx =Tyl

= !Za'iTi-T"ZaiTiyl
i=] i=1

> ai(Tiz ~ Tiy)
1=1

< Zai | Tz — Tyl
= Zaz”(l— Y+ NPx— (1= X))y — NPy
= Za‘i H(l_Az)(l_y)+/\,(P,l—Ry)|l

= Za,”l—)\)l— y) + i (Piz — )|

IA

Zaz (1 =2 llz = yll + A | Pz = wl])

IA

gai (L= ) [l =yl + Aillz = wll)

.
= Y aillv—yl
i=1

= Je—yl.

So, we have, for each ¢,

v =yl =11Px —yll =1 - ) (x —y) + X (P — 9)l.

From strict convexity of £, we have P.x — y = 1 — y for each i. This implies P;x = 2 for
each i. Therefore, v € N, C;. O

Now we give the first weak convergence theorem for nonexpansive mappings given by
convex combinations of retractions. This is a generalization of [9].

Theorem 3.3 Let E be a uniformly convez Banach space with a Fréchet differentiable
norm and let C' be a nonempty closed convex subset of E. Let Cy,Cs,...,C, be non-
expansive retracts of C such that Ni_, Ci # ¢. Let T be a mapping on C given by



202

T =Y_,aT;,0< <1, i=1...,7 ¥_/'a =1, such that for each i, T; =
(1=X)T+ NP, 0 < A < 1, where P; is a nonexpansive retraction of C onto C;.
Then, F(T) = Ni=, Ci and further, for ecach x € C, {T"a} converges weakly to an ele-
ment of Ni=, Ci.

Proof Since E is uniformly convex, E is strictly convex. So, we have F(T') = N, F(T}) =
i1 Ci by Lemma 3.2. As in the proof of Theorem 6 in [9], T is asymptotically regular

on C. So, it follows from Theorem 2.2 that for each z € C, {T"z} converges weakly to an

element of F (T) =N, C;. O

Further we have following.

Theorem 3.4 Let E be a reflexive and strictly convexr Banach space satisfying Opial’s
condition and let C' be a nonempty closed convex subset of E. Let C1,Cs,...,C, be
nonezpansive retracts of C such that Ni_, C; # ¢. Let T be a mapping on C given
byT =Y 0T, 0< o < 1, 0= 1,....1, ©i_, a; = 1, such that for each i,
T;=(1=-X)I+ MNP, 0< A < 1, where P; is a nonezpansive retraction of C onto
Ci. Then, F(T) = Ni-, C; and further, for each x € C, {T"z} converges weakly to an
element of Ni—; Ci.

Proof Asin the proof of Theorem 3.3, it follows that F (T') = N!_; C; and T is asymp-
totically regular on C. So, we show that for any @ € C, {T"a} converges weakly to an
element of N, C;. Let x € C. Since F(T') is nonempty, {T"z} is bounded. Then, since E
is reflexive, there exists a subsequence {T™a} of {T"a} converging weakly to an element
z of C. To complete the proof of Theorem 3.4, it is sufficient to prove that z € Ni_, C;
and if another subsequence {T™z} of {T"x} converging weakly to an element z’, then
z = 7. First, we prove z € F(T) = Nj_; C;. We assume = # T'z. Since T is asymptotically
regular on C', we also have that {T"*!2} converges weakly to z. Further since E satisfies
Opial’s condition, then we have
)

liminf||T%z — z|| < liminf (“T"‘x - T""“:L'” + HT”"“:L‘ - :l
I3 ) i

= liminf ||T""+1x -z
1

< liminf ”T""“I - T:”
< limiinf T2 - =

It is a contradiction. So, we have z € F(T). Similarly, we have z' € F(T). Since T is
nounexpansive, limits of |72 — z|| and ||T"2 — /|| exist. Now we show z = z’. We assume
= # 2. Then we have

liminf ||T™2 — || < lminf||T" a2 -
1 4
Am || T - |
lim inf [|[T" 2 = ||
< liminf [T — =
J
— 1 Woo
= lm||T"x - z|

liminf || T"2 — z||.
)

l

I
0
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This is a contradiction. So, we have z = /. This completes the proof. O

4. Additional Results

In this section, we first consider the problem of image recovery to the situation where the
constraints are inconsistent. Then, we consider the problem of finding a common fixed
point for a finite commuting family of nonexpansive mappings. Let p be a mean on N,
i.e., a continuous linear functional on I satisfying ||x]| = 1 = ©(1). We know that p is a
mean on N if and only if

inf{a, : n € N} < p(a) < sup{a, : n € N}
for every a = (aj, aa,...) € lo. Occasionally, we use x,(a,) instead of u(a). So, a Banach
limit 4 is a mean p on N satisfying g, (an) = pn(@ns1)-

Theorem 4.1 Let E be a reflexive Banach space and let C be a nonempty closed convex
subset of E which has normal structure. Let Cy,Cs, ..., C, be nonempty bounded nonez-
pansive retracts of C. Let T be a mapping on C given bJT Yol 0< o< 1, 1=
1,...,r, Tioy i = 1, such that for each i, T; = (1= N\)I + NPy, 0< A\ < 1, where
P; is a nonexpansive retraction of C onto C;. Then F (T) is nonempty. Further, assume
that E is strictly convez and (\_; C; = ¢. Then F(T)N C; = ¢ for some i.

Proof Let 2 € C and consider a closed ball Bglz] of center z and radius R containing
all the sets C,Cy,...,C,. Then we have {T"2} C Bg[z] N C. This implies that {T"z} is
bounded. So, define a real valued function g on C' by

9(y) = pa [|[T"2 — y|| for every y € C,
where g is a Banach limit on [ and set

M={:€C il T = 3l = inf o IT"2 = o1}

Then M is nonempty, bounded, closed and convex. Further M is invariant under T; for
more details, see [9], [12]. So, since T is nonexpansive, by Theorem 1, we have a fixed
point of T in M. Assume N;_; C; = ¢ and let 2,y € F(T). Then we have

1—20., \i)z + A\ Pix}

and
v= 3 ar{(1= Ay + AP

So, we obtain, as in the proof of Lemma. 3.2,

le =yl < Zculll— ) (x = y)+ X (Pix — Py)|

IN

Za’i {1 =) llx =yl + N l|P2 — Puyll}

Il =yl

IN
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and hence

|l =yl = |Px = Pyl = (1 = X\i) (2 = y) + \: (Pix — Piy)||
for each i. Since E is strictly convex, we have
QI—yZPi;E—Piy (*)

for each i. Assume F(T) N C; # ¢. Then we have F(T) C C;. In fact, if 2 € F(T) and
y € F(T)N C;, by (%) we have

t—FPr=y—-Py=y-y=0

and hence x € C;. Therefore F(T) C C;. If F(T) N C; # ¢ for every ¢, we have F(T) C
Ni=, Ci. This contradicts N, C; = ¢. Therefore F(T) N C; = ¢ for some ¢. O

Let C and D be nonempty convex subsets of a Banach space E. Then we denote by
ic D the set of = € D such that for any z € C, there exists A € (0,1) with A\e+(1-\)z € D
and by d¢ D the set of z € D such that there exists € C with Az + (1 — \)z € D for all
A€ (0,1).

Theorem 4.2 Let E be a strictly convex and reflezive Banach space and let C be a
nonempty closed conver subset of E which has normal structure. Let Cy,Co,...,C, be
nonempty bounded sunny nonezpansive retracts of C such that for each i, an element of
9cC; is an extreme point of C;. Let T be a mapping on C given by T = 5_, a;T;, 0 <
a; < 1,i=1,...,1, X, a; = 1, such that for each i, T; = (1 — \) I+ NP, 0< \; < 1,
where P; is a sunny nonexpansive retraction of C onto Ci. If N/, C; is empty, then F(T)
consists of one point.

Proof By strict convexity of E and Theorem4.1, F(T) is a nonempty closed convex
subset of C' and F(T)N C; = ¢ for some j. Let u,v € F(T). Then as in the proof of
Theorem 4.1, we have u — Pju = v — Pjuv. So, for any z,y € F(T) and \ € (0,1), we have
Ar+ (1= Ay € F(T) and

1P (Ax + (1 = AN)y) — (APja + (1 = NPyl

[Pi(Ar + (1= N)y) = { A+ (1= Ny} + de + (1 = Ny — (APja + (1 — NPyl
|Pix — 2+ Mz — Pja) + (1= My — Piy)ll

0.

This implies that P; is an one-to-one affine mapping of F(T) onto C ;. Further, for any v €
F(T), Pjz € 0cCj. In fact, if Pja € icC}, there exists A € (0, 1) with Ar+(1-N)Pjz € C|.
Since P; is sunny, we have

Ar+ (1= AP = Pi(Ar + (1 = \)Pa) = P

and hence x = Pjx. This is a contradiction. Let &,y € F(T) with 2 # y. Then Pix # Py
and for any \ € (0,1),

Pj(/\l’ + (l - /\)y) = /\Pj.‘l.' + (1 - /\)PJI/
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This contradicts that Pj(Av+(1—\)y) is an extreme point of Cj. The1ef01e F(T) consists
of one point. O

The following theorem related to the existence of a nonexpansive retract is proved in
Bruck[1,2]. See [9] for the existence of a sunny nonexpansive retract.

Theorem 4.3 Let E be a reflerive Banach space. Let C be a nonempty closed convex
subset of E and let T be a nonezpansive mapping of C into itself with F(T) # o. If T has
a fized point in every nonempty bounded closed convex set that T leaves invariant, then
F(T) is a nonexpansive retract of C.

Using Theorem4.3, we prove the following.

Theorem 4.4 Let E be a uniformly convexr Banach space with a Fréchet differentiable
norm and let C be a nonempty closed convex subset of E. Let {S1,Ss,...,S.} be a com-
muting family of nonerpansive mappings on C with F(S;) # ¢, 1 =1,2,...,7. Let T be
a mapping on C given by T =Y _aT;, 0< ;< 1,i=1,...,r, X_,a; =1, such
that for each i, T; = (1 — \) I+ NP, 0 < A\; < 1, where P; is a nonezpansive retraction
of C onto F(S;). Then, F(T) = Ni-, F(S:). Further, for each z € C, {T"z} converges
weakly to an element of Ni—, F(S;).

Proof Since E is uniformly convex, it follows from Theorem 2.1 that for each i, S; has
a fixed point in every nonempty bounded closed convex set that T leaves invariant. So,
by Theorem 4.3, F(S;) is a nonexpansive retract of C for each ¢. However, as in the proof
of Theorem 2 in [6], we show the existence of a nonexpansive retraction of C onto F/(S;).
Let 2 € C and let x be a Banach limit on l. Then, for each S;, define a function g of E*
into R by P

g(a™) = p, < Sta,2” > for every 2™ € E™.

Then g is linear and continuous. So, we have a unique element zy € E such that
L < SPa, 2" >=< 29,27 > for every 2™ € E”.

Thus, putting ¢y = P for every x € C, by [6] P; is a nonexpansive retraction of C
onto F(S;). Since E is strictly convex, F(S;) is nonempty, closed and convex. So, by
mathematical induction, we have that Ni_; F(S;) is nonempty. See, for more details, [9].
Therefore, by Lemma 3.2 and Theorem 3.3, we have that F(T') = N, F(S;) and for each
x € C, {T"a} converges weakly to an element of Ni_, F(S;). O

Theorem 4.5 Let E be o reflezive and strictly convex Banach space which satisfies
Opial’s condition and let C' be a nonempty closed conver subset of E. Let {Sy,S4,...,S,}
be a commuting family of nonexpansive mappings on C such that F(S;) # o fOI =
1,2,...,r. Let T be a mapping on C given by T = ¥i_,aT;, 0 < o3 < 1, 1 =
1,...,7', Z:l a; = 1, such that for each i, T; = (1 = \)) I + \;P;, 0 < A\, < 1, where P;
is a nonexpansive retraction of C onto F(S;). Then, F(T) = Ni=; F(S:) and further, for
each x € C, {T"x} converges weakly to an element of Niz, F(S;).

Proof Let D e a nonempty bounded closed convex subset of C' with S;D C D. Then
if Uy = NI+ (1 = ))S,; for some A € (0,1), U; is nonexpansive and asymptotically regular.
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Further, F(L;) = F(S;). So, as in the proof of Theorem 3.4, we have that F(U;) = F(S:)
is nonempty. Then, by Theorem 4.3, F(S;) is a nonexpansive retract of C' for each i.
Since E is strictly convex, F(S;) is convex. So, as in the proof of Theorem 4.4, we have
that N, F(S;) is nonempty. By Lemma 3.2, we also have F(T') = N/, F(S;). Further,
by Theorem 3.4, for each v € C, {T"x} converges weakly to an element of i_, F(S;). O

=1
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