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1. Introduction
Let X be a compact Hausdorff space and let B(X)
denote the Banach lattice of all real-valued bounded
functions on X with the supremum norm l+ll. C(X) denotes
" the closed sublattice of B(X) consisting of all
real—vaiued continuous functions on X. Let p > 0 and let
C'be a subset of C(X) separating the points of X.
For a bounded linear operator L of C(X) into B(X)
and a function g € G, we define
2P (Lig) () = LUlg - 9(1,1P) (¥ (v € X),
"where lX is the unit function defined by 1X(t) = 1 for

1

all t € X. Also, L is said to be unital if L(lX) e
Let {La: o € D} be a net of positive linear operators of
C(X) 1into B(X) and put

u;p)(g) = u(p)(La;g) (¢ € D, g € G),

whose norm 1s called the p-th moment for La with respect

to g.
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In [13] we proved the following convergence theorems,
which may play an important role in the study of
saturation property for {La}:

Theorem A. If 1immﬂuép)(g)u = 0 for some p > 0 and
for all g € G, and if there exists a strictly positive
function u € C(X) such that lim IL (u) - ull = 0,
then 1imaHLa(f) - fll = 0 for every f € C(X).

Theorem B. Let T be a unital positive projection
operator on C(X) with T #I (identity operator), such
that LT = T for all o € D. If lim ML (u'P)(Tig))1 = 0
for some p > 0 and for all g € G,
then lim IL (f) - T(HHl =0 for every f € C(X).

These results establish a generalized Korovkin-type
convergece theorem, and the Korovkin-type approximation
theory is extensively treated in the books of Altomare
and Campiti [1], Donner [3] and Keimel and Roth [5].

Now, in [14] we gave a quantitative version of
Theorems A and B by using suitable moduli of continuity
of f under certain requirements motivated by the work of
the author [12], whose results can be improved by means
of the higher order moments in [15].

The purpose of this paper is to refine these results
for approximation of functions having certain smoothness

properties by nets of unital positive linear operators
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of C(X) into B(X). Actually, the results of the author
[10, 11] can be improved by means of the higher order
moments. Concrete examples of approximating operators
can be provided by the multidimensional Bernstein
operators. Further related results and applications can

be also found in [16].

2. Results

Let X be a compact convex subset of a real locally
convex Hausdorff vector space E and let G = A(X) denote
the space of all real-valued continuous affine functions
on X. If f € B(X), 8§ =2 0 and if {gl, Ggr **° gm} is a

finite subset of G, then we define

w(f;gl,"-,gm,é) = sup{|f(z) - f(y)l: z,y € X, d(z,y) < &8},
where
dlz,y) = max{lgi(x) - gi(y)!: i =1, 2, -+, m}.

This quantity is called the modulus of continuity of f
with respect to 91' 92, ce., gm.
Obviously, w(f;gl,‘-‘,gm,') is a monotone increasing
function on [0, «), and there holds
(1) 0(Fig7, 7 *,9,,88) < (1 + B)a(figy, **.9,.5)
for all €, 8 =2 0 (cf. [10; Lemma 11]).

A function f € C(X) is said to have the property

(MVP) if there exist a finite subset {fl’ fz, s, fr}
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of C(X) and a finite subset {hl, hz, ., hr} of G
such that
T
(2) flx) - f(y) = 2 fi(gi)(hi(x) - hi(y))

i=1
for all z, ¥ € X, where each point &i is an internal

point of the segment joining  and ¥. In this event, we
sometimes say that f has the property (MVP) associated
with the system
(3) {fl’ fz, s, fr; hl’ h2’ e, hr}'

Remark 1. Let £ = R, the r-dimensional Euclidean

space equipped with the metric

d(z,y) = max{lmi - y£|; i=1,2, +++, 1}

= o o o = o s r
for z = (z,, » T Y (¥, » ¥,) € R and let
e., 1 =1, 2, +++, r, be the i-th coordinate functions

i
on X defined by
ei(x) =z, (z = (:cl, Losr xr) € X).
Then we have
o(fie),  +.e..8) = o(f,8),
which is the usual modulus of continuity of f.
Furthermore, every continuously differentiable function

f on X has the property (MVP) associated with the system

{fl. f2’ e, fr; €1, €9s 7, er}, where
Fz) = 2 2y (= (z,.ccr.z) € Xoi=1,c00,7)
i C 107" Tp , »t

is the i-th partial derivative of f.
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From now on, we suppose that f € C(X) has the
property (MVP) associated with the system (3).

Lemma 1. Let ¢ be a positive linear functional on

C(X) with w(lx) =1 and ¥ € X. Let {91, 9pr s gm}
be a finite subset of G, p > 1 and 8 > 0. Then
r
(4) fo(f) - F(y)l < 2 F, () ieth) - h (9]
i=1
+ (1 . s'l(w(w(‘.y)))l/pj
r 1-1/p
_ p/(p-1) . ..
x igl(w(lhi B ()11 )" el gy g8
where
m
(5) o(z,9) = 3 lg,(8) - g, (17  (z, ¥y € X).
i=1

Proof. For all z € X, we define

r
F(z) = f() - F(¥) - 37,0 () - ().

i=1
Then we have

r
(6) lo(f) - F()1 < 3 1F. (9 11eh) - h (1)1 + lo(F)I.
i=1

Let 1/p + 1/q = 1. Since by (1), (2) and (5),

r
IF(z)l < 2 1 F,(8,) - F. () lTh (2) - R (3)]

i=1
r
—l . o o o -—
< 3L+ 8T ye gy gy ) (@) - k()]
r
< 3+ 87 N@ ) Ik (@) - h (W) l0(f gy, 0, 9,,8)

o
=
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r
< S {1+ s YwyPlin (2) - h. (W 16(F.59,,,9..8),
iz1 i i 1’71 m

applying ¢ to both sides of this inequality with respect

to the variable z and using Holder's inequality, we get

r
lo(h11 < 3 ((otin, - k(1,199
i=1

c 5 @ NP (eCin, - h (1,199
X olf 591, 9y, 8),
which together with (6) implies (4).
Let {La: o € D} be a net of unital positive linear
operators of C(X) into B(X). If f € B(X) and g € G, then
we define

o, (£,9) = inf{(1 + g 1y palP/ (P71 gy 1-1/P

1/p
): p>1, € > 0,

n
. (p) H
X m(f,gl, I 8"£=lua (91)

gyre9, € G, “iglu;p)(gi)“ >0, m=1,2,--+}.

Using this quantity, we are now in a position to
recast Theorem A in a quantitative form with the rate of
convergence of La(f) for a function f having the
property (MVP) associated with the system (3).

Theorem 1. For all o € D,

r r
(7) L, (f)- fI < .; WF WL Chy) = R D+ .§

o (f-’h-)'
i=1 i=1 @t

Proof. Making use of Lemma 1 with ¢(-) = La(})(y) and
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taking the supremum over all ¥y € X, we have

r
L, (f) - fll < zlufi"“La(hi) - Al

1=
. (1 .8 1“ § NEERY

r
x 3 nuép/(p‘l)’(hi)ul’l/p
i=1

1/19)

m(fizgl.---,gm,a).

Therefore, putting & = EHZm lu(p)(g ) /o 0 in the
right hand side of the above inequality, we establish
the desired estimate (7).

Let T be as in Theorem B. If f € B(X) and g € G, then
we define

0y (T3£,9) = 1nf((1 + e HyuL (wP/ (P71 (;gy)y1-1/P

1/P)

w(fzgl,"'.gm, 8“ E L, (wP(r:g. ))“ p>1, € >0,

9,9, €G, “.ElLa(“(p)(T;gi))" >0, m=1,2, -}

Concerning the degree of convergence in Theorem B,

we have the following:

Theorem 2., For all o € D,

r
(8) IL, () - T(HI < iglufi""La(lT(hi) - R DI
r
+ _Z oo (T5f,h;).
i=1

Proof. Applying Lemma 1 to ¢(+) = T(-)(y) with any

fixed ¥ € X, we get



(9) I7(f) - fl < 2 Hf HIT(h ) - h |
i=1

_ 1/p
+ (l + 8 1( S uPl(r;g. )) )
i=1 v
r 1-1/p
(p/(p-1)) (7. ) . e
x igl(u (T;h,) W(F 3Gy G0 8).
Now let ¢ be a positive linear functional on C(X) with

¥(1,) = 1. Applying ¥ to both sides of (9) and using
X

Holder's inequality, we obtain

W (T(f)) - ¥(N)I < 2 Hf Hw(IT(h ) - h 1)
i=1

N 6‘1[ 2 ¢(u‘p’(r g )))1/p )

r
(p/(p-1)) . e
x igl(w(u in) TPt i g8
Take ¢(-) = La(-)(x), where z is an arbitrary fixed

point of X. Then, since LaT = T, we have

r
IT(f) (z) - La(f)(m)] < igl“fi“La(lr(hi) - kD (2)

c (e 5_1('§1La(u(p)(f;gi))(m))l/p )
b

r
x 3 (L, PP (1m0 ()

i=1
which implies

1-1/p
) m(fi;91,~~-,9m.5),

IL, (f) - ranii < 2 s, WL, (ITCh,) - Ry, D

i=1
+ (1 + 5_1“£§1La(p(p)(fzgi))“1/p )

x

r
L PP (i TP s sy g,.8).
1=

1

71



72

Thus putting & = el3h_ L, (n'P (7:9,))1M? > 0 in the
right hand side of the above inequality, we establish
the desired estimate (8).

In the rest of this section it is moreover assumed
that

T(g*) =g* (9eG, i=1,2, -+, k - 1),
where k is an even positive integer. In addition,
we suppose that each La maps C(X) into itself and
Le(d) = o + £ (r(g") - g

for all « € D and all g € G, where {Ea: ® € D} is a net
of real numbers with 0 < ga < 1. For f € B(X) and 8§ > 0,

we define

Q(7,8) = inf{(1 + g 1)
<ofrioy e rage 3o 3 it - ] )i e s 0
P
gy 8y, € G, "'gl(T(gﬁ) - g%)" >0, m=1, 2, «+-}.
i

Using this quantity, we have the following result
‘which is more convenient for later applications.

Corollary 1. Let &n : o0 € D} be a net of positive

n
integers and let Laa denote the na—iteration of La for

each o« € D. Then for all « € D, we have:

(10) [ - 7] < 3080 mac, )
i

1



r
< Sy mpau, e,
i=1

where

NI REACS 1))( )“1 17k

and

O = (1 i [1 } ga)na )1/’('; /k
n

an e - 1] < T @mnpalr, (- g) ).

i=1
where

Vék)(T;hi) = “L Ot( (k/ (k- l))(T - ))“1 1/k

Indeed, by induction on the degree of iteration,
n

it can be verified that Laa T =T and
n X
LR = T ¢ - gy %@k - T(ek)
for all o« € D and all g € G. Thus (10) and (11) follow

from Theorems 1 and 2, respectively.

3. Applications
Let N denote the set of all non-nagative integers.

Let {aa,n: o € D, n € N} be a family of non-negative

real numbers with §:=0 Qy n = 1 for each oo € D, and let

{Ln: n € N} be a sequence of unital positive linear

operators of C(X) into B(X). For any f € C(X), we define

73
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[++]

To() = 3 ag Ly (@D,

which converges in B(X). Let {W(t): t 2 0} be a family of
unital positive linear operators of C(X) into B(X) such
that for each f € C(X), the mapping t |— W(t)(f) is
strongly continuous on [0, «). Let ¥ be a non-negative
continuous function on [0, «) and {va: o € D} a net of
positive real numbers with 1imava = 0 or limuva = + o,
For any f € C(X), we define

1

U

v(x
C () = [ wwanmnat e
0

and

«©

R (£) = v, fo exp(-v £IW(¥(1)) (f)dt  (« € D),

which exist in B(X).

All the operators given above are unital positive
linear operators of C(X) into B(X) and our general
results obtained in the preceding section are applicable
to them. In particular, for applications of Corollary 1
it is convenient to make the following definition: Let §
be a positive projection operator of C(X) onto a closed
linear subspace of €C(X) containing A(X), {Su: o € D}

a net of unital positive linear operators of C(X) into
itself and {ma: o € D} a net of non-negative real

numbers. We say that {Sa} is of type [S; xa] if
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- 2, _ 2 2, 2
SaS-S and Sa(g)—g +xa(5(9) g”)

for all o« € D and all g € A(X).

Now we consider the case where X is a compact convex
subset of £ = R”, and let C(l)(X) denote the space of
all continuously differentiable functions on X. Let
{La: o € D} be a net of unital positive linear operators

. T (2) _ ' -
of C(X) into B(X). If “2i=1“a (ei)" = 0, then La = I
(cf. [10; Lamma 2], [12; Lemma 1]). Thus we always
. r (2)
consider the case where “2i=1“a (ei)ﬂ > 0 for each
o € D. Then for all f € B(X), oo € D and

for 4 =1, 2, ++--, r, we have

. -1 (2) 1/2
wa(f,ej) < inf{(1 + ¢ )Hua (ej)ﬂ

12 ) g > 0}.

r
xa(f. g] 3 ul® e
: i=1
Therefore, in view of Remark 1, we extend the results of
Censor [2] (cf. [7]) and give a quantitatiVe versidn of
Korovkin type convergence theorem due to Karlin and
Ziegler [4] for all functions in C(lzX).
In particular, we take X = Ir, the unit r-cube, i.e.,
- = o e o r' i = ¢ o0
Hr {z (xl. ,xr) €ER:0x r; < 1, < 1, , T},
and let F be the closed linear subspace of C(Hr) spanned
by the set
1 M e

1 €y er : mi € {0,1}, i =1, 2, -+, T}.
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Let {Bn: n = 1} be the sequence of the Bernstein

operators on C(Ir)’ given by

n
B (f)(x) = g flmy/n, -+ ,m_/n)

m

n
2

0 mr 0

g~ =

n.
n i n - M,
( m.) T, (1 - mi) i
1 i

i
for f € C(Hr) and z = (zl,"~,$r) € Hr (see, e.g., [86]).
Then it can be verified that B1 is a positive projection
operator of C(Hr) onto F and that {Bn} is of type
[Bl;l/n]. Consequently, if Lo = I, L= Bn’ n 2 1, then

n
{Ta} is of type [Bl; >

e ]

n=1aa,n/n]’ and so Corollary 1 can

be applied to these operators. In particular, concerning
the degree of approximation by iterations of the

Bernstein operators we have the following estimates: Let
{kn: n = 1} be a sequence of positive integers. Then for

all f € C(l)(ﬂr) and all n > 1,

I e (R S I
< Santca e s ha(r (- (1- ) emz): o5 0

r
< 5-/k7n 3 inf{(1 + 8_1)w(fi, /K /n JF/2): € > 0},
i=1

and
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(13) ||B:n(f) -8 < (1 - ;)k”/z
x § inf{(1 + 8-1)w(fi,[1 - —%—)kn/zs/F/Z)t g > 0},

i=1
where fi stands for the i-th partial derivative of f.

Taking € = 2//7r, (12) and (13) yield

a0 gt - o sl G0 - (- )
K1/
< 2ol (- (- 3)M)
< 30+ BT 3 eur
P
~and
(15) "Bin(f) - s ) < F( - Efx - —%—]k“/z

,,.
2
< Sl (- )7,
respectively. In particular, if r = 1, then (14) and
(15) reduce to
ot - o] < 3 - (- )
ol - (- ) < 2 e T,

which is given in [6; Theorem 1.6.2] for {kn} = {1} and

a0 - o] < S - ) (- 1)),

respectively (cf. [7], [8]1, [9]).

Statements analogous to the above—mentioned»results
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may be derived for the case where Bn' n = 1, are the

Bernstein operators on C(Ar) with the standard r-simplex

= = LI ) r'
Ar = {z (xl. Ty , mr) € R":
$i =0, 41 =1, 2, <+, 1, xl + xz + e 4 xr < 1},
given by
B (f)(z) = > f(m./n,-++,m_/n)
n m, 20, m,+--+m_<n 1 r
i ' 1 r
% n!
v ! - - - e e s -
ml!mz! mr.(n my m, mr)!
n n m_
1 "2 r o e - N-M,-My—***—M,
X Tz, xr (1 T, z, mr) 1 ™2 T
for f € C(Ar) and ¢ = ($1,°'~, xr) € Ar (see, e.g.,[6]1).

These can be obtained in the very general setting, and

we refer to [16] for the details.
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