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14.1 Introduction

The various general computer algebra systems such as REDUCE, Mathematica and Maple

have been released. At present they are applied to many fields in science and $\mathrm{e}\mathrm{n}\mathrm{g}\mathrm{i}\mathrm{n}\mathrm{e}\mathrm{e}\mathrm{r}\mathrm{i}\mathrm{I}$) $\mathrm{g}$ . $\mathrm{W}\mathrm{h}\mathrm{t}^{3}11$

they are applied to the complex problems, the ability of conventional computer algebra $\mathrm{s}\mathrm{y}_{\mathrm{S}\iota \mathrm{e}}\mathrm{n}1$ ,

specially computing speed is considered to be not enough. One idea for improving the speed, is

to parallelize the computer algebra functions.

In the last few years, there exist few $\mathrm{l}\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{a}\mathrm{t}\mathrm{u}\mathrm{r}\mathrm{e}\mathrm{S}[1]$ which studied the parallel computer algebra

from view point of parallel $\mathrm{a}_{0}\mathrm{r}\mathrm{i}\iota \mathrm{h}\mathrm{I}\mathrm{n}$ and parallel processing. However almost studies realized tlle

distributed system by connecting many conventional computer algebra systems with the network.

This paper deals with the massively parallel computer algebra $\mathrm{s}\mathrm{y}_{\mathrm{S}\iota \mathrm{e}}\mathrm{n}1$ by using SIMD parallel

computer. In this study, the parallel computer algebra system is considered consistently through

the parallel computer architecture, the parallel symbolic language and the parallel algorithms.

And the original massively parallel computer algebra system is realized based on SIMD parallel

computer and parallel LISP which are implemented by our group.
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The conventional general systems cover many functions such as integration, differentiation of

functions, matrix operation and so on. In this study, at first the massively parallel functions
are developed for determinant of matrix of which element consists of multi-variable polynomial.

And it is extended to the functions of inverse matrix. The realized functions are evaluated in
computing speed, comparing with sequential calculation in each problem.

14.2 SIMD parallel computer and parallel
LISP

The parallel computer adopted here, is SM-1 which is designed and $\mathrm{f}\mathrm{a}\mathrm{b}_{1}$icated by one of outhers,

YUASA. And the parallel LISP is TUPLE (Toyohashi University Parallel Lisp Enviroment). This

chapter explains the outline of $\mathrm{S}$ M-l and TUPLE.

SM-1 is designed based on SIMD architecture. It has the front end processor $(\mathrm{F}\mathrm{E})$ and 1024
number of the processing element $(\mathrm{P}\mathrm{E})$ . The single instructions are broadcasted from FE to PE’s

and PE’s execute them parallelly with different data.

The SPARCStaion is used as the $\mathrm{F}\mathrm{E}$ . 1024 number of PE are allocated as (32*32) 2-dimensional
mesh array. FE and PE array are connected by the coprocessor interface of SPARCStation.

Each PE has an 8-bit ALU, 20 bytes of resister file, a 64 bit shift register, 160 bytes of RAM and

1 Mbyte of off-chip DRAM. As SM-1 has 1 Mbyte huge local memories, it is enabled to develop
here the massively parallel computer algebra. Each PE has the number (processor number) from
$0$ to 1023 in register pn for identifing $\mathrm{P}\mathrm{E}$ .

Our system is written by TUPLE, which is $\mathrm{t}1_{1}\mathrm{e}$ extended parallel Common LISP for the SIMD

computer. The features of TUPLE are executing functions parallelly and programming as same

as conventional Common Lisp. TUPLE consists of FE functions and PE functions. The FE

functions have a full-set Common Lisp and run on $\mathrm{F}\mathrm{E}$ . The PE functions, running on each $\mathrm{P}\mathrm{E}$ ,
$1_{1_{\dot{C}}\iota}\mathrm{V}\mathrm{e}$ a subset of Common Lisp and are similar to FE ones.

TUPLE has also local communication function, connecting each PE to its four nearest neighbors

and global one, communicating with assigned PE’s. The local communication can save nluch

time comparing with the global one. In chapter 5, the communication time will be big problems.

The readers who is interesting in SM-1 architecture and $/\mathrm{o}\mathrm{r}$ TUPLE, can refer the $\mathrm{b}_{\mathrm{o}\mathrm{O}}\mathrm{k}[2]$ .

14.3 Massively Parallel Algorithms

In this chapter, the massively parallel algorithms for SIMD parallel computer SM-1 are ex-
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plained. They are designed fundamentally based on the concept models of SIMD parallel com-

puter-PRAM- (Parallel Random Access Machine).

14.3.1 Determinant Algorithms
Here two parallel algorithms for calculating the determinant ofmatrix of which elements consiste

of mutivariable $\mathrm{p}$olynomials, are explained. First, Laplace method is adopted for the massively

parallel algorithm. Hereafter it is called as DL algorithm. It is wellknown that the deterlninant

is expanded as

$|A_{n}|= \sum_{l=1}^{n}(-1)k+^{\iota}|\mathrm{a}_{k}lA_{n-1}|k\iota$ (1)

where $\mathrm{n}$ is matrix size, $\mathrm{a}_{kl}$ is $(k, l) \mathrm{e}\mathrm{l}\mathrm{e}\mathrm{m}\mathrm{c}\mathrm{n}\mathrm{t},A^{k}\mathfrak{n}\int_{-}1$ means (n-1) dimensional square matrix which

is obtained by removing k-th column and l-th row. By using this method, the calculation of

$\mathrm{n}$ -d(imensional) matrix determinant is divided into 11 times calculations of $(\mathrm{n}arrow 1)- \mathrm{d}$ lllatrix deter-

minallt. This expansion as (1) is named as level 1 division. As SM-1 has nlany PE’s, the division

are continued. At level 2, Laplace method is applied again to $(\mathrm{n}- 1)- \mathrm{d}$ matrix determinant. Con-

sequently n-d matrix determinant is divided into $\mathrm{n}^{*}(\mathrm{n}- 1)$ number of $(\mathrm{n}- 2)- \mathrm{d}$ matrix determinants.

The process is continued and finally it goes to $\mathrm{n}!$ number of scaler matrix ones at level (n-1).

This is called as the topdown process. After the topdown process, the unification (bottomup)

process is executed, following up inversely the topdown process. That is, (n-l)! number of 2-d

$\mathrm{n}\mathrm{l}\mathrm{a}\mathrm{t}_{\Gamma}\mathrm{i}\mathrm{X}$ determinants are calculated by using the level n-l results. And successively this process

are continued and finally $|A_{n}|$ are obtaincd.

This algorithm consists of two processes, division of matrix (topdown) and unification of result s

(bottomup). The above $\mathrm{p}\mathrm{r}o$cesses are performed parallelly with PE’s as much as possible in ordcr

to derive the ability of SM-1. As the SIMD parallel computer SM-1 has the limitation such that

each PE executes the same process (Single Instruction) with different data (Multi Data), elaborate

processes are necessary to perform the above algorithms on SM-1. It is carefully designed how

to $\mathrm{m}\mathrm{a}\mathrm{l}<\mathrm{e}$ the different matrices in the right hand of (1) and unify t,he results by using same

instruction with only key of processor number pn on each $\mathrm{P}\mathrm{E}$ . First tlle topdown process is

explained as follows. The $\mathrm{n}!$ number of PE are prepared because the parallel computation of n-d

matrix determinant is divided into $\mathrm{n}!$ parallel computations at final level (n-1). At level $0$ , all

data of are broadcasted from FE to $\mathrm{n}!$ PE’s with the network between FE and PE’s. At level

$1,|A_{n}|$ is expanded with respect to 1 column with (1). At this level, (n-l)! number of $\mathrm{P}\mathrm{E}$ , which

have pn number from 1 to (n-l)!, obtain the same $(\mathrm{n}- 1)- \mathrm{d}$ matrix $A_{n-1}^{11}$ . And (n-l)! number of PE
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from $(\mathrm{n}- 1)!*\mathrm{i}+1$ to $(\mathrm{n}- 1)!^{*}(\mathrm{j}+1)$ do similarly $A_{n}^{1\iota_{-1}}.$ PE’s which make same matrix, are considered

to belong to the same group. Then $\mathrm{n}!$ PE’s are divided into $\mathrm{n}$ groups. The new number from 1

to (n-l)!, called as GroupNum, is assigned to each $\mathrm{P}\mathrm{E}$ , belonging to same group. The $\mathrm{P}\mathrm{E}$ , which

has GroupNum 1, is called as a parent PE and the pn number of a parent PE is described as

LPN in the following. The parent PE will become the root of calculation of $|A_{n-1}^{1l}|$ . At level $\mathrm{i}$ ,
$\mathrm{n}!$ PE’s are divided into $\mathrm{n}!/(\mathrm{n}- \mathrm{i})!$ groups and GroupNum of each group become 1 though (n-i)!.

Also the PE of $\mathrm{G}\mathrm{r}\mathrm{o}\mathrm{u}_{\mathrm{P}}\mathrm{N}\mathrm{u}\mathrm{m}1$ is a parent PE and the root of $|A_{n-1}|$ . This process is continued

recusively and at level n-l, $\mathrm{n}!/2$ groups are obtained. In each group, 2-d matrix is divided into

scalar matrices The topdown process is finished and the bottomup process is began as follows.

At level n-l, each PE has the scaler matrix. As the determinant of scaler one is equal to the

clement, each PE calculates $(-1)^{1+l}\mathrm{o}_{11}\mathrm{a}2’$. or $(-1)^{1+2}\mathrm{a}_{1212}\mathrm{o}$ and sends it to a parent PE of the

group to which the PE belongs at level n-2 with the global communication. The $\mathrm{c}\mathrm{o}\mathrm{l}\mathrm{n}\mathrm{m}\mathrm{u}\mathrm{n}\mathrm{i}_{\mathrm{C}_{\dot{C}}\mathrm{t}}\iota_{\mathrm{e}}\mathrm{d}$

PE is determined with data of GroupNum and LPN. The parent PE $1$) $\mathrm{e}\mathrm{r}\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{m}\mathrm{s}$ the addition of

scnt results and obtains $|A_{2}|$ . Continuing these processes, it reaches the level 1. The pn number

1 becomes the parent PE at level 1 and $|A_{\mathfrak{n}}|$ is obtained.

$\mathrm{H}1$ schematic diagram of massively parallel determinant computation with DL algorithm

Fig. 1 shows schematically the above topdown and bottomup processes. Solid and dashed

arrows mean topdown and bottomup processes respectively. The circulus are PE’s and their upper

, middle and lower numbers are pn numbers, GroupNums and the renloved columns numbers

respectively. As the bottomup process is going up, it is necessary to add more polynomials. The
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addition is not executed sequentially with one $\mathrm{P}\mathrm{E}$ . it is done by using mally PE’s. Each PE

adds two polynomials and the results are unified successively with addition of two polynomials as

binary tree. That is because the addition of polynomials consists of processing complex lists and

takes much time. If the processing is done parallelly, much time can be saved. Next the another

parallel algorithm for determinant is considered in the follows. The definition of determinant is

glven as

$|A_{n}|= \sum_{\mathrm{c}(j1,j2j_{n})},\cdots.e(j1,j2, \cdots,j_{n})aaj_{1}a2j2\ldots a_{nj}n$
(2)

The parallel algorithm is designed based on the above definition and called as DD algorithm.

It also consists of the topdown and the bottomup processes. Because the right hand of (4) has $\mathrm{n}!$

terms, $\mathrm{n}!$ PE’s are prepared. First, all data of are broadcasted from FE to $\mathrm{n}!$ PE’s. The topdown

process begins. In each $\mathrm{P}\mathrm{E}$ , the permutation $(j_{1},j_{2}, \cdots , j_{n})$ is generated with the PE $\mathrm{n}\mathrm{u}\mathrm{m}\mathrm{l}\supset \mathrm{e}\mathrm{r}$ pn

as a key and pick up the elements as $a_{1j_{1},2j_{2}}a,$ $\cdots$ , $|a_{\mathfrak{n}j_{n}}$ from $A_{n}$ . Subsequently multiplication

of $\mathrm{n}\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{m}\mathrm{S},e(j1,j2, \cdots, j_{n})a1j1a_{2}j2\ldots a_{nj_{n}}$ is performed parallelly and $\mathrm{n}!$ terms are obtained

simultaneously. The bottomup processes are adding results which all PE’s have. Because this

bottomup process consists of only addition, the shufulexchange connection is applicable in this

algorithm. It is implemented based on so-called reduction function in SIMD parallel computer

which can use shuffie-exchange network and consequently save the PE’s communication time.

$\mathrm{H}2$ Massively parallel determinant computation with DD algorithm

Fig.2 shows schematically the DD algorithm.
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14.3.2 Inverse algorithms
The calculation of inverse matrix of multivariable polynomial is mentioned. Usually, Gaussian

method is applied to inverse matrix in numerical computation. Considering here the parallelizing,

inverse matrix with the adjoint matrix is adopted, given as

$A_{7\mathrm{l}}^{-1}= \frac{odjA_{n}}{detA_{n}}$ (3)

(3) needs determinant calculations. Then they are calculated by applying the above parallcl

calculations based on DL or DD algorithms. In (3) the numerator and denominator $1$) $\mathrm{o}\mathrm{l}\mathrm{y}_{\mathrm{U}\mathrm{o}}\mathrm{n}\mathrm{l}\mathrm{i}\mathrm{a}\mathrm{l}\mathrm{S}$

have common factors occasionally. So the greatest common divisor(GCD) of both polynonlials

lntlst be calculated with Euclidean method. It consists of polynomial division. In $\mathrm{o}\mathrm{U}\mathrm{l}$ syst $\mathrm{C}\ln$

pseudo-division of polynomials is $\dot{c}\iota_{1^{)}}1^{)}1\mathrm{i}\mathrm{e}\mathrm{d}$ . $\mathrm{T}1_{1}\mathrm{e}\mathrm{n}$ numbcr of PE calculate parallelly the GCD of

each elelnent of inverse matrix.

14.4 Implementation

The parallel algorithms mentioned in chapter 3 are implemented on SM-1 as follows. The

computer algebra system is generally implemented as list proccssing. The canonical expression
$\mathrm{t}\iota_{\mathrm{n}1}111\iota \mathrm{i}\mathrm{v}\mathrm{a}\mathrm{r}\mathrm{i}\mathrm{a}\mathrm{b}\mathrm{e}1$ polynomial in our s.vstelll is represent by the list structure, given as

$(^{*}\mathrm{p}_{01_{v}}\mathrm{V}^{*\mathrm{v}}\mathrm{A}\mathrm{R}(\mathrm{E}1,\mathrm{c}1)(\mathrm{E}2,\mathrm{c}2)\ldots.(\mathrm{E}\mathrm{n},\mathrm{C}\mathrm{n}))$ ,

where poly is a tag for recognizing a polynomial, VAR means the maine variable of polynomial.

Ei ( $\mathrm{E}1_{i}\mathrm{E}2_{i\cdots\cdot i}$ En) is the exponent of power product and Ci is coefficient of power. The variable

has the lexicographical ordering as $\mathrm{A}_{i}\mathrm{B}_{i\cdots\cdot i^{\mathrm{Z}}}$ . Our parallel system is $\mathrm{i}_{\mathrm{I}\mathrm{n}}\mathrm{p}\mathrm{l}\mathrm{e}\mathrm{m}\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{e}\mathrm{d}$ by using
$1)\mathrm{a}\mathrm{r}\mathrm{a}\mathrm{l}\mathrm{l}\mathrm{e}\mathrm{l}$ lisp -TUPLE-, based on the above list data structure. The various problems must be

considered in programming the above parallel algorithms with TUPLE. Here two problems $\mathrm{i}.\mathrm{e}$ .
$\mathrm{t}1_{1}\mathrm{e}_{1)}\mathrm{a}\mathrm{r}\mathrm{a}11\mathrm{e}\mathrm{l}\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{g}_{\mathrm{T}}\mathrm{a}\mathrm{m}\mathrm{m}\mathrm{i}\mathrm{n}\mathrm{g}$technique and the limitation of the number of PE are explained.

14.4.1 Technique of parallel programming
The parallel lisp programming for SIMD parallel computer must be carefully implelnented

because the active PE’s and inactive PE’s exist mixeturely in parallel programming. It is seemed

that all PE’s work simultaneously in SIMD computer. But in practice, the situation that some
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PE’s are active and other PE’s are inactive, occurs depending on the programming. Then the

parallel programm\’ing must be written for avoiding the situation as much as possible.

14.4.2 Limitation of PE number
The parallel algorithm in chapter 3 are designed without considering the limitation of PE

number. However SM-1 has 1024 PE’s actually. Then it can be applied directly to the small size

problem,but not to huge size one. If the necessary PE number is over 1024 at level $\mathrm{i}$ , the division

process is stopped at level i-l. That is , if the inequality

$\frac{n!}{i!}<1024<\frac{n!}{(i-1)!}$ (4)

is satisfied at level $\mathrm{i}$ , each PE calculates scquentially the determinant of $(\mathrm{n}- \mathrm{i})- \mathrm{d}$ matrix. And

the bottomup process is started. Ill the case of $\mathrm{n}_{\mathrm{i}^{7}},$
$\mathrm{t}\}_{1\mathrm{e}}$ division process can be performed to level

(n-1) and the scaler matrix can be obtained. But in our system, the process is stopped at level

(n-2) and the bottomup process is started after calculating determinant of 2-d matrix for saving

t,he communication time.

In applying the DD algorithm, the another approach must be considered. The program lllust be

improved so that some PE’s play no less than one $\mathrm{P}\mathrm{E}$ , if the necessary PE number is over 1024.

At present our system has been implemented with this approach. However, the programming

load increases. Now it is trying to be revised by using the virtual processing element. $\mathrm{T}1_{1}\mathrm{e}$ idea

of virtual PE is kept for the next issue.

14.5 Results and Evaluation

This chapter evaluates how much the computation speed can be improved by using massively

parallel computer. At first, the case of determinant with the DL algorithm is investigat,ed.

Fig.3 depicts the ratio of the $\mathrm{s}\mathrm{e}\mathrm{q}\mathrm{u}\mathrm{e}\mathrm{n}\dot{\mathrm{t}}$ial computation time to the parallel one. The vertical and

horizontal axis are the ratio and matrix dimension respectively. The value of each point is the

average of 5 examples. The computation time is measured without the garbage collection time,

because it deeply depend on the current cornputer situation and isnt constant. The sequent,ial

computation is executed with one $\mathrm{P}\mathrm{E}$ .

A solid line is the result in which all elements of matrix consist of the numeric. In the case,

the availability of parallel computation is increasing as the matrix dimension becomes lager and
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the about 500 time ratio is realized in 9-d matrix. A dashed line is the case in which elements

are linear polynomials of one variable. A chain line is the quadratic polynomial of one variable.

And also a pointed chain line is the quadratic polynomial of two variables. The under numbers

of horizontal axis mean the used PE numbers.

$\mathrm{H}3$ Speed ratio of parallel to sequential in determinant computation

$\mathrm{H}4$ Speed ratio of parallel to sequential in inverse matrix computation

Fig.4 depicts the results of inverse matrix with the DL algorithm. The $\mathrm{S}\mathrm{h}\mathrm{a}\mathrm{P}\mathrm{E}’ \mathrm{s}$ of graph are

similar to Fig.3, because the algorithm is same as the determinant except for GCD calculat,ion.

The determinant calculation of lager dimensional matrix than 9-d can not be executed becatlsc of

lack of local memory capacity. Then Fig.3 and Fig.4 show the results through 9-d or 8-d matrices.

The above results clarify that the parallelizing of computer algebra can save the computing
time. For example, the ratio of 9-d matrix determinant in the case of quadratic polynomials

becomes 80 times.

Lets investigate the results more precisely. The parallel computation can realized about only
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one hundred time speed ratio although 1024 PE’s are applied. The results are not so far as the

our expected value. The reason of this problem is considered to be the overhead communication

time in parallel computation.

$\mathrm{E}5$ Communication time to total processing time

Fig.5 shows real data how much time the communication occupies to the total processing time,

in the case of matrix determinant of quadratic polynomials of two variables. The vertical axis is

time(sec) and the horizontal axis is matrix dimension. In the figure, a solid and a dashed lines

mean the total processing time and the communication time respectively. The reason why the

communication spends so much time, is that the bottomup process in LD has to use the global

communication between PE’s. It needs more time than the local communication or the shuffie

exchange communication.

So the DD algorithm which can use the $\mathrm{s}\mathrm{l}_{\mathrm{l}\mathrm{U}}\mathrm{f}_{\mathrm{U}\mathrm{l}1}$ exchange communication, is investigatcd. $\mathrm{T}1$) $\mathrm{c}$

function based on the DD algorithm is applied to the some examples and the computation $\mathrm{t}\mathrm{i}\ln \mathbb{C}\mathrm{s}$

are measured.

Table 1 lists the results of comparing DL and DD functions. The numeric of each column

means the computing speed ratio of DD $\mathrm{f}\iota 11\mathrm{l}\mathrm{C}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}$ to the DL function in calculating the matrix

determinants of numeric and quadratic polynomials of two variables. The results show that the

DD function can be executed two times as faster $\mathrm{a}_{S}$ the DL one because the shuffie exchange can

save the communication time in the bottomup process of DD algorithm. It is concluded that

massively parallel computer algorithm must be designed in considcring the PE’s coInmllui $(\dot{\zeta}\iota \mathrm{t}\mathrm{i}\mathrm{o}\mathrm{l}\mathrm{l}$

time.

Table 1 lists only through 4 to 6 dimensional cases because 7-d case needs 5040 PE’s and

consequently DD algorithm can not be applied directly to more than 7-d matrices. $\mathrm{F}\mathrm{r}\mathrm{o}\ln$ only

view point of PE’s communication, DD is more suitable to massively parallel computation than
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$\mathrm{D}\mathrm{L}$ . However DL can deal more easily with the limitation of PE’s number than $\mathrm{D}\mathrm{D}$ . Then $\mathrm{t}1_{1}\mathrm{c}\mathrm{y}$

have both merits and demerits.

$\Leftrightarrow 1$ Computing speed ratio of DD to DL

Though the detail of parallel programming is here omitted, the programming with care of

$1)\mathrm{a}\mathrm{r}\mathrm{a}\mathrm{l}\mathrm{l}\mathrm{e}\mathrm{l}$ programming technique can execute in 20

14.6 Conclusion

This paper deals with the $\mathrm{d}\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{l}\mathrm{o}_{1^{)}}\mathrm{m}\mathrm{e}\mathrm{n}\iota$ of massively parallel computer algebra system. The

effectiveness of realized parallel functions is evaluated, comparing with the sequential computa-

tion. And it can be concluded that the parallel computation is availablc $\mathrm{f}\mathrm{o}\mathrm{l}\mathrm{c}\mathrm{o}\mathrm{l}\mathrm{n}\mathrm{p}\mathrm{u}\mathrm{t}_{\mathrm{C}}\mathrm{r}$ algcbra.

At present our system has only few functions. In near future it will be extended to essential

functions of computer algebra.

References

$[1]\mathrm{S}\mathrm{i}\mathrm{e}\mathrm{g}\mathrm{l},\mathrm{K}.$ : Parallelizing Algorithms for Symbolic Computation using MAPLE,In 4th ACM SIG-

PLAN Symp. on Principles and Practice of Parallel Programming,pp 179-186 (1993)

$[2]\mathrm{T}.\mathrm{Y}\mathrm{U}\mathrm{A}\mathrm{s}\mathrm{A}$ and et.al.:SM-l and Its Language System, Parallel Languages and Compiler Re-

scarch in Japan, Ed.by Nicolau and Sato, M.Kluwer Academic Press 1995

122


