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Some Alternative Theorems of Set-Valued Maps and their
Applications

FRAFRFRERREMER BE K$E (DasHi KUROIWA)

Abstract. We establish some theorems for a certain minimization problem whose con-
straints are presented by set-valued maps. For this, we prove two alternative theorems for
set-valued maps. By using those theorems, we show some theorems for this minimization
problem.
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1. Introduction and Preliminaries

Fx i, EEMEEHEAOTRINIROME (P) 258X5 :
(P) minimize f(z)
subject to F(z)N(—P) # 0
72tEL, X @ ERZ MIVZER, C: X OZTROLHES, YV EREMEZEN, P: Y OO
$, f:C— R, F:C~Y.
Z O (P) i3, REROAERFIFEIORHE :
(P") minimize f(z)
subject to ¢i(z) <0, :=1,2,...,n
(272U, ¢i: C — R, i=1,2,..,n) &%, 355, MM (P) ERLShZLSI
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(1) (P) OIRIE (D) 28Z 5.
(2) (P) & (D) DELELL 155 &5 HEMERD B,

HEEERTEH, TOEITHFETEELUREAERICTON, ZHFR—DEH (alternative
theorem) TH 5. “HIR—OEHEDOHMIYEH E LTIE, Gordan OEE, Farkas OEE
ERHD, WTNBEHTS LT, FHICHEHALERTHS.
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(D) maximize  ¢(y*)
subject to y* € Pt
- : , * = . *, , + = * * *’ > , .
el gy = b @)+ n ) PY =yt e YUyt y) 2 0, Vy € P}

IOLE, ROETT B
Proposition 1.1. (Weak Duality)

val(D) < val(P).
CONSEBILSCEEMHO—DN, BHOMKUTHS. ->T, ROEICHTIE, H£AH
E L Ly

2. Convexity of Set-Valued Maps and their Relations

ZOETR, £EEEHOMEEZN S OOEZEL, FNSOMICZH ZBHMRIZONTHRRTN
. £HEFEHOMMIL, N7 MUVEBHOMEEIEIC L TERT . TOIEBEOHER,
DD DFHEDH 5. [4

Definition 2.1. A set-valued map F': C ~» Y is said to be

(i) convez if for every z1, z2 € C, y1 € F(zy), yo € F(z;), and X € (0,1), there exists
y € F(Azy + (1 = M\)zg) such that y <p Ayy + (1 — A)ys;

(ii) convezlike if for every w1, z; € C, y1 € F(21), y2 € F(z3), and X € (0,1), there exists
(z,y) € Graph(F') such that y <p Ay; + (1 — A)yq;

(iii) properly quasiconvez if for every =1, z; € C, y; € F(xy), y2 € F(z,), and ) € (0,1),
there exists y € F(Axy + (1 — \)z3) such that either y <puniory<puyz;

(1v) quasiconvez if for every z1, x2 € C, y1 € F(z1), y2 € F(x3), and A € (0,1),ify € Y
satisfies y1 <p y and y, <p y, then there exists y' € F(Az; + (1 — A)z3) such that

vV <py;

(v) naturally quasiconvez (cf. [7]) if for every z1, 3, € C, y; € F(zy), v € F(z;), and
A € (0,1), there exists y € F(Az;+(1—X)z2) and 7 € [0,1] such that y <pnyi+(1-1)yz;

(vi) *-quasiconvez (c.f. [3]) if for each y* € P*, function z — el%{ ) (y*,y) is quasiconvex
yEF(z
on C.

=L, n Spyz gy yz—y1€P.
SRS DEAEEROMEE LT, RAETT 3. [4]

Proposition 2.1. The following statements hold:



(i) F is convez if and only if Graph(F') + {0x} X P is a convez set;

(ii) F is convezlike if and only if F(C)+ P is a convex set;

(iii) F is quasiconvez if and only if for ally € Y, the set F~Yy — P) is a convex set.
722U, FFY (M) ={z € C|F(z)NM #0}; FF*'(M) = {z € C|F(z) C M} |
~ Proposition 2.2. The following statements hold:

(i) every convez map is also convezlike;

(ii) every convex map is also naturally quasiconvez;

(1ii) Properly quasiconvexr map is also naturally quasiconvez;
(iv) naturally quasiconvex map is also quasiconvez;

(v) naturally quasiconvex map is also *-quasiconvez.

Theorem 2.1. Assume that Y is a locally convex space and F(z) + P is closed convex for
all z € C. If F is x-quasiconvez, then F is also naturally quasiconvez.

Theorem 2.2. If We assume that P is closed and F is upper semicontinuous and conver
valued. If F' is naturally quasiconvex then it is convezlike.

3. Alternative Theorems for Some Set-Valued Maps

ZDETIE, 2DOO0°THIR—OFEEERT. T oDFEHIT, Tl kMEEFE LT, FH
KEETHD, JOMXOEEHOLEATHS. 9. BIOER—OEBTHEDNS
FthEbN 3. ‘ B
(A1) Q #0;
(A2) Q is open;
(A3) F is convexlike,
where Q = {y € Y|(y*,y) > 0, Vy* € P*\ {fy-}}.

Remark 3.1. It is easy to show that int P C Q, and if intP # 0, intP = Q. Also, assumption
(A2) is fulfilled when the function (y*,y) — (y*,y) is continuous in o(Y*,Y) x Oy, where Oy
is the topology of Y. We recall that this continuity is satisfied if Y is a normed space.

ZDEE, ROEHERS.



Theorem 3.1. Under the assumptions (A1), (A2), and (A3), exactly one of the following
statements (1) and (i) is true :

(i) there exists xo € C such that F(zo) N (—Q) # 0;

(ii) there exists y5 € Pt\{Oy+} such that for any (z,y) € Graph(F), (y*,y) > 0.

Remark 3.2. If F is a vector-valued map and int P # (), then Theorem 3.1 becomes Lemma 2.1
of [2].

RiZ, 2DODO_HIR—DEBE RS, TITEDLNEIFHEBRB DI, £7, £E
EEBRODOH 5 Ekt e EHKT 5.

Definition 3.1. A set-valued map F : C ~ Y is said to be x-lower semicontinuous (*-l.s.c.)
at ¢ € C if for any y* € P*, the function z — infyer(;) (¥*,y) is lower semicontinuous at
z. F is said to be x-lower semicontinuous if and only if it is *-lower semicontinuous at every
point of C.

Remark 3.3. Fvery upper-semicontinuous set-valued map is also *-lower semicontinuous.

(B1) X is a topological vector space;

(B2) Y is a locally convex space;

(B3) Pt has a w*-compact convex base D;
(B4) F is *-quasiconvex on C;

(B5) F is x-lower semicontinuous on C.

Remark 3.4. In (B3), P* has a w*-compact conver base D, means that there exists a w*-
compact conver subset D of Y* such that Oys ¢ D and Pt = 50 AD. Assumption (B3) is
satisfied when intP # 0, see [3].

ZDEE, ROEEEBS.

Theorem 3.2. Under the assumptions (B1), (B2), (B3), (B4), and (B5), ezactly one of
the following statements (i) and (ii) is true:

(1) there exists o € C such that for any y* € P"’\{Gy*}, 1nf )(y*,y) <0;

(ii) there exists yg € PT\{0y+} such that for any z € C, 1?7{ ) (y8,y) = 0.
yel(z

Remark 3.5. If F is a vector-valued map, then Theorem 3.2 becomes Theorem 2.1 of [3].



4. Applications to Optimization Problem

COETIE, RONCEZME (P) IS LT, FiFEIZHIFS Theorem 3.1, Theorem 3.2 %
BALT, TOPERE (D) LOBEEERNTNL. &7, 1FETHENI Weak Duality Z3E
Y5 |

Proof of Proposition 1.1. For each y* € P,

wl(P) = __inf  f(z)
> _inf  {f@+(0)} (e F@)n(-P)
> nf(F(E)+ (000}

= 6(y")
Hence,

val(P) > sup {¢(y")} = val(D).

y*eP+

This completes the proof. | O
wiz, EME (P) Ofids, ZOIHRE (D) OEIC—HT B/ DDRMHFICONTERELT
W, 9, RIRE (P) i LT, HRERS N7z Slater condition 2T 5.

(AS) F7I(-Q) #0;

(BS) there exists zg € C such that for any y* € P+ \ {0y+}, eiFn(f )(y*,y) <0.
yEF (20 :

Remark 4.1. If F is a vector-valued map, then condition (BS) becomes the generalized Slater
condition in [3]. Moreover intP # 0, then condition (AS) becomes the Slater condition in [2].

%M (AS) & (BS) ORIz, RD KD EBEFRNDH 5.
Proposition 4.1. For each problem (P),
(1) if (AS) is satisfied, then (BS) is also satisfied;

(i) if (BS) is satisfied and for each x € C, F(z) + P is closed convez, then (AS) is also
satisfied;

(i) if conditions (BS), (A1), (A2), and (A3) are satisfied, then (AS) is also satisfied;
Fl, KDL HITHM: (AY), (BY), (BY), ZEZET.

(A3%) (f,F) is convexlike;

(B4’) (f,F) is *-quasiconvex on C;

(B5’) (f,F) is *-lower semicontinuous on C,



where (f, F') is the set-valued map from C to R x Y defined by (f, F)(z) = ({f(z)}, F(z)) for
each z € C. In this case, we consider Ry X P as the convex cone in (A3’), and (R} x P)* =
R, x P as the positive polar cone in (B4’) and (B5’).

EHIT, ROFM: (B6) =EHT 5.

(B6) F(z)+ P is closed convex for any z € C.

'Remark 4.2. From Theorem 2.1, we have the following: under assumption (B6), condition
(B4’) holds if and only if (f, F) is naturally quasiconvez on C.

Z D&%, Theorem 3.1, Theorem 3.2 £V, IROFFEEA1E5.

Theorem 4.1. For problem (P), assume that one of the following assumptions:
(i) (AS), (A1), (A2), and (A3") are satisfied; |
(i1) (BS), (B1), (B2), (B3), (B4’), (B5’), and (B6) are satisfied.

Then val(P) = val(D), and there ezists yi € P* such that ¢(y;) = val(D). Moreover, if
there exists o € C such that val(P) = f(zo) and zo € F~'(—P), then (y5,y) = 0 for all
y € F(zo) N (—F).
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