Some Alternative Theorems of Set-Valued Maps and their Applications

新潟大学大学院自然科学研究科 黒岩 大史 (DAISHI KUROIWA)

Abstract. We establish some theorems for a certain minimization problem whose constraints are presented by set-valued maps. For this, we prove two alternative theorems for set-valued maps. By using those theorems, we show some theorems for this minimization problem.

Key Words. Mathematical programming, set-valued analysis, convex analysis, convexity of set-valued maps, continuity of set-valued maps, alternative theorem.

1. Introduction and Preliminaries

我々は、集合値写像を用いて表される次の問題 (P) を考える:

(P) minimize f(x)subject to $F(x) \cap (-P) \neq \emptyset$

ただし、X: 実ベクトル空間、C:X の空でない凸集合、Y: 実線形位相空間、P:Y の凸錐、 $f:C\longrightarrow \mathbf{R}$ 、 $F:C \leadsto Y$.

この問題 (P) は、従来の不等式制約型の問題:

(P') minimize f(x)subject to $g_i(x) \le 0$, i = 1, 2, ..., n

(ただし、 $g_i: C \longrightarrow \mathbf{R}, i=1,2,...,n$) を含み、さらに、問題 (P') に定式化されないような問題も (P) においては扱うことができる.

本論文における目的は、問題 (P) について考察することである. 具体的には、

- (1) (P) の双対問題 (D) を考える.
- (2) (P) と (D) の値が等しくなるような条件を求める.

などを考察するが、このときに非常に重要な役割を果たすのが、二者択一の定理 (alternative theorem) である. 二者択一の定理の古典的な例としては、Gordan の定理、Farkas の定理などがあり、いずれも応用する上で、非常に有用な定理である.

そこで、二者択一の条件を定式化し、どのような条件の下で、二者択一の定理が成立するのかを観察していく.

まず, (P) の双対問題 (D) を次のように定義する.

(D) maximize $\phi(y^*)$ subject to $y^* \in P^+$

ただし、 $\phi(y^*) \equiv \inf_{(x,y) \in \operatorname{Graph}(F)} \{ f(x) + \langle y^*, y \rangle \}, \ P^+ \equiv \{ y^* \in Y^* | \langle y^*, y \rangle \ge 0, \ \forall y \in P \}.$ このとき、次が成立する.

Proposition 1.1. (Weak Duality)

$$val(D) \le val(P)$$
.

この等号を成立させる条件の一つが、関数の凸性である. 従って、次の章においては、集合値関数の凸性を定義する.

2. Convexity of Set-Valued Maps and their Relations

この章では、集合値写像の凸性をいくつか定義し、それらの間にある関係について述べていく、集合値写像の凸性は、ベクトル値関数の凸性を基にして定義する。その拡張の方法は、いくつかの方法がある。[4]

Definition 2.1. A set-valued map $F: C \rightarrow Y$ is said to be

- (i) convex if for every $x_1, x_2 \in C$, $y_1 \in F(x_1)$, $y_2 \in F(x_2)$, and $\lambda \in (0,1)$, there exists $y \in F(\lambda x_1 + (1-\lambda)x_2)$ such that $y \leq_P \lambda y_1 + (1-\lambda)y_2$;
- (ii) convexlike if for every $x_1, x_2 \in C$, $y_1 \in F(x_1)$, $y_2 \in F(x_2)$, and $\lambda \in (0,1)$, there exists $(x,y) \in Graph(F)$ such that $y \leq_P \lambda y_1 + (1-\lambda)y_2$;
- (iii) properly quasiconvex if for every $x_1, x_2 \in C$, $y_1 \in F(x_1)$, $y_2 \in F(x_2)$, and $\lambda \in (0,1)$, there exists $y \in F(\lambda x_1 + (1-\lambda)x_2)$ such that either $y \leq_P y_1$ or $y \leq_P y_2$;
- (iv) quasiconvex if for every $x_1, x_2 \in C$, $y_1 \in F(x_1)$, $y_2 \in F(x_2)$, and $\lambda \in (0,1)$, if $y \in Y$ satisfies $y_1 \leq_P y$ and $y_2 \leq_P y$, then there exists $y' \in F(\lambda x_1 + (1-\lambda)x_2)$ such that $y' \leq_P y$;
- (v) naturally quasiconvex (c.f. [7]) if for every $x_1, x_2 \in C$, $y_1 \in F(x_1)$, $y_2 \in F(x_2)$, and $\lambda \in (0,1)$, there exists $y \in F(\lambda x_1 + (1-\lambda)x_2)$ and $\eta \in [0,1]$ such that $y \leq_P \eta y_1 + (1-\eta)y_2$;
- (vi) *-quasiconvex (c.f. [3]) if for each $y^* \in P^+$, function $x \longmapsto \inf_{y \in F(x)} \langle y^*, y \rangle$ is quasiconvex on C.

ただし、 $y_1 \leq_P y_2 \iff y_2 - y_1 \in P$. これらの集合値写像の凸性に関して、次が成立する. [4]

Proposition 2.1. The following statements hold:

- (i) F is convex if and only if $Graph(F) + \{\theta_X\} \times P$ is a convex set;
- (ii) F is convexlike if and only if F(C) + P is a convex set;
- (iii) F is quasiconvex if and only if for all $y \in Y$, the set $F^{-1}(y-P)$ is a convex set.

ただし、 $F^{-1}(M) \equiv \{x \in C | F(x) \cap M \neq \emptyset\}; F^{+1}(M) \equiv \{x \in C | F(x) \subset M\}.$

Proposition 2.2. The following statements hold:

- (i) every convex map is also convexlike;
- (ii) every convex map is also naturally quasiconvex;
- (iii) properly quasiconvex map is also naturally quasiconvex;
- (iv) naturally quasiconvex map is also quasiconvex;
- (v) naturally quasiconvex map is also *-quasiconvex.

Theorem 2.1. Assume that Y is a locally convex space and F(x) + P is closed convex for all $x \in C$. If F is *-quasiconvex, then F is also naturally quasiconvex.

Theorem 2.2. If We assume that P is closed and F is upper semicontinuous and convex valued. If F is naturally quasiconvex then it is convexlike.

3. Alternative Theorems for Some Set-Valued Maps

この章では、2つの二者択一の定理を示す。これらの定理は、最適化問題を解く上で、非常に重要であり、この論文の主定理の主な道具である。まず、最初の二者択一の定理で使われる条件を述べる。

- (A1) $Q \neq \emptyset$;
- (A2) Q is open;
- (A3) F is convexlike,

where $Q \equiv \{ y \in Y | \langle y^*, y \rangle > 0, \ \forall y^* \in P^+ \setminus \{\theta_{Y^*}\} \}.$

Remark 3.1. It is easy to show that $\operatorname{int} P \subset Q$, and if $\operatorname{int} P \neq \emptyset$, $\operatorname{int} P = Q$. Also, assumption (A2) is fulfilled when the function $(y^*, y) \mapsto \langle y^*, y \rangle$ is continuous in $\sigma(Y^*, Y) \times \mathcal{O}_Y$, where \mathcal{O}_Y is the topology of Y. We recall that this continuity is satisfied if Y is a normed space.

このとき、次の定理を得る.

Theorem 3.1. Under the assumptions (A1), (A2), and (A3), exactly one of the following statements (i) and (ii) is true:

- (i) there exists $x_0 \in C$ such that $F(x_0) \cap (-Q) \neq \emptyset$;
- (ii) there exists $y_0^* \in P^+ \setminus \{\theta_{Y^*}\}$ such that for any $(x,y) \in \operatorname{Graph}(F)$, $(y^*,y) \geq 0$.

Remark 3.2. If F is a vector-valued map and int $P \neq \emptyset$, then Theorem 3.1 becomes Lemma 2.1 of [2].

次に、2つめの二者択一の定理を述べる。そこで使われる条件を述べるために、まず、集合 値写像のある連続性を定義する。

Definition 3.1. A set-valued map $F: C \to Y$ is said to be *-lower semicontinuous (*-l.s.c.) at $x \in C$ if for any $y^* \in P^+$, the function $z \longmapsto \inf_{y \in F(z)} \langle y^*, y \rangle$ is lower semicontinuous at x. F is said to be *-lower semicontinuous if and only if it is *-lower semicontinuous at every point of C.

Remark 3.3. Every upper-semicontinuous set-valued map is also *-lower semicontinuous.

- **(B1)** X is a topological vector space;
- (B2) Y is a locally convex space;
- **(B3)** P^+ has a w*-compact convex base D;
- **(B4)** F is *-quasiconvex on C;
- **(B5)** F is *-lower semicontinuous on C.

Remark 3.4. In (B3), P^+ has a w^* -compact convex base D, means that there exists a w^* -compact convex subset D of Y^* such that $\theta_{Y^*} \notin D$ and $P^+ = \bigcup_{\lambda \geq 0} \lambda D$. Assumption (B3) is satisfied when int $P \neq \emptyset$, see [3].

このとき、次の定理を得る.

Theorem 3.2. Under the assumptions (B1), (B2), (B3), (B4), and (B5), exactly one of the following statements (i) and (ii) is true:

- (i) there exists $x_0 \in C$ such that for any $y^* \in P^+ \setminus \{\theta_{Y^*}\}$, $\inf_{y \in F(x_0)} \langle y^*, y \rangle < 0$;
- (ii) there exists $y_0^* \in P^+ \setminus \{\theta_{Y^*}\}$ such that for any $x \in C$, $\inf_{y \in F(x)} \langle y_0^*, y \rangle \geq 0$.

Remark 3.5. If F is a vector-valued map, then Theorem 3.2 becomes Theorem 2.1 of [3].

4. Applications to Optimization Problem

この章では、最初に与えた問題 (P) に対して、前章における Theorem 3.1, Theorem 3.2 を適用して、その双対問題 (D) との関連を調べていく、まず、 1 章で述べた Weak Duality を証明する.

Proof of Proposition 1.1. For each $y^* \in P^+$,

$$\begin{aligned} \operatorname{val}(\mathbf{P}) &= \inf_{x \in F^{-1}(-P)} f(x) \\ &\geq \inf_{x \in F^{-1}(-P)} \{ f(x) + \langle y^*, y \rangle \} \quad (\forall y \in F(x) \cap (-P)) \\ &\geq \inf_{(x,y) \in \operatorname{Graph}(F)} \{ f(x) + \langle y^*, y \rangle \} \\ &= \phi(y^*). \end{aligned}$$

Hence,

$$val(P) \ge \sup_{y^* \in P^+} \{\phi(y^*)\} = val(D).$$

This completes the proof.

次に、主問題 (P) の値が、その双対問題 (D) の値に一致するための条件について考察していく、まず、問題 (P) に対して、拡張された Slater condition を定義する.

(AS)
$$F^{-1}(-Q) \neq \emptyset$$
;

(BS) there exists
$$x_0 \in C$$
 such that for any $y^* \in P^+ \setminus \{\theta_{Y^*}\}$, $\inf_{y \in F(x_0)} \langle y^*, y \rangle < 0$.

Remark 4.1. If F is a vector-valued map, then condition (BS) becomes the generalized Slater condition in [3]. Moreover int $P \neq \emptyset$, then condition (AS) becomes the Slater condition in [2].

条件 (AS) と (BS) の間には、次のような関係がある.

Proposition 4.1. For each problem (P),

- (i) if (AS) is satisfied, then (BS) is also satisfied;
- (ii) if (BS) is satisfied and for each $x \in C$, F(x) + P is closed convex, then (AS) is also satisfied;
- (iii) if conditions (BS), (A1), (A2), and (A3) are satisfied, then (AS) is also satisfied; また、次のように条件 (A3'), (B4'), (B5'), を置き直す.
- (A3') (f, F) is convexlike;
- **(B4')** (f,F) is *-quasiconvex on C;
- **(B5')** (f, F) is *-lower semicontinuous on C,

where (f, F) is the set-valued map from C to $\mathbf{R} \times Y$ defined by $(f, F)(x) \equiv (\{f(x)\}, F(x))$ for each $x \in C$. In this case, we consider $\mathbf{R}_+ \times P$ as the convex cone in $(\mathbf{A3'})$, and $(\mathbf{R}_+ \times P)^+ = \mathbf{R}_+ \times P^+$ as the positive polar cone in $(\mathbf{B4'})$ and $(\mathbf{B5'})$.

さらに, 次の条件 (B6) を定義する.

(B6) F(x) + P is closed convex for any $x \in C$.

Remark 4.2. From Theorem 2.1, we have the following: under assumption (B6), condition (B4') holds if and only if (f, F) is naturally quasiconvex on C.

このとき, Theorem 3.1, Theorem 3.2 より, 次の主定理を得る.

Theorem 4.1. For problem (P), assume that one of the following assumptions:

- (i) (AS), (A1), (A2), and (A3') are satisfied;
- (ii) (BS), (B1), (B2), (B3), (B4'), (B5'), and (B6) are satisfied.

Then val(P) = val(D), and there exists $y_0^* \in P^+$ such that $\phi(y_0^*) = val(D)$. Moreover, if there exists $x_0 \in C$ such that $val(P) = f(x_0)$ and $x_0 \in F^{-1}(-P)$, then $\langle y_0^*, y \rangle = 0$ for all $y \in F(x_0) \cap (-P)$.

References

- [1] J.P. Aubin and H. Frankowska, Set-Valued Analysis, Birkhäuser Boston, 1990.
- [2] M. HAYASHI AND H. KOMIYA, "Perfect Duality for Convexlike Programs," J. Math. Anal. Appl., 38, No.2, (1982), pp.179–189.
- [3] V. JEYAKUMAR, W. OETTLI AND M. NATIVIDAD, "A Solvability Theorem for a Class of Quasiconvex Mappings with Applications to Optimization," J. Math. Anal. Appl., 179, (1993), pp.537-546.
- [4] D. Kuroiwa, "Convexity for Set-valued Maps," to appear in Appl. Math. Letters.
- [5] R. T. ROCKAFELLAR, "Extension of Fenchel's Duality Theorem for Convex Functions," Duke Math. J. 33 (1966), 81-89.
- [6] M. Sion, "Generalized Quasiconvexities, Cone Saddle Points, and Minimax Theorem for Vector-Valued Functions," *Pacific J. Math.*, 8, (1958), pp.171-176.
- [7] T. TANAKA, "Generalized Quasiconvexities, Cone Saddle Points, and Minimax Theorem for Vector-Valued Functions," J. Optim. Theo. Appl., 81, No.2, (1994), pp.355-377.